

 Humboldt University Berlin
 Computer Science Department
 Systems Architecture Group

 Rudower Chaussee 25
 D-12489 Berlin-Adlershof
 Germany

 Phone: +49 30 2093-3400
 Fax: +40 30 2093-3112
 http://sar.informatik.hu-berlin.de

This report is for future publication.
It is for internal distribution only

until 6 month after the date of issue.

Development of a Software Distribution Platform for the

Berlin Roof Net (Diplomarbeit / Masters Thesis)

HU Berlin Public Report
SAR-PR-2006-01

January 2006

Author:

Bernhard Wiedemann

 2

Development of a Software Distribution Platform for the BerlinRoofNet
(Diplomarbeit / Masters Thesis)

Bernhard Wiedemann

(Humboldt University Berlin)

Abstract.

The Berlin Roof Net (BRN) project aims at providing a decentralized ad-hoc multi-hop
wireless mesh network, which is a hot topic of research. A considerable number of multi-
hop mesh network routing protocols exist with specific strengths and weaknesses, having
parameters and options to optimize throughput, latency, reliability, fairness, security, etc.
However, reliably distributing new, improved routing protocols in this decentralized
network without centralized resources, unique Internet Protocol address assignment and
without routing is quite a challenge. It requires a well designed Software Distribution
Platform (SDP). This work will discuss such SDP design and a working implementation
in detail. In the course of this work it will be shown that it is possible to reliably
distribute software, using an infection based distribution method, direct links for
communication of BRN nodes, TFTP for file transfer, and broadcasts for neighbour
notification and time synchronization.

Zusammenfassung.

Das Berlin Roof Net (BRN) Projekt hat zum Ziel, ein dezentrales, drahtloses, multi-hop
Maschennetz aufzubauen, welches Gegenstand aktueller Forschung ist. Es gibt zahlreiche
Maschennetz-Routingprotokolle mit verschiedenen Stärken und Schwächen sowie
Parametern, um Datendurchsatz, Latenz, Zuverlässigkeit, Sicherheit usw. zu verbessern.
Die dazu nötige neue Software in diesem dezentralen Netz ohne IP-Adresszuweisung und
ohne Routing zu verteilen, stellt allerdings eine beträchtliche Herausforderung dar. Dazu
bedarf es einer wohl durchdachten Softwareverteilungsplattform (SDP). Diese
Diplomarbeit umfasst den Entwurf und die Umsetzung einer solchen SDP. Es wird dabei
gezeigt, dass eine zuverlässige Softwareverteilung mittels viraler Verteilung über
Direktverbindungen zwischen den BRN-Knoten möglich ist.

Keywords. Software Distribution Platform, Ad-Hoc Networks, Wireless Mesh Networks,
Community Networks, Sensor Networks, Berlin Roof Net.

Contents

Contents V

1 Introduction 3
1.1 Thesis . 3
1.2 Motivation . 3
1.3 Notation . 4
1.4 Terminology . 4
1.5 Thesis Structure . 5
1.6 Berlin Roof Net . 6

1.6.1 General Ideas . 6
1.6.2 Concepts . 8

2 Problem Statement 11

3 Current State of the Art 13
3.1 Standards . 15
3.2 SUSE Linux Update . 17
3.3 Other Methods . 20

3.3.1 Package Formats . 20
3.3.2 Updating Gentoo Linux . 21
3.3.3 Embedded Device Firmware Upgrades 22
3.3.4 Current Mesh Network Updates 23

4 The Software Distribution Platform 25
4.1 Requirements . 25
4.2 SDP Design . 26

4.2.1 Using Current Methods . 26

V

VI CONTENTS

4.2.2 Robustness . 29
4.2.3 File Transfer . 31
4.2.4 Versioning . 31
4.2.5 Consistency of Versions . 32
4.2.6 Notification . 32
4.2.7 Security . 33

5 SDP Implementation 37
5.1 Click Modular Router . 38
5.2 Time Synchronization . 39

5.2.1 Scheduling Updates . 44
5.2.2 Test Versions . 44

5.3 Software Package . 45
5.3.1 TFTP . 47
5.3.2 Managing Versions . 48
5.3.3 Storage Considerations . 49

5.4 Analyzing the Code . 49
5.5 Testing and Debugging . 49
5.6 Scenarios . 50

5.6.1 Normal Operation . 52
5.6.2 Normal Update . 52
5.6.3 Update with a Disconnected Node 52
5.6.4 Update with a Disconnected Subnet 53

5.7 Scalability . 53
5.8 Effort Estimation . 54

6 Conclusions 55
6.1 Summary . 55
6.2 Future Work . 55

Appendices 56

A BRN NTP 57
A.1 Example UTC Time Sources . 57
A.2 NTP Implementation . 58

CONTENTS VII

B Click Configuration Files 59

C Scripts 63

List of Figures 67

Bibliography 69

Chapter 1

Introduction

1.1 Thesis

Reliably distributing software within the Berlin Roof Net without routing, unique
IP address assignment, or centralized storage while guaranteeing consistent soft-
ware versions can not be done with existing TCP/UDP/IP software but can be
done with specialized software that utilizes a viral distribution method employ-
ing local broadcasts for notification of neighboring nodes.

1.2 Motivation

BRN is an ad-hoc multi-hop mesh network, build up from homogenous nodes.
This is not a well established technology but on the contrary, a hot topic of re-
search and development. As is natural with such a new technology, often new
requirements arise, and new knowledge is found.

When ideas come up, they are first checked for fundamental flaws and their
properties predicted by means of pen and paper. If they are found valid, they may
be good and be published but to find out if the idea could work in real applica-
tions and whether one did not overlook something, one would run a simulated
network. If the ideas pass, they may be suitable for practical use but to be sure
one needs to try them on a testbed. Now BRN aims to create such a real world
testbed.

However, such a testbed needs supporting infrastructure to easily (e.g. by one
click) deploy software to all nodes (amongst other tasks). All BRN development,
operation and (especially important for this work) updating is limited by various

3

4 CHAPTER 1. INTRODUCTION

factors, including geographic and social problems as well as limited time and
monetary resources.

This calls for the creation of a Software Distribution Platform (SDP) that sim-
plifies testing by making it faster and at the same time more consistent and reli-
able which in turn should result in more acceptance by project participants (the
community). It is also desired to build up a community around the BRN to have
real users on the testbed so that one can observe its performance under different
load and traffic patterns.

It is expected that SDP will speed up development and testing. This should
result in a faster, simpler, easier to use, and more comfortable BRN.

1.3 Notation

An URL , file or code snippet is written in a monospace font.
A →term is explained in the terminology chapter 1.4.
A citation like [Cohen2003] is written with square brackets.

1.4 Terminology

This defines some heavily used terms and abbreviations:

• WLAN: Wireless LAN usually denotes all local area networks employ-
ing radio waves for transmission. In this work it always refers to networks
employing IEEE 802.11g wireless communication protocols.

• Mesh network: Is defined as a network that consists of several nodes
interconnected with all neighboring nodes, communicating over direct links
with each other. In this work links are usually established over WLAN.

• BRN: Berlin Roof Net. BRN is a project, initiated by the Systems Ar-
chitecture Group1 aiming to provide a basis for a multi-hop wireless mesh
network, to be distributed in Berlin. BRN utilizes the click modular router
software, as designed by MIT’s Parallel & Distributed Operating Systems
Group2 and used in the Roofnet project3.

1http://sar.informatik.hu-berlin.de
2http://pdos.csail.mit.edu/click/
3http://sourceforge.net/projects/roofnet/

1.5. THESIS STRUCTURE 5

• SDP: Software Distribution Platform: a component of BRN managing
the distribution of new software to the nodes.

• CA: Certification Authority: a trusted party. The CA is signing devel-
oper or software package certificates.

• DHCP: Dynamic Host Configuration Protocol: this is used to assign IP
addresses to hosts. It is especially useful in conjunction with mobile hosts
that travel between different networks (e.g. Laptop, PDA).

• UTC: Coordinated Universal Time (formerly known as GMT): the time
all atomic clocks run on — with some added leap-seconds. UTC does not
include time zone or daylight saving adjustments.

• Package: In this work the word “package” is used to denote a software
update package that may consist of several files, that together constitute the
working software — on top of the base system.

• Packet: A single network packet, usually between 64 and 1500 bytes in
size.

• Broadcast: For the purpose of this work, this is a local WLAN or Ether-
net broadcast packet that is not routed through the mesh network but re-
ceived by all neighboring stations.

The following terms are specific to SDP and thus only defined to be used in
this work.

• Version ID: A plain integer number starting with version 0 for the first
public stable release and increasing with each new version. Versioning will
be explained in chapter 4.2.4 on page 31.

• Meta-info: This denotes all the information that is stored about a
→package and transmitted in the meta-info file, including →version ID,
activation timestamp, as well as names, sizes and hash values of all files in
a package. This will be covered later in chapter 5.3 on page 45.

1.5 Thesis Structure

The remainder of this thesis will be split into four major parts.
At first an introduction on BRN will be given.

6 CHAPTER 1. INTRODUCTION

Next, an overview of the current state of the art will be given which includes
analyzing a few methods which are in common use to distribute software today.

Then the design of SDP and its components will be explained.
Finally, insight into the actual code, development process, measurements, and

other details about the SDP implementation is given.

1.6 Berlin Roof Net

1.6.1 General Ideas

Because SDP is a part of the BRN project, this work starts by providing general
information about BRN and then details some aspects that are important for de-
signing SDP.

BRN is an ad-hoc multi-hop mesh network modeled after the MIT Roofnet in
Cambridge [Roofnet]. Ad-Hoc means, that it is possible to establish connectivity
without prior knowledge or specific settings like IP numbers, gateways, etc. This
allows to employ hardware that can operate out of the box. Consequently ad-hoc
networks can be set up much easier than normal networks.

Simple ad-hoc wireless networks have existed for some years now but they
require participants to be in direct range with all others. But BRN is a multi-hop
wireless network that can relay resources like data or services to neighboring
nodes.

A multi-hop mesh network is characterized by several nodes providing ser-
vices locally but also being able to relay services to neighboring nodes. In the
BRN case communication links are usually established through WLAN.

As mentioned earlier, it is natural with such new, emerging technology that
often new requirements arise, and new knowledge comes up. This then requires
changes to current protocols and software which in turn makes a Software Dis-
tribution Platform essential.

The BRN is a dynamic network of homogenous nodes, that means:

• It has no privileged nodes,

• It has no centralized resources (e.g. data-store),

• It runs on homogenous nodes (same hardware and software) with different
administrators,

1.6. BERLIN ROOF NET 7

• Nodes may be turned off or disconnected from the remaining network for
any period of time,

• The network may be split into several subnetworks for any period of time,

• Nodes may be added at any time.

Additionally, there have been some design decisions specific to BRN that might
change in the future:

• Nodes are installed on roofs and other locations that are difficult to reach,

• It addresses nodes by their unique MAC address and operates at Ethernet
level (this is because nodes do not have unique IP addresses assigned),

• Nodes act as →WLAN access points for IEEE 802.11g standard,

• BRN wants to become a community project/network,

• Nodes are set up from inexpensive and thus limited hardware (e.g. the
Netgear WRT54GS router has 32MB RAM and 8MB flash).

It is assumed that the BRN project has a trustworthy developer team and
→CA. This is a necessary assumption, because one can not easily limit what ap-
plications can do. It is even harder to do so on limited hardware like the one of
BRN nodes.

Why was the BRN started?

People nowadays like having Internet everywhere. Of the methods available to
get access to the Internet from laptops or handheld devices, it is wireless tech-
nology that is the most prevalent and convenient to use. So what people want,
is to sit outside in the garden and surf the web. Laptops and PDAs often have
built-in WLAN interfaces complying with IEEE 802.11 b or g standards. How-
ever, to let them connect, they need a base station with Internet access. Of course,
everyone can set this up at his home and surf in his own garden but being able to
do so anywhere, and anytime is a new dimension of networking with many new
possible applications.

This is the motivational background on which the Berlin Roof Net (BRN)
project has set their goal to cover Berlin with a network of BRN nodes that act
as WLAN access points.

8 CHAPTER 1. INTRODUCTION

1.6.2 Concepts

Because SDP is integrated into BRN it is essential to know about some key ele-
ments of BRN’s design.

To promote the goal of a Berlin-wide network, the project develops and pub-
lishes open source software for inexpensive commercial hardware. It is intended
to not need node configuration of any kind so it can just be installed and deployed
to build up a complete wireless network from identical (thus interchangeable)
nodes.

So how does it work?
Users can directly contact other BRN users — and also the Internet through

gateway nodes. That is possible because from the user perspective BRN looks like
a big WLAN access point or Ethernet switch with all users of a wide area (ideally
the whole area of Berlin) connected to it. You see this depicted in figure 1.1.

user 1

 AP 1

 AP 2 user 2
BRN

Figure 1.1: BRN from a user’s point of view

From the BRN perspective the network receives and forwards Ethernet pack-
ets from user machines. This is shown in figure 1.2.

If the target BRN node is unknown, the receiving node triggers a route dis-
covery mechanism to find the target. Then it routes the Ethernet packet using the
known route. The employed technique is called bridging.

Since all this happens at Ethernet level, BRN nodes do not need to have IP ad-
dresses assigned. In fact, for various reasons the BRN is desired to work without
any centralized resources and even a →DHCP server would be such a resource.

1.6. BERLIN ROOF NET 9

node 1

node 2

node 3

BRN
users

users

Internet

Figure 1.2: BRN from the internal network point of view

Hardware

Because the BRN project aims to cover a vast area with its wireless mesh net-
work, it needs many inexpensive nodes to establish it. Thus commercial off the
shelf routers with integrated access-points are used. At an earlier stage Linksys
WRT54GS systems were used and nowadays BRN uses Netgear WGT634U sys-
tems.

Not surprisingly they contain hardly more hardware than is needed for the
job they normally do: 8MB flash, 32MB RAM, a 200 MHz MIPS CPU, a 5-port
Ethernet interface and a 802.11g compatible WLAN chip which is working with
the MADWIFI Atheros open source driver.

Software

A modified OpenWrt distribution is used for the base system. It is an open source
distribution for the Linksys WRT54G platform. OpenWrt employs the Linux ker-
nel, the uClibc C library, and many space-saving busybox utilities together
with more specialized tools like iptables and iwconfig . OpenWrt has been
ported to the Netgear WGT634U platform by other BRN project participants. The
resulting distribution is sometimes called “OpenWGT” but is largely compatible
to OpenWrt thus the terms are interchangeable for the purpose of this work.

On top of OpenWrt runs the click modular router software that allows to cap-

10 CHAPTER 1. INTRODUCTION

ture, process and produce packets using reusable filter modules. The click soft-
ware is explained in chapter 5.1 on page 38.

Chapter 2

Problem Statement

This thesis is about the design of a Software Distribution Platform (SDP) for mesh
networks in general and it includes a basic implementation for →BRN in partic-
ular. SDP tries to solve the problem of reliably and securely distributing software
within BRN, taking into account its nature of being a decentralized ad-hoc mesh
network. The software versions shall remain consistent across the BRN as long
as possible. This includes solving the following sub-tasks:

• Building update packages

• Notifying nodes about software updates

• Transferring files

• Verifying package integrity and authenticity

• Synchronizing system clocks

• Switching software versions

This work will focus on providing the basic functionality so it can be built upon.
Any employed method can be optimized in future work.

While security is generally included in the discussion, it is not the primary
concern. Furthermore mesh-networks, routing, and the OpenWrt/OpenWGT
system hardware and software are only slightly covered to better show, how SDP
integrates into it.

An Example

To better illustrate the problem, here is an example of a situation where SDP
might be used.

11

12 CHAPTER 2. PROBLEM STATEMENT

In an initial stage, 20 nodes might be set up with initial software that em-
ploys the Dynamic Source Routing (DSR) protocol and 15 of them are deployed
by different people. Most of them are installed on roofs for operation and an-
other 3 nodes are given away to people who did not activate them yet. Later on
it is found that an additional option to DSR or a completely new protocol will
perform better, thus an update package is prepared by BRN project members.

Now the problem is to distribute the new software to all existing nodes with-
out leaving the BRN in a state with mixed, incompatible versions for a noticeable
time. Operating with mixed versions could cause network partitioning which
means that it is impossible to reach a part of the network. With non-functional
software it is even likely that nodes are left without routing which complicates
access to correct the software.

Chapter 3

Current State of the Art

Of course, software has been distributed before by a wide range of methods. This
chapter will start out by giving a summary of today’s commonly employed meth-
ods, describing the common principles of the whole software update process and
finally provide more detail about a few selected existing methods to improve the
reader’s understanding about differences and similarities. The next chapter will
then discuss to what extent current methods can be employed to meet specific
requirements of SDP.

Software update distribution methods can be categorized into:

• Offline - e.g. distribute CDs to people (as in use in some current mesh net-
works)

• Download - let owners download first and initiate updates later (as for orig-
inal Netgear router firmware)

• Online - update automatically (the only viable variant for BRN as will be
shown later)

Additionally, software updates are distributed in one or more of the following
formats:

• As complete source code package

• As source code differences or patches

• As complete binary package

• As binary delta or difference package

13

14 CHAPTER 3. CURRENT STATE OF THE ART

Previous large scale software distribution methods include:

• Microsoft Windows updates [WhIr2004],

• Gentoo Linux updates from source code,

• UNIX or Linux updates, e.g. SUSE or FreeBSD [Perc2003],

• Booting from network over NFS or using software from SMB or OpenAFS
shares

• Automated Software Deployment in a Large Commercial Network by
Digital, see [Tall1995],

• Embedded device updates, e.g. updating original Netgear access-points.

Those methods follow common principles and steps:

1. Software is packaged into a common well defined →package format and
tested prior to delivery.

2. Often notification about newly released updates is sent by email.

3. Software packages are transferred to clients — offline (DVD/CD/floppy)
or online — either automatically or user-initiated, as with Netgear updates.

4. Clients try to install software and might fall back to the previous version if
installation fails. Installing may include executing the pre-install and post-
install scripts from the package.

5. Clients stop old software and start the new one. Sometimes a reboot is nec-
essary to complete installation.

6. Clients uninstall old software, which may include executing the pre-
uninstall and post-uninstall scripts from the old package.

The order of steps 4, 5, and 6 may vary.

Software Distribution with P2P

Apart from the aforementioned there are also peer-to-peer (P2P) techniques like
Avalanche and BitTorrent [GhRo2005, Cohen2003] that can be used to distribute

3.1. STANDARDS 15

software. Some P2P protocols even combine push and pull mechanisms to en-
hance performance.

P2P improves overall network performance and robustness by letting user’s
machines — named peers — connect to other peers that already have parts of the
wanted data. P2P distribution is decentralized and also utilizes hashes to verify
integrity of the transferred data. Most real world P2P applications rely on IP and
routing.

Software Distribution with Worms

Worms (sometimes mistakenly called “viruses”) distribute themselves. They of-
ten distribute without user interaction and often spread very rapidly throughout
Internet hosts. The general common principle for the distribution of worms is
that once a host becomes infected by a worm, it starts sending out worms itself to
other reachable hosts without requiring any centralized resources. An example is
the Sapphire/Slammer worm that was analyzed in [Sapphire]. It demonstrated
that it was possible to infect 90% of vulnerable hosts within 10 minutes. This
allows to conclude that infection based distribution methods work well.

The difference to regular software updates is of course that computer worms
are malicious programs that enter the system through unintended channels and
often cause damage to the user by spying on him, opening backdoors for remote-
controlling the machine or deleting his files.

3.1 Standards

There are well established standards for most of the required tasks but it will be
seen that not all are usable in our situation.

Notification of updates can be done in various ways, including sending a broad-
cast packet, or by pushing data over a TCP/IP socket. E-mail notification is com-
mon but apart from this there seem to be no established standards.

Also for pure file transfers there are several established standards: HTTP,
FTP, and finally the trivial file transfer protocol, TFTP [HTTP, FTP, TFTP]. Some
update mechanisms also use the rsync or CVS protocols [Trid1999, CVS] to effi-
ciently keep binary or source file collections up-to-date.

For integrity and authenticity verification there are several well-proven crypto-

16 CHAPTER 3. CURRENT STATE OF THE ART

graphic hashes (MD5, SHA1, Tiger, ...) and cryptographic signing functions (RSA
[RSA1978], DSA)

Time-synchronization can be done with the Time Protocol [TimeProt] and contin-
uous high-precision time-synchronization is possible with [NTP].

For packaging installable software there is a variety of different software pack-
age formats in heavy use today and all of them employ compression to safe stor-
age space and transfer bandwidth. Examples are: deb (Debian GNU/Linux),
rpm (Red Hat/SUSE/Mandrake Linux), msi (MS Windows), zip, tar.gz (generic
file collection)

To finish this section, a rough summary is given below.

Figure 3.1: Overview of properties of software update methods
system source binary delta interact. auto. pull1 push1 decentr.

MS Win - x - x x x - -3

SUSE x x x x x x - -3

Gentoo x - - x x x - -3

FreeBSD x x2 x2 x x x - -3

Netgear - x - x - x - -3

Netboot - x - - x x x -3

P2P x x x x - x x x
Worm - x - - x - x x

SDP - x - - x x x x

Note that SDP is only included in this table to give an easy overview on how
it relates to existing techniques. The next chapter will then discuss which of the
current methods can be employed to meet SDP’s requirements.

1push and pull denote which side initiates a data transfer. Push means that information is
pushed towards those that want it, for instance, sending email. Similarly a user requesting a page
on WWW does pull.

2not by itself but with binup [Perc2003]
3Updates can only be decentralized insofar as a local mirror can be set up anywhere — usually

in large administrative entities — and afterwards be run independently from the vendor.

3.2. SUSE LINUX UPDATE 17

3.2 SUSE Linux Update

To give a more detailed view on common software updating procedures this sec-
tion will describe SUSE Linux updates. It is likely that other commercial software
vendors use very similar methods.

The package format

SUSE Linux distribution employs the Red Hat Package Manager (rpm) format.
First here is an overview of rpm features, as most other software packaging for-
mats have similar characteristics.

rpm packages contain various useful information about their content:

• Digital signatures for the content

• List of contained files

• List of required packages and files

• Pre-install, post-install, pre-uninstall, and post-uninstall scripts

• Various additional information like uncompressed file size, packager Name,
build date, ...

Here is an example to illustrate the rpm format. It queries the rpm database
about the rpm package’s meta-information: rpm -qi rpm

Name : rpm Relocations: (not relocatable)

Version : 4.1.1 Vendor: SUSE LINUX Products GmbH

Release : 208.2 Build Date: Sa 11 Jun 2005 01:53:04

Install date: Di 18 Okt 2005 13:29:37 Build Host: purcell.suse.de

Group : System/Packages Source RPM: rpm-4.1.1-208.2.src.rpm

Size : 5970541 License: GPL

Signature : DSA/SHA1, Sa 11 Jun 2005 01:58:41, Key ID a84edae89c800aca

Packager : http://www.suse.de/feedback

Summary : The RPM Package Manager

Description : RPM Package Manager is [...]

To disambiguate packages with the same software for different platforms,
file names of rpm archives contain the architecture the package was built for.
Examples are xorg-x11-devel_6.8.2-30_i586.rpm — “i586” for a bi-
nary package for Intel Pentium and compatible and another example being
pwdutils-3.0.4-4.2.ppc.rpm for Power PC.

18 CHAPTER 3. CURRENT STATE OF THE ART

This file was built from a platform independent source package named
pwdutils-3.0.4-4.2.src.rpm .

The rpm database keeps track of all installed rpm packages, their versions,
dependencies, files and their MD5 hash values. Thus it is able to warn, if an
incompatible package would overwrite existing files.

Update policy

Most updates are provided to solve security problems, but sometimes updates
address other flaws that could render the software or the whole system useless.
This discussion will focus on the security update policy but most of it also applies
to normal updates.

SUSE, now owned by Novell, operates a security team that watches various
sources about newly known vulnerabilities. They classify the threat potential
based upon the risk assessment:

• Is the vulnerable software installed by default or commonly manually in-
stalled like apache?

• Is the vulnerability exploitable by remote attackers?

• Is it easy to exploit or does it require special knowledge or tools?

• What would be the impact? Root access, foreign code execution, data ma-
nipulation, information leakage?

The examples of worst cases so far were:

• A remote exploitable problem with sshd which is installed and started by
default and allowed a knowledgeable attacker to become root.

• A bug in the crontab program, installed by default on SuSE 7.1 that was
trivial to exploit and gave root access

• A bug in the chfn program, installed by default on SuSE 8.2, 9.0, 9.1, 9.2, 9.3,
10.0 that was trivial to exploit and allowed a local user to become root.

After classification, updated packages are built — first for most urgent prob-
lems. Packages are built by applying a security patch to the old software versions
that were shipped with the respective release of SUSE Linux. Usually there are
about 8 different SUSE releases to be maintained at any time. Only in rare cases

3.2. SUSE LINUX UPDATE 19

when the problem can not be solved with a simple patch a completely new ver-
sion of the package is built. This exception applies to closed source software like
the Adobe Acrobat Reader but also to non-trivial flaws in complex systems like
the mozilla web browser.

The package name contains a build counter which is automatically incre-
mented for every newly built version, so that the packages are automatically
distinguishable.

Updated packages are not released at that moment but tested internally at
SUSE for a few days to guarantee a certain level of functionality and stability
on all of the supported platforms. Due to this quality assurance, only few cases
occurred, when security updates introduced new problems.

Once the update package is deemed stable the security team uploads
the .src.rpm package and all pre-built binary packages for all supported
architectures to the update section of the respective release version on
ftp://ftp.suse.com and afterwards sends an announcement to the suse-
security-announce mailing list. This announcement includes MD5 hash values
for every new package as well as a PGP signature to provide verifiable authentic-
ity.

The update process

The main update utility for SUSE Linux is called Yast Online Update — YOU . In
the default installation it has to be called interactively but can easily be configured
to run automatically and unattended every day or every week.

On start, YOU will download a current list of URLs of mirrors and randomly
choose one of those, to distribute load amongst all mirrors. Either FTP or HTTP
will be used for all following file transfers, depending on this mirror URL selec-
tion.

Next, YOU will download new update descriptions from the selected mirror
and automatically determine which of them are applicable using the list of in-
stalled packages as reference.

During interactive operation the user can then disable updates he wants to
keep back or enable additional updates. Automatic updates can skip update
packages with pre-installation information or just use the complete list instead.

In the next step YOU downloads update packages. Recent versions of YOU
first check, if the currently installed software version is unmodified and then only
request the binary delta rpm package from the mirror server. As fallback, full

20 CHAPTER 3. CURRENT STATE OF THE ART

update packages with both updated and original files are downloaded.
For every delta-rpm the full update package is reconstructed locally by
applydeltarpm new.delta.rpm new.rpm

For every package the embedded signature is checked using the pre-installed
public suse-build-key: rpm --checksig new.rpm . This guarantees authen-
ticity and integrity of all new software.

Afterwards the new packages are installed as updates with rpm -U

new.rpm taking advantage of the regular package manager facilities for updat-
ing single packages from local sources.

Finally, after all new packages are installed, SuSEconfig will be called to do
some SUSE-specific cleanup and config file processing.

3.3 Other Methods

The following section gives an overview of other commonly used methods for
installing and/or updating software.

3.3.1 Package Formats

MSI

Microsoft developed the Windows Installer and its MSI package format since
about 1995 using a structured file format.

.msi files employ a relational database. The goal of MSI is to provide a con-
sistent installation mechanism and interface to both users and developers. Also
it allows uninstallation, repair and is able to revert changes, if an error occurred
or the installation was canceled by the user. This is possible with the transactions
provided by the database.

Microsoft Windows 95, 98 and ME did not ship with the Windows Installer
program msiexec.exe . Thus its users needed to download the Windows In-
staller itself once, before those versions of Microsoft Windows were able to use
MSI software packages.

By itself, the MSI format does not provide for determining or downloading
dependent packages or verifying authenticity of the package’s content but it is
thinkable that other utilities extend this file format. Also it seems common to in-
clude all necessary libraries in the MSI file so that users will not need to download
or install other components separately.

3.3. OTHER METHODS 21

emerge and ebuild

Gentoo Linux uses small “ebuild” files to hold information about a single pack-
age. The distribution has thousands of such ebuild files that comprise the
"Portage Tree"— Gentoo’s archive of readily available software. Gentoo Linux
uses the emerge utility to easily manage all package-related operations.

Every ebuild file includes a summary about the content, dependencies on
other packages and information that allow to automatically build and install the
software from source code. Sometimes Gentoo-specific patches are also provided
to be applied before a build.

Note that this is very different from most other commonly used software dis-
tribution methods in that only platform independent source code is provided and
compiled for the target platform with user-defined options on demand. It also al-
lows users to customize packages with various compile time options.

This is covered in the comprehensive Gentoo documentation that can be
found online at [Gentoo].

3.3.2 Updating Gentoo Linux

Gentoo Linux is one of the few systems that almost exclusively rely on the Inter-
net or local area network for distributing updates, while all other system men-
tioned in this chapter (not counting P2P and worms) can easily be updated using
downloaded package files from a CD.

Updating Gentoo is normally based on updating source code. The process is
thus:

1. emerge --sync this uses rsync [Trid1999] to efficiently update all
ebuild files.

2. emerge --update --deep world this downloads the associated
files over HTTP or FTP, builds and installs all updated packages from the
new sources and patches.

For both steps configurable mirrors are used. Selecting a mirror from the own re-
gion is simplified by providing DNS entries like rsync.europe.gentoo.org .
This particular one resolves to mirrors in Europe.

The emerge utility also supports building and installing binary packages, so
that administrators with more than one Gentoo PC can save time by compiling

22 CHAPTER 3. CURRENT STATE OF THE ART

only once and installing the resulting binary file on all machines. However, the
distribution itself does not provide pre-built binary packages4.

Gentoo uses MD5 hash values to verify integrity of source files and patches
but does not provide for authenticity of ebuild files, yet. However, authenticity
verification with gpg (GNU Privacy Guard) is currently in development.

3.3.3 Embedded Device Firmware Upgrades

After all this detail on PC operating system upgrades, this part will give a short
overview of known firmware package formats for embedded devices. Since
BRN’s designated target hardware is also such an embedded device, this bears
significant relevance for this work.

These methods have in common that the user initiates a download of a
firmware image from the vendor’s web site using an ordinary web-browser. Al-
ternatively firmware images could be shipped on CDs. This firmware image is
then manually uploaded to the embedded devices. All three devices mentioned
later in this section run different versions of embedded Linux.

Embedded devices are pretty different from PCs. Unlike PC software that
may run on a wide range of different heterogenous hardware, embedded systems
have more or less homogenous hardware and the hardware manufacturer also
provides the official software and updates. Additionally, embedded devices are
usually designed and used for a more special purpose.

AVM Fritz!Box 7050

The AVM Fritz Box update packages are tar archive files that are uploaded
through HTTP to the device, after password authentication. Once the file is com-
pletely transferred, the archive is unpacked into RAM and the install script
is executed. The usage of the remaining content of the package is solely de-
termined by the installation script. AVM commonly releases updates with a
filesystem.image using squashfs and a kernel.image binary that are then
written to flash memory.

4except for the Gentoo Reference Platform but these packages are only updated with a new
release after months

3.3. OTHER METHODS 23

Netgear WGT634U

[Netgear] firmware packages contain a complete image of the new system. This
consists of a Linux kernel binary with a compressed minix initrd and a jffs2 (Jour-
nalling Flash File System, version 2) image. After authenticating at the web inter-
face using a previously set password, the image can be uploaded through HTTP.
The update mechanism verifies integrity using an embedded CRC32 checksum.
Afterwards the kernel and jffs2 areas on the embedded flash are erased and then
overwritten. Flash and update file layout is illustrated in figure 3.2.

Figure 3.2: Netgear Flash and Firmware layout

NVRAMCFE config

Firmware image

C
R

C

Flash jffs2kernel

CFE is the equivalent of a BIOS (Basic Input Output System) for the device.
The config area stores all persistent settings of the running Linux system like
IP address and wireless network name and finally, there is the NVRAM (Non-
Volatile Random Access Memory) that stores all settings for the CFE like MAC
address, kernel location or bootloader options.

Linksys WRT54GS

Updates for this device are very similar to the Netgear system, in that a complete
image is transferred and flashed. For this system a compressed ROM filesystem
(cramfs) is used that can be efficiently decompressed on demand by the Linux
kernel.

3.3.4 Current Mesh Network Updates

There are a few working mesh networks operating in the world and even in
Berlin, so it is interesting to know how they distribute and install new software.

freifunk.net

Like some others freifunk.net is employing the OLSR (Optimized Link State
Routing) protocol to build a wireless mesh network. Firmware images can be

24 CHAPTER 3. CURRENT STATE OF THE ART

freely downloaded by any user from the web-site and has to be installed manu-
ally. Sometimes this process is helped by others in an installation-party — this
was also done by other related projects like www.paris-sansfil.fr . Dis-
tributing software updates via CD is also thinkable but details could not be found.

wlanhain.de

wlanhain.de — though similar in spirit to other mesh networks like BRN —
is no ad-hoc mesh but a simple pre-planned collection of free access-points using
ordinary client-server connections. For this reason they do not need any special
software at all but just the →WLAN drivers for the 802.11b compatible hardware.

Chapter 4

The Software Distribution Platform

This chapter deals with the Software Distribution Platform — SDP itself. At first,
the requirements are analyzed, then the applicability of current methods is dis-
cussed and finally the different SDP specific components are introduced and ex-
plained.

4.1 Requirements

In chapter 1.6.1 on page 6 it was stated that the BRN needs a well designed SDP
to be useful as a testbed for distributed protocols and what the constraints on the
BRN are. Most requirements for SDP arise from there.

The SDP must provide reliable and backward-compatible updates, which
means updating must still work with a broken routing protocol or different (thus
incompatible) routing protocols around the network. This would be the case af-
ter a temporary network split, which might happen for many exotic reasons in-
cluding but not limited to a local power outage, a damaged aerial, and/or rain
absorbing 2.4GHz radio signals. The reliability and robustness requirement is
covered in chapter 4.2.2 on page 29.

Additionally, SDP has to be backwards-compatible — beginning with the first
released version (let us call it “version 0” ; see chapter 4.2.4 on page 31 on ver-
sioning) to allow upgrading a very old node to the most recent version. This
requires the network protocol to remain stable. If this were not the case, updat-
ing old/broken nodes would pose an enormous problem1.

1One would first need to locate those nodes which might have been installed on roofs or other
locations difficult to reach. Even when a node is in one’s physical reach, updating such a broken
node, might still pose a problem, because they usually do not have a known IP address assigned

25

26 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

Another crucial requirement is that the SDP must not allow malicious nodes to
distribute and install unwanted software. This is covered later in chapter 4.2.7 on
page 33. Also it is desired to be able to limit the changes that SDP can do to a
node.

Besides those security considerations, the SDP should also try its best to make
sure that all nodes of BRN’s distributed mesh run the same version of software
most of the time – ideally every second. This is covered in chapter 4.2.5 on
page 32. Otherwise incompatible routing protocols would cause a degradation in
connectivity between the nodes, possibly splitting one part of the network from
another until software versions are updated on a sufficiently large part of the
BRN.

So summarizing the requirements for later reference, SDP must:

1. Maintain a backward-compatible network protocol,

2. Maintain consistent versions,

3. Be robust,

4. Be secure.

4.2 SDP Design

Designing SDP (as with any sufficiently complex software component) involved
a number of design decisions, choosing one method from several ideas, in order
to best meet the aforementioned identified requirements.

4.2.1 Using Current Methods

Can established methods be used for SDP?
SDP in fact utilizes many of the common practices of updating software listed

in chapter 3 on page 14, but modifies and extends them when necessary to fit the
requirements specific to BRN.

Especially the methods for notification and file transfer — step 2 and 3 from
the common principles for updating, found in chapter 3. Using a centralized
storage is not possible for the decentralized BRN, as this would not only require

to any interface, no VGA - only maybe a serial console.

4.2. SDP DESIGN 27

some authority to operate the hardware but would also possibly introduce a sin-
gle point of failure. Furthermore, most existing transfer methods can not be used
for SDP because they rely on IP and routing, which makes them unusable or
at least less robust to use in BRN, because BRN experiments with new routing
methods and those might sometimes fail.

Also SDP can not rely on users to download and install new software pack-
ages. While this is fine for a single user and a home network, it is not suitable
for BRN because it would require days, or even weeks until the network reaches
sufficiently consistent versions. However, in the meantime the network would
not be functional.

The comparative table given in chapter 3 on page 13, shows that SDP is most
similar to a computer worm distributing itself. Just like it, SDP employs an infec-
tion based distribution method, which is simple, decentralized, robust and effec-
tive. Most alternative approaches like contacting centralized servers or selected
“super-nodes” like some P2P protocols do, are not applicable to BRN because one
can not rely on routing.

This infection-based method involves injecting a new software version at any
node of the BRN, which then gets distributed to its neighbors and from there
to other neighbors until the whole (sub-)net has the new software version avail-
able but not activated at this point to avoid running mixed versions within the
network. This delayed activation will be detailed in chapter 4.2.5 on page 32.

The advantage of this infection based mechanism is that each node only needs
to communicate with its direct neighbors over a direct WLAN/Ethernet link, thus
no routing is involved, which even allows old nodes with incompatible routing
protocols to be updated. It uses BRN packets in raw IEEE 802.x frames so that
no allocation of unique Internet Protocol addresses are needed. It also does not
need a centralized data storage (i.e. file server), which might otherwise become a
bottleneck when the mesh grows to hundreds or thousands of nodes, all request-
ing the new version at the same time. Additionally, it saves transfer bandwidth
by only transferring a new file once over a link, leaving more bandwidth to BRN
and the applications running within it.

You may notice that the situation differs from a local area network of pri-
vate PCs, that usually have heterogenous system hardware, partition layout and
varying installed software. It is also different from PC installations in enterprise
environments that may have homogenous hardware and software but usually
have only one administrative authority (e.g. the IT department). Also in case of
failures, PCs are usually easier to reach and repair. Even in such static networks

28 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

distributing software to maintain consistent software versions everywhere is still
hard as can be read in [Tall1995]. As a result some of the PC-based ideas can not
be applied to our problem.

Apart from the technical aspects there is also something to be learned from
existing policies on updating software. One point is that all non-trivial changes
should be tested internally, before distributing them and another point is that
interfaces should remain stable, whenever possible.

How to distribute

As found earlier, software can be distributed offline, by downloading, and online.
Of course the offline method would need days, if not months to spread a new
version and would therefore result in differing software versions and thus fail to
meet the criterion of version-consistency, which is requirement 2 for SDP. That
makes it entirely unsuitable as testbed.

The offline method shares some problems with updates by downloading.
Node owners can be away on vacation, be unreachable by e-mail or just be too
busy to spend time on updating a BRN node. Again, this would result in long
periods of mixed versions that possibly break the network routing.

So the only viable variant for updating a whole network would be to auto-
matically install software on the nodes.

What to package

There are in principle three different ways of updating.

• Major updates,

• Incremental updates and

• A difference to version 0.

A difference update referring to version 0 (that is the software initially in-
stalled on the distributed hardware) is smallest and easiest to create. It would
only include all files which differ from files in version 0 and be independent from
previous updates. Difference updates require some special system layout on the
nodes to allow removing the previous difference, thus restoring version 0 and
thereafter updating to the new version. Difference updates can be simplified by

4.2. SDP DESIGN 29

employing software that would allow layering directories. Such software is avail-
able but not fully functional and stable: the translucency Linux kernel module,
written by myself, and the unionfs2

An incremental update would be like a difference update but also include all
files, which were changed in previous updates. This would ensure that systems
with version 0 can update to any version i first and then to a later version j by
just overwriting all previous files with new ones. The advantage of this method
is its simplicity. It does not require any special mechanisms on the target node to
keep version 0 separate from the updated files. The disadvantage is that creating
such packages is slightly more difficult and the package size might be increased
compared to difference updates.

Major updates would be extremely rare (ideally never). Such update would
include downloading a full system image from a neighbor, verifying its hash and
signature, writing it to persistent storage (flashing) and finally triggering a reboot
to activate it. Great care is required when building such an update. Additional
testing in a small mesh network is strongly recommended. In case of failure the
systems can still be booted over TFTP on the wired link but this is no viable option
for a full-scale deployed network like the one BRN aims to become.

The current implementation of SDP on the nodes is flexible enough to allow
for all 3 updating variants. The only missing element is code to transfer and
update a complete image for major updates.

4.2.2 Robustness

This section deals with requirement 3 from chapter 4.1 on page 25.
Robustness is required because BRN nodes may be physically hard to reach

and might sometimes have faulty routing software installed. Also they do not
necessarily have an unique IP address assigned to their wireless (802.11g) net-
work interface which prevents remote logins with normal software. From what
has been said about BRN requirements it should now be clear that the SDP must
be very robust. Failing would mean additional work and frustration for people
and thus possibly causing them to stop supporting BRN.

To deliver software updates reliably under these circumstances, SDP must not
rely on IP and routing to work. This is solved by designing SDP to utilize an in-
fection based distribution method, which allows it to work completely without
IP and routing by exclusively communicating with direct neighbors and trans-

2union filesystem home page: http://www.fsl.cs.sunysb.edu/project-unionfs.html

30 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

mitting everything in BRN packets in Ethernet (IEEE 802.3) frames.
Another aspect of robustness is reliable operation. If BRN nodes crash for

any reasons, it might be hard to bring them back online by resetting. To improve
node reliability, a watchdog script was made that would reboot the node after 2
seconds of non-responsiveness. While this would handle most cases of a kernel
crash, or memory allocation problems, it can not easily and reliably detect net-
work connectivity problems. Also such connectivity problems could be caused
by certain circumstances or environmental influences like radio interferences, a
defect neighbor node or a broken antenna. Neither of these problems can be
solved by software.

In an attempt to improve robustness a fallback mechanism was added to SDP.
If a node does not receive SDP beacons for some time, it will call a script which
then can try to start alternative software or could enable a telnet daemon, so that
remote administration is possible over the wireless interface. This allows for both
diagnostics and repair operations without needing physical access (e.g. climbing
on roofs) and thus can be a great help to promote BRN.

While this sounds great at first, it also has its pitfalls. When the mesh is weakly
connected, it can cause nodes to go into fallback mode when they do not receive
anything from their neighbors for some time (e.g. because of a temporary power
outage). This in turn reduces the number of neighbors of other nodes which
then may go into fallback mode themselves because they no more receive SDP
beacons, thus causing a chain-reaction.

From what was said in the last paragraph it should be clear that the fallback
mode should still have SDP enabled (thus click modular router software running)
so that it can still automatically receive better software and/or switch back to
normal operation when appropriate.

SDP’s fallback mechanisms do not need to cover failures which are easily
avoided by the recommended in-house testing. This includes syntax errors in
the activate script and problems with linking and loading click and its modules.

To further improve fallback handling, it might even be possible to integrate
a telnet server into the fallback click software or let it have some IP address as-
signed that is derived from the unique MAC address but this is outside the scope
of this work.

4.2. SDP DESIGN 31

4.2.3 File Transfer

As mentioned earlier files are distributed like computer worms by an infection
method. For file transfers over single hops a variant of TFTP3 is used, based
on the official [TFTP] RFC 1350 but using BRN packets instead of UDP/IP data-
grams. See chapter 5.3.1 on page 47 for implementation details.

4.2.4 Versioning

The aim of SDP is to distribute, install, and run new software on all BRN nodes.
To determine if a software package is really new or to find out what nodes run
what software, there is a software version identifier included in every software
package. This is also important to tell apart different (possibly incompatible)
versions of the same file.

The version identifier is a simple integer number that is incremented with
each new release. This brings up the question: Why not use more complicated
versioning like with other software - e.g. 1.23-4e?

This naming scheme is used to signal to humans how stable the soft-
ware is and how major the changes between two versions are. This is no
advantage for this application. Node software needs to determine automati-
cally and without user-interaction if a certain software is newer than the cur-
rent one and this is easily accomplished by comparing two integers. For in-
stance version 100 is clearly newer than 98 and newer than 1 but this rela-
tion would be more difficult to establish for versions 1.1-5x and 1.23-4e. There
have been reports of such problems with other software update mechanisms:
http://apt4rpm.sourceforge.net/faq.html#q33.1

In fact, one can even define some semantics into the integer numbers, e.g.
the last two digits could be a minor version number but this is just a matter of
interpretation and the updating mechanisms would not need to know about it. It
does not care as long as the version identifier numbers are ascending. The first
publicly released BRN+SDP software version shall have a version ID of 0 just to
give it a name that signals that there is no preceding version.

As another simplification, downgrading software needs to be done by up-
grading to the next version. This way the SDP version management is simplified
to fetching versions with a higher ID and switching to them at the right time.
Only the meta-info file needs to be transferred for this to work. While this ap-

3the Trivial File Transfer Protocol is datagram based (UDP instead of TCP) and implements
simple error detection and recovery

32 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

proach might seem strange at first, it makes sense because there is always a rea-
son for changing to an old version, thus it really is an upgrade. The advantage
of this method is that it utilizes the normal distribution method to guarantee au-
thenticity, integrity and consistency of versions. The alternative for automatic
downgrading would be to implement a secure, network-wide distributed voting
algorithm but that is outside the scope of this work.

4.2.5 Consistency of Versions

The problem of ensuring that all nodes run the same software version can
be solved by first distributing a software package and later let all nodes syn-
chronously switch to it. This works by embedding the activation time within
the package and by synchronizing node system clocks with each other and with
UTC. As BRN nodes do not have unique IP addresses, this can not be done by
standardized protocols like NTP. So a simple custom BRN-NTP protocol was em-
ployed for time synchronization using broadcasts. See chapter 5.2 on page 39 for
discussion of the BRN-NTP implementation.

Additionally, it is possible to distribute and run experimental software ver-
sions, which have a duration value embedded in the package. A typical value
would be 3600 for one hour of testing. After that period, the previous version
would be switched back on all nodes at the same time. See chapter 5.2.2 on
page 44 for implementation details of experimental updates.

4.2.6 Notification

As mentioned earlier, SDP has to work without IP. Thus SDP uses local Ethernet
or →WLAN →broadcast packets (OSI layer 2 as defined in [Zimm1980]) to notify
neighbors about the current version identifier. Including other information about
updates is not necessary, because it is included in the signed — and thus trusted
— meta-info file. This file contains all necessary information about a software
package for SDP and can be requested from a neighbor using the version ID and
the source MAC address. Taking untrusted information into account could pose
a problem for security.

SDP utilizes a combined push/pull notification mechanism. A push notifica-
tion is useful after a new version has been received, to immediately tell neighbors
about it and allow it to spread as fast as possible. This yields a total distribution
time of n · T , with T being the time needed to transfer software from one node to
another and n being the longest distance (number of hops / path length) between

4.2. SDP DESIGN 33

the injection point and any other node in the network. Of course in practice two
concurrent transfers interfere with each other, so that the total time is a bit longer.

A pull - that is a node requesting another node to send its version - is needed
for requirement 2 to let nodes check for new software after a power-on to avoid
running a possibly incompatible version longer than necessary. Additionally, reg-
ular broadcasts (push) of currently available and running software versions make
sure that the whole network converges to one version after some time, even when
notifications are lost during transfers, thus contributing to robustness.

To allow several mesh networks to coexist in the same region a unique magic
number is included in every notification packet. Every node of the same network
should use the same value. Notifications with other values will be disregarded to
avoid flooding the other network with invalid meta-info files.

Additionally, when a node delivers incorrect data, new transfers with that
node should be prevented for an exponentially increasing time. While this mea-
sure largely reduces the impact of accidentally overlapping networks, it does not
prevent determined attackers who can use forged MAC addresses to send files.

4.2.7 Security

Security is manifold. To ensure having a secure overall system, one often needs
to provide integrity, authenticity, and confidentiality. Because the BRN software
is open source and can be downloaded anyway, transfers do not need to be confi-
dential but the other requirements still have to be met to provide a secure system.
The essence of the following is this: nobody shall be able to tamper with the BRN
software.

Signing for authenticity

There might be malicious users and nodes that could inject their software to spy
out other people or even take over the whole BRN. To prevent this, each software
package must be digitally signed by the →CA key (or by a developer, whose cer-
tificate is sent along with the package and is signed by the CA). The CA’s public
key is pre-installed on every SDP node and is considered as ultimately trusted.
After reception of a new meta-info file the node will first verify authenticity of
the update and discard it otherwise. However, with this alone it is not possible
to give each node a verifiable identity. This would require each node to have
its own secret certificate, which is signed by the trusted CA. Verifiable identities
might still be implemented with some registration process for independent node

34 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

operators but this is outside the scope of this work. As a result of this shortcom-
ing BRN-NTP can not verify authenticity of time synchronization information.

The OpenSSL package already has all necessary code and is available for the
OpenWrt platform. SDP signs the SHA14 value of the meta-info file (which con-
tains SHA1 values of all other files). The RSA5 public key encryption algorithm
is used for signing.

The only downside to using OpenSSL is its relatively large size. It is possible
to use a stripped down version of OpenSSL with only the relevant algorithms
(RSA, SHA1) included. Alternatively there are tiny SSL libraries like libmatrixssl
but as it seems it is not interface compatible and would need some development
effort to integrate.

A sidenote on the employed SHA1 and RSA algorithms: both have been in
common widespread use for a long time and even though some successful attacks
have been published in the past, they can still be considered sufficiently secure,
given the way they are used BRN.

Indirect signing

Indirect signing is the more flexible variant of ensuring authenticity of software
update packages. In this scenario the BRN’s root-CA only signs developer certifi-
cates and those are used to sign software packages.

For this to work, the developer’s certificate must be appended to the meta-
info file. It is first verified using the root-CA’s public key and afterwards used to
verify the hash of the meta-info data.

This adds another element of complexity: as developers may join or leave the
team, it must be possible to revoke their certificates individually. Certificate re-
vocation lists (CRLs) are commonly used for this but as there is no centralized
data store in BRN the CRL needs to be regularly updated within software up-
dates. Upon changes in the CRL, it is advised to release a new software package
with only the CRL file changed in it, so that afterwards the former developer will
no more be able to deploy software on BRN nodes because his certificate can be
found on the CRL and is thus regarded invalid. Due to the complexity of this
non-essential feature it is not implemented in the SDP code.

Also there is another, much better way to implement indirect signing. This

4see [SHA1] - a commonly used secure hash algorithm standardized by NIST - if the data
changes, the hash value changes as well (unless the hash function is bad)

5see [RSA1978] - Rivest, Shamir, and Adleman published this public key cryptographic algo-
rithm in 1977

4.2. SDP DESIGN 35

works by letting the CA automatically sign software packages, if they are signed
by the appropriate developer’s or sub-CA’s certificates. In that case it is no prob-
lem to keep the CRL updated and consistent on the CA host machine. With this
method is even possible to implement more complex policies, e.g. software dis-
tribution policy could demand a signed test protocol for a new version to be ac-
cepted and the software on the CA machine could adjust version numbers to not
collide with those of other developers.

Summarizing this section, it is possible to verify software authenticity on BRN
nodes using OpenSSL and even employ flexible indirect signing.

Avoiding DoS

DoS stands for Denial of Service. A DoS happens when an attacker prevents
regular users from using some resource or service. In the BRN case it is easy to
jam the network by repeatedly sending on the same frequency and there is not
much that can be done about this kind of DoS.

In addition to employing signatures, great effort has been put into not allow-
ing erroneous software or malicious users to damage the flash memory by re-
peatedly writing data to it (flash memory allows for approximately 10000-100000
write cycles). This would not only allow for a remote denial of service (DoS)
but permanently damage hardware. This is achieved by storing received files in
a dedicated temporary directory on the RAM disk and only copying it to flash
after successful verification of authenticity.

The aforementioned provides for security but there is also demand for safety.
E.g. one would not want an update to change arbitrary files or corrupt the filesys-
tem. This is nearly impossible to implement on the nodes without dramatically
decreasing flexibility. With the activation script being executed on the node it
is (in theory) possible to make any change to the system. But for the activation
script to be valid, it must be accompanied by a meta-info file, that must be signed
by the CA or a trusted developer. This way it is possible to enforce a certain pol-
icy before releasing any software to the public. Such policy could require some
minimum testing period on a small test mesh, let humans review code changes,
the activation code and other aspects that can not be decided on a BRN node.

Atomicity

Another important aspect was to make write accesses to persistent storage (flash)
as atomic as possible. Atomicity is a well-known term in database systems but

36 CHAPTER 4. THE SOFTWARE DISTRIBUTION PLATFORM

usually is not fully supported by most operating systems and their filesystems.
As an example of non-atomicity imagine, one would install new software by
copying several files (totaling one or two megabytes) to their final location and
in the middle of a file, the power would be switched off. Writing so many data
takes some time and is usually done in blocks of a certain size - e.g. four or 8 kilo-
bytes. Now, when the machine boots after the power-failure, the jffs2 will have
ensured that the filesystem is still intact but due to non-atomicity of the writing
operation the routing software would be incomplete. In contrast, renaming a file
or changing a link is near atomic, as it is one syscall, which only needs to change
a few bytes in one location which is possible in milliseconds rather than seconds.
For this reason, placing new software into the persistent software library is done
in two phases: copying to a sub directory in a temporary directory on the flash,
which is emptied at reboot to avoid partial files cluttering up the filesystem and
as second step moving the sub directory to its final location

Chapter 5

SDP Implementation

Figure 5.1 gives an overview of the SDP components and their interaction. The
dashed ellipse shows components that belong to SDP and were developed in the
course of this thesis.

Notify
fallback

activate
TFTP

openssl

kernel

NTP

click

userspace

Figure 5.1: Overview of the SDP components and their interaction

The complete SDP source code is provided for reference and for interested
readers at http://bmwthesis.webhop.net 1. It is licensed under the GNU
General Public License version 2 which explicitly allows use, modification and
redistribution of the code as long as the sources are published.

1alternatively http://www.zq1.de/bmwthesis

37

38 CHAPTER 5. SDP IMPLEMENTATION

5.1 Click Modular Router

As both BRN and SDP build upon the click modular router software this section
will give an overview of it before continuing with the actual SDP implementation
part.

The basic click software was designed, implemented and documented by
MIT. See [ClickDoc]. Click models a router as a directed graph of filter elements
through which the packets flow. Click runs single-threaded with one effect being
that only one packet can be processed at a time.

It ships with a comprehensive repository of readily available modules, named
“elements”, while still allowing to extend it with customized modules written in
the C++ programming language. This makes it powerful and versatile while still
being comparatively easy to use.

Both, BRN and SDP are implemented as separate click modules which can be
loaded at runtime to provide the project-specific element classes.

Once the modules and elements are ready, click easily allows to arrange them
in filtering graphs by just using them in a click configuration file. Figure 5.2 on
the next page is a visualization of such a graph, created with the click-viz and
graphviz tools from the time_server.click file which can be found in ap-
pendix A. It includes the BrnSDPGEN element to generate SDP packets with
BRN-NTP time synchronization information. This is then transferred to the
DeviceClassifier element which passes the packet to one or all of the output
channels, depending on the udevice_anno annotation field of the packet, with
the source MAC address being set to the one of the respective output device. The
Queue then stores the packet until the ToDevice element is able to send the
data on the physical media. In click’s technical terms it is needed to connect a
push device like the DeviceClassifier to a pull device like the ToDevice .
The separate AddressInfo element does not route packets but is there to store
information about a network interface that can be used in other filtering elements.

A more complex click graph with the data flow of all SDP click elements is
shown in figure 5.3 on page 40. You find the corresponding configuration file in
appendix B.

The BrnTFTP element includes both TFTP client and server handling code,
because most of the header-parsing code is the same for both cases.

5.2. TIME SYNCHRONIZATION 39

BrnSDPGEN

DeviceClassifier

Queue

Discard

Discard

ToDevice

AddressInfo

Figure 5.2: Click graph of a BRN-NTP time-server

5.2 Time Synchronization

For first tests the distributed software was immediately activated, to not require
nodes to have synchronized system clocks.

This was not sufficient for the final SDP. Therefore the most simple stateless
time synchronization protocol possible — named BRN-NTP — was implemented.

BRN-NTP works as follows: Each SDP beacon broadcast packet has a time-
stamp added as 64 bit value. It uses 32 bit for seconds and 32 bit for microseconds.
While this is somewhat similar to standard Network Time Protocol (NTP - de-
scribed in RFC 1119 [NTP]) it uses a different transport (BRN instead of UDP/IP
port 123) and a different sub-second time representation because this does not
need conversion from and to the gettimeofday and settimeofday time represen-
tation.

Whenever a node receives such time information, it calculates the average
from it and its own, does some sanity checks to avoid setting time to impossible
values, like before year 2000, by mistake and then switches its clock subsequently
sending the new time. It does not switch its clock, if the time difference is below
a certain threshold (200ms currently) to avoid unknown network delays heavily
skewing time with every transmission and adjustment.

40 CHAPTER 5. SDP IMPLEMENTATION

FromDevice

Classifier

EtherDecap

Classifier

BrnTFTP

BrnSDP

DeviceClassifier

Queue

Queue

Queue

ToDevice

BrnSDPGEN

ToDevice

ToDevice

AddressInfo

Figure 5.3: The SDP click graph

5.2. TIME SYNCHRONIZATION 41

You can find the actual C code as reference in Appendix A.2.
One additional problem of NTP in conjunction with click arises from us-

ing settimeofday, because click runs single threaded and does not make use of
the kernel’s scheduling capabilities. Because of this click improperly schedules
timers immediately after a settimeofday shifts time into future (e.g. after startup)
and thus the scheduled time is suddenly in the past. The effect is even worse
when the system time is decreased but this usually does not happen. In this case
timers cease to be called until the system clock comes back to its previous value.

This deficiency of the click software adversely affects the fallback timer. It
is worked around by changing the fallback script (introduced earlier in chap-
ter 4.2.2 on page 29) to only take action after being called 3 times. A cleaner
way would be to patch click to be notified of time changes and adjust scheduling
timers appropriately (not implemented).

Additionally, it is desired that all BRN nodes have coordinated universal
time (UTC) and not just any synchronized time. To achieve this, some spe-
cial BRN nodes with other means of UTC time synchronization (e.g. GPS,
NTP) can be attached anywhere to the mesh network. As an example the
script /usr/sbin/ntp-client is provided in appendix A which uses rdate
to regularly receive time information. Such UTC nodes do not change their
own time based on received SDP time information packets if they have a
/var/updatelink/disablebrnntp file. This approach has the advantage of
being both decentralized and still functional without Internet Protocol routing.
Even when all UTC nodes are disconnected from the network all other nodes
should converge to one time which should remain close to the previous synchro-
nized times.

Optimizing

To improve BRN’s NTP performance, two special time values (both in microsec-
onds) have been introduced:

• mingoodtime - values below this are known to be in the past, thus if the
own clock is below, it is immediately set to a time above mingoodtime in-
stead of the normal averaging procedure.

• minvalidtime - values below this are illegal and always discarded. It is
set to 2 days after the normal start clock value of BRN nodes (00:00 Jan 1
2000).

42 CHAPTER 5. SDP IMPLEMENTATION

Mathematical Analysis

As with many algorithms, one would be interested in its properties. Do times
converge?

The simple algorithm to be examined is slightly different from the actual cur-
rent implementation but the qualitative result should be the same. The new time
of a node is calculated as follows:

Tself,new :=

(

Tself +

n
∑

j=1

Tj

)

÷ (n + 1)

It can be shown that even with only one real UTC time source and all BRN
nodes having very bad system clocks, the simple time synchronization protocol
will result in convergence towards some time close to real UTC time.

To show this, it is assumed that there is 1 node with n neighboring nodes, one
of them being a 100% correct and reliable source (not adjusting clock from other
nodes) and all other clocks running with a constant drift d. This drift assumption
is a worst-case estimation. In the more general case some clocks might be running
with lower drifts like d/2 or −d but that would help the overall clock averaging
and synchronization.

Network delays are neglected.
Every u seconds new time information is sent.
here is an example:
n = 5 five neighbors
u = 60 one update each minute
d = 0.1 that is 10% clock drift: a minute would have 60s · (d + 1) = 66 seconds
Now the bad clocks drift constantly by u · d between two updates. On the

other hand, nodes receive time information from n other nodes, and still have
our own. So each update shifts the node’s clock by about 1/(n + 1) multiplied
with the current UTC-offset o towards UTC (the UTC node has o = 0 and a node
with d = 0 would have o = const).

This means that if o/(n + 1) = u · d then the two effects will nullify each other.
This allows to determine o = u · d · (n + 1) The above example values result in
o = 60 · 0.1 · 6 = 36. So even with 10% drift (which is extremely bad) nodes would
only be 36 seconds away from correct UTC time. This is still an acceptable worst
case offset for software distribution. Measurements showed that the real clock
drift is normally only two seconds per hour (d = 0.0005). Given the above worst
case estimation this is no problem, as long as there is a constant input of correct

5.2. TIME SYNCHRONIZATION 43

timing information.
Note that theoretically the above point of equilibrium o = u · d · (n + 1) could

become infinitely large for infinite n. But for BRN, n is the number of nodes in ra-
dio range and when that is about 10, the whole surrounding space will already be
covered with wireless signals and no new neighboring nodes need to be added.
Increasing the number of UTC nodes or sending time information more often will
also result in better synchronization. In order to improve reliability at least three
nodes should have a real UTC time source — preferably in different regions of
the mesh network.

Another case is that a node is multiple hops away from a UTC node. It can
be inductively shown that if a node being m − 1 hops away from a UTC node
is within some offset (m − 1) · o from UTC, then the node m hops away will be
within offset o from its neighbor and m · o from UTC.

Finally, for a good time protocol one has to check that in a network without a
UTC time source, clocks do not skew due to summing up of latencies at each time
information transfer. Typical wireless transfers need 3ms - far below the 200ms
threshold to change the local clock, so this should be OK. However, operating
entirely without an UTC time-source is not recommended for the BRN, because
software updates contain an absolute time for their activation. Only occasionally
there might be temporary network splits that could render subnetworks without
UTC time. The connected subnetworks will still have synchronized clocks with
each other but there is no guarantee as to what absolute time they will have.

The plot in figure 5.4 shows a measurement of a typical WRT54GS system
with a quartz having a constant 0.04% drift. After 2750 seconds it would be off 1
second.

One can see the clock adjustment taking place when the threshold of 200ms
is passed, and one can also see that is does not change its time to zero UTC dif-
ference but to the average of the previous own time and the received time. This
is due to lack of confidence or exactness tracking in this simplified time protocol.
Still it is very efficient.

In this test the reference clock was a normal PC running ntpd to synchronize
its own clock to UTC. The PC used a click version compiled for the i386 platform
with just the time sending module. See sdp/conf/time_server.click in
appendix A.

44 CHAPTER 5. SDP IMPLEMENTATION

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 100 200 300 400 500 600 700

U
T

C
 o

ffs
et

 in
 m

ill
is

ec
on

ds

time passed in seconds

UTC offset

Figure 5.4: Typical clock skew with time adjustment

5.2.1 Scheduling Updates

After all nodes had synchronized time the scheduling for coordinated switching
was added to the activation shell script which is explained in chapter 5.3 on the
facing page. It calculates the difference between current time and activation time
(from meta-info file). Doing one long sleep then is the most simple but with clocks
drifting so badly this might cause some variance in the switch-over timing. Thus
a loop was used that does shorter sleeps and re-checks thereafter, taking advan-
tage of time adjustments from the simple but effective BRN-NTP time synchro-
nization. Because click runs single-threaded and thus blocks until the executed
activation script returns, the activation script goes into background when called
for scheduling. This worked in simple laboratory test setups but can be improved
in future work.

5.2.2 Test Versions

BRN strives to become a testbed for new software (e.g. routing protocols). There-
fore the notion of testing versions was introduced.

The test software deployment works mostly like regular SDP software up-
dates, including the coordinated switch-over. The only difference being that after

5.3. SOFTWARE PACKAGE 45

testing time expired there will be a coordinated switch-back.
Additionally, one might run into space problems for the particular hardware

when storing one stable, one experimental and one updated version but this does
not need to be covered here because it is implementation specific.

Theoretically testing versions might even re-use version identifiers, if after
running one version the node switches back to the previous stable version, deletes
and forgets the testing version. Of course this would require those versions to
be distributed and run in non-overlapping time slots. Also version IDs are not
scarce, so the easiest and safest way is to always increment the IDs.

5.3 Software Package

This section describes, what constitutes a software package in SDP and explains,
why this was chosen.

2

1

4

SDP
activate

click, etc...

meta−info duration

signature
file sizes+hashes

activation time
SW version ID

tmp
23

42

A software package needs to consists of several files for many reasons. To allow
for saving some bandwidth, it is possible to transfer only those files, that are
not already on the target node (This is not implemented yet). Thus the files of a
package are not kept as a .tar.gz but as a collection of files in a directory. If a file
is already there, it is hard-linked from its previous location to the new one (not
implemented yet — currently all files are always transferred).

Only two of those files are used in a special way by the SDP. One such special

46 CHAPTER 5. SDP IMPLEMENTATION

file, called “meta-info”, contains a list of all other files together with their sizes (to
disallow oversized files) and hash values (to verify data integrity), followed by a
signature (to verify authenticity). It also stores activation time, activation dura-
tion and the version number. If a developer key was used to sign the meta-info,
the developer certificate would be appended as well. In the current implementa-
tion the meta-info file is limited to a certain size to prevent attackers from filling
up a node’s RAM. The downside is that this limits the number of files that can be
transferred. To allow for an unlimited number of files, the meta-info should be
changed to only list one file named “file-list” and that file contains information
on all other files (not implemented yet).

Another special file, called “activate” is executed at activation time and passed
the location of the remaining files, thus the SDP does not need to know anything
else about those other files. Just that they all need to be transferred.

A working “activate” shell script was developed and integrated it into SDP
— see appendix C on page 63. It can do all required setup like unpacking, sym-
linking or hard-linking all files to their proper locations and restarting the routing
facilities — that is in our case the click modular router software. The advantage
of a shell script is that it can be easily edited - even with vi on a BRN node for
testing purposes thus allowing to considerably ease and speed up development
as well as adding to overall flexibility of the SDP system.

The activate script receives an action parameter. This can be one of start,
stop, restart, status, add, switch, schedule. Here is an explanation of the non-
obvious actions:

An add will intelligently move a package from its temporary location in the
tmpfs to its final destination, ensuring near atomicity in this process.

A switch will immediately switch to a new software version. This includes
removing old versions in the course of disk space management.

A schedule will do a switch after waiting for the activation time to be
reached.

A BRN node may store several versions of routing software but due to its lim-
ited hardware this may only be 2 (worst case: one running and one extra version)
or 3. In a minimal setup this would be the currently running version and the next
version that needs to be switched to. Usually version numbers increase by 1 from
one version to the next version with the only exception being experimental ver-
sions, that run for a short period - e.g. at 03:00 am to 04:00 am. See chapter 5.2.2 on
page 44.

5.3. SOFTWARE PACKAGE 47

5.3.1 TFTP

A TFTP2 was implemented using Ethernet frames instead of UDP for transport.
RFC 1350 [TFTP] was used as reference. TFTP chosen for file transfer because it is
robust and simple which both fits our requirement 3 for SDP. Standard FTP uses
TCP/IP but our nodes possibly do not have proper IP addresses. So this TFTP
implementation uses BRN packets with an added transport identifier (TID) that
is equivalent to the UDP port number in the TFTP on UDP. This TID allows to
distinguish between different transfers.

Performance

Performance tests have been conducted on a small network of 18 BRN nodes. A
package of 1877 Kbyte was transferred approximately 1100 times using different
combinations of participating nodes. Tests showed that after injection, all neigh-
bors start and finish downloading at the same time.

Figure 5.5 shows the time needed to transfer the package over a single WLAN
hop. The right side shows the corresponding total bandwidth.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8

tim
e

in
 s

ec
on

ds

concurrent connections

transfer time
limit

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5 6 7 8

ba
nd

w
id

th
 in

 k
B

yt
e

concurrent connections

total bandwidth
limit

Figure 5.5: Distribution time and bandwidth over one hop

The measured throughput was about 100 to 210 KB/s with 100% CPU usage
being the limiting factor with user-space click software. This performance might
be improved by utilizing click in kernel mode.

Another limiting factor was the network latency combined with the fact that

2the Trivial File Transfer Protocol is datagram based (UDP instead of TCP) and implements
simple error detection and recovery

48 CHAPTER 5. SDP IMPLEMENTATION

TFTP waits for an acknowledgment after every single data packet. This could be
improved with a more elaborate sliding-window flow control algorithm.

The minimum observed transfer rate was 3Kbyte/s. This can be easily ex-
plained by a link with moderate packet loss. The simple BRN-TFTP uses a con-
stant timeout value of currently 500ms and a window size of only 1 packet, as
opposed to TCP which sends several packets without waiting for an acknowledg-
ment. So if 25% of packets (2 of 8) are lost, there would be 6 packets per second
of 512 bytes each transmitted and 2 timeouts per second resulting in 3Kbyte/s
transfer rate.

The total time to distribute a package to all 18 nodes varied between 180 and
260 seconds, depending on which link was chosen for transfer and how many
transfers were canceled. Injecting the package took 13 additional seconds.

Concluding, this section has shown that files can be transferred reliably with
TFTP but performance can be improved in future work.

5.3.2 Managing Versions

The chosen hardware platform is rather restricted in terms of RAM and persistent
storage, which means that in the worst case scenario, only two different software
versions can be stored on it. This makes managing installed software versions
alone quite a challenge. It not only needs to keep the currently running version
but it needs to store a fallback version for the case of updating to a non-working
version. There are many reasons why software would not work, including

• Wrong compiler options or version,

• Changing certain header files without a complete rebuild,

• Linking against incompatible C libraries,

• Click configuration file changes which require a certain networking inter-
face to be active.

• And finally at least one newly received version needs to be stored (prefer-
ably on the flash memory).

So all old versions need to be removed automatically and possibly only one
future version can be kept in the library at any time. Which version to keep
or remove is also a question of policy and demand within the BRN project. To
save space and thus make development somewhat more flexible, it is planned

5.4. ANALYZING THE CODE 49

to hard-link identical files in different software packages. Those duplicates are
efficiently identified using a hash-map lookup table with the MD5 hash value of
file content used as keys and a FileInfo structure as data. If and only if the hash
is the same, files can be hard-linked. The standard filesystem link counter will
ensure consistency and free space when the last entry is unlinked (deleted).

The click software allows for modularization. This means, it is possible to
keep the same click main binary all the time and only exchange the SDP and
BRN modules at need. In combination with the abovementioned hard-linking
this can save both disk space and transfer bandwidth.

5.3.3 Storage Considerations

The Journalling Flash Filesystem (jffs2) employed in the OpenWRT system al-
lows for transparent compression and decompression of stored files. For typical
binaries it achieves a ratio of 1:2.7 which is about 70% of what is possible with
gzip maximum compression (1:3.8). On the downside with gzip, it is necessary
to uncompress the .gz file before it can be run. This will permanently occupy
additional memory (about 3MB) but it is worth the saved space (about 350k).

5.4 Analyzing the Code

There is a working basic implementation of SDP consisted of 1500 lines of C++
code and 150 lines of shell script.

This simplicity is deliberate. It is only possible because click provides a well
tested and fairly complete infrastructure for handling packets in modules.

Other studies like [Basili1984, Khosh1990] have shown that the number of
software errors (bugs) contained in a certain software corresponds to its complex-
ity. Both modularization and small code make the SDP software less complex and
thus less error-prone.

5.5 Testing and Debugging

Manual testing can be quite time consuming and unreliable, if one does not ex-
actly reproduce the input behavior.

Click is a mature platform for development of routers. Therefore it provides a
useful mechanism called "handlers"to allow for easy debugging and live manip-

50 CHAPTER 5. SDP IMPLEMENTATION

ulation of a running router.
There are two types of handlers: read handers and write handlers. While

the latter receive a string from the outside and do something based on it, the
read handlers do the opposite. When triggered, they output a string about the
element’s current state.

For debugging purposes the read handlers can be used to monitor the current
state of the router, while the write handlers are useful to change variables at a
certain time - e.g. to simulate error conditions.

The click software comes with an element named PokeHandlers. This element
can be used to trigger handlers of other elements at certain times.

With some properly integrated handlers in the SDP modules it is possible to
reliably simulate fault conditions like a broken link during different phases of the
TFTP transfer.

This also allows for automatic testing of all functions after every change or
before a checkin into the repository. Such automated testing has well known
benefits on software quality. However this is outside the scope of this work to
discuss.

Additionally, it is useful to create a click configuration that includes more than
one instance of the components one wants to test but without FromDevice and
ToDevice elements. Click can then run operation without access to a real net-
work interface. An example of such a file is given in appendix B on page 59 and
graphed in figure 5.6 on the next page.

5.6 Scenarios

To better illustrate the working of SDP this section will discuss a few typical sce-
narios:

• Normal operation

• Normal update process

• Update with a disconnected node

• Update with a disconnected subnet

5.6. SCENARIOS 51

Classifier

BrnTFTP

BrnSDP

Null

DeviceClassifier

Classifier

Discard

Discard

EtherDecap

Classifier

BrnSDP

BrnTFTP

Null

Classifier

EtherDecap

BrnSDPGEN

BrnSDPGEN

AddressInfo

Figure 5.6: Click graph for testing without network

52 CHAPTER 5. SDP IMPLEMENTATION

5.6.1 Normal Operation

During normal operation each node sends SDP beacons containing its current
software →version ID and current time in milliseconds.

All nodes run the same software version, hence they do not need to react on
the version part of the SDP beacon. They only adjust their clocks from the NTP
portion to synchronize with each other. Since some nodes are synchronized from
external →UTC time sources, the whole BRN has their clocks running on (or at
least close to) UTC.

5.6.2 Normal Update

For a normal update a new version is injected at any node (or even several nodes,
if they are accessible) — this one shall be called node 1. This node 1 then broad-
casts beacons containing the incremented version ID to its neighbors.

Thus neighboring nodes notice that there is a new version and start by re-
questing the meta-info file from the node 1 with TFTP. After the signature on the
meta-info file is verified, nodes continue to download all other files named in the
meta-info file - one by one. After each transferred file the hash value is checked. If
the received file was corrupt, it would be discarded and re-transferred to ensure
software integrity.

When all files of the new software package are completely transferred, it
schedules the software switch to happen at the activation time (known from
meta-info file) and starts broadcasting the new version in its own SDP beacons
- acting identical to node 1.

A normal update results in all nodes returning to normal operation with the
new version.

5.6.3 Update with a Disconnected Node

This section discusses what happens when one node of the BRN is disconnected
or turned off during a software update.

The update of all other nodes works the same as with a normal update but the
one disconnected node remains at its old version. When it is reconnected, it will
send the old version ID in its beacons. This causes all neighboring nodes to reply
with their higher version ID.

In response to the higher ID, the previously disconnected node will fetch all
files as with a normal update. The scheduling code will notice if activation time

5.7. SCALABILITY 53

is in the past and will immediately switch over to the newly received version.
Afterwards normal operation can continue.

5.6.4 Update with a Disconnected Subnet

This case is the most problematic one. It discusses what happens when the BRN
is split into two or more parts when some of the central nodes are disconnected.

Like with a normal update, new software would be injected into one of the
subnetworks and spread within it. Because there is no way to reach the other
parts of the BRN, spreading would be limited to the subnet of injection and other
subnets would remain at the old versions. Also — independently of SDP — each
BRN subnet would only be able to route normal traffic within the bounds of their
subnet.

When subnetworks get reconnected the new version would spread through-
out the newly extended BRN and be scheduled for activation. In the worst case
the activation time is in the past and nodes would switch over one after another
without the usual synchronization. However, once the new version has prop-
agated (about 1 minute for each hop), the whole BRN will be back in normal
operation state.

5.7 Scalability

Usually the performance of centralized distribution methods decreases with a
growing network and more users. It is interesting to think about how a bigger
BRN mesh would affect SDP itself.

It should not make a big difference as propagation time is proportional to
maximum path length. The maximum path length is approximately propor-
tional to the diameter of the network. The diameter is roughly proportional to
the square root of the total number of nodes. This should make propagation time
proportional to square root of number of nodes (not even taking into account that
the mesh will get better connected with more nodes). Thus, SDP can be expected
to scale well.

54 CHAPTER 5. SDP IMPLEMENTATION

5.8 Effort Estimation

Often with software engineering it is of special interest what part is most time
consuming. Thus the interested reader is given a rough estimation of how much
time was used for sub-tasks.

• 3 weeks understanding BRN general concepts and doing raw, preliminary
SDP design

• 3 weeks helping with OpenWrt/OpenWGT setup, development, and inte-
gration

• 5 weeks understanding the click modular router framework enough to send
and receive a single packet

• 3 weeks designing SDP structures, file formats, etc.

• 2 weeks implementing SDP beacon generator and parser

• 2 weeks implementing TFTP on BRN with robust error handling

• 1 week designing, implementing and testing the simplified BRN-NTP

• 2 weeks integrating SDP build and deployment into BRN and OpenWGT
including stability and performance tests

• 2 weeks adjusting to the latest BRN platform or subversion structure
changes (about 6 times total)

• 8 weeks writing down this thesis in LATEX

• 1

2
week printing and binding the drafts and final physical paper

Chapter 6

Conclusions

6.1 Summary

All basic SDP functionality is designed, implemented and working reliably. The
resulting SDP protocol is able to remain compatible1, it is robust, it does main-
tain consistent versions within BRN, making use of the builtin time synchroniza-
tion protocol and finally it is designed to be secure by employing cryptographic
hashes and signatures for software updates.

Some existing methods were applied to solve this problem and some new
ideas have been developed for the special requirements of BRN. The more ad-
vanced — but not mission critical — features are not yet implemented but easily
feasible with some additional weeks of effort.

With this SDP it finally does become possible to deploy BRN nodes on Berlin’s
roofs.

6.2 Future Work

There have been a number of ideas for improving SDP that could not be fully
researched and implemented, leaving them for future work.

First, SDP should be integrated into kernel click to improve performance.
This requires wrapping a few functions like gettimeofday and system so
that they can be used in kernel-space. It has been noted that calling user-space
programs from the kernel is unclean design, so a different but compatible asyn-
chronous mechanism should be designed.

1as long as the basic BRN packet format is not changed again

55

56 CHAPTER 6. CONCLUSIONS

Various methods that could further improve reliability should be examined,
e.g. running MD5 checks on startup or adding a CRC to BRN-TFTP packets.

Different fallback strategies can be tested, e.g. fallback to telnet mode with a
proper Atheros →WLAN driver

SDP could transfer its files with local broadcasts to several neighbors at once
to minimize network usage. Additionally, transparent compression on file trans-
fer could be added to save bandwidth.

The BRN-NTP accuracy can be improved by using an additional time quality
value (“stratum”) that is 0 at a UTC node, incremented on every hop, and used
to weight time information.

A more general solution to the problem identified in chapter 5.2 on page 41
should be found and implemented. Timers should not be triggered or suspended
when changing the local node time but as this is a problem with the underlying
click framework it is out of the scope of this work.

Using asynchronously running tasks and timers allows to schedule future
software updates while regularly rechecking the local clock. It is then possible
to cancel updates that are already scheduled as well.

Updating and scheduling more than one software-update at a time might also
be interesting to BRN but requires a more elaborate management for queues and
disk space.

Appendix A

BRN NTP

A.1 Example UTC Time Sources

Broadcasting time from a PC

sdp/conf/time_server.click :

// load the required module

require(sdp);

// send 4 time beacon per minute:

gen :: BrnSDPGEN(15);

AddressInfo(my_vlan eth0:eth);

gen -> to_dev_clf :: DeviceClassifier(my_vlan, my_vlan, my_vlan);

to_dev_clf[0] -> out_q_0 :: Queue();

to_dev_clf[1] -> Discard;

to_dev_clf[2] -> Discard;

out_q_0

-> ToDevice(eth0);

UTC time synchronization on BRN nodes

/usr/sbin/ntp-client :

#!/bin/sh

while sleep 100 ; do

rdate 217.172.177.32 && \

echo -n 1 > /var/updatelink/disablebrnntp || \

echo -n 0 > /var/updatelink/disablebrnntp

done

57

58 APPENDIX A. BRN NTP

A.2 NTP Implementation

excerpt from sdp/src/brnsdp.c :

/// this time is long past - if we still are before it,

/// our own time is bad - in theory we could also use __TIME__

#define mingoodtime 1083191508000000LL

/// time values before this are invalid

#define minvalidtime 946900000000000LL

/// microseconds network transfer time - 500us=0.5ms for eth

#define networklatency 500

/// minimum offset to step clock in microseconds

#define ntpthreshold 200000

...

if(!_disable_ntp) {

int64_t peertime=(int64_t)tv.tv_sec*1000000+tv.tv_usec+

networklatency;

gettimeofday(&tv, NULL);

int64_t owntime=(int64_t)tv.tv_sec*1000000+tv.tv_usec;

int64_t midtime=(peertime+owntime)>>1;

int64_t time_offset=peertime-owntime;

if(owntime<mingoodtime && peertime>mingoodtime)

midtime=peertime;

tv.tv_sec =midtime/1000000;

tv.tv_usec=midtime%1000000;

if(peertime>minvalidtime && abs(time_offset)>ntpthreshold) {

settimeofday(&tv, NULL);

}

}

Appendix B

Click Configuration Files

A click configuration file with only SDP

require(sdp);

require(brn); # for EtherDecap

AddressInfo(my_vlan eth0:eth);

gen :: BrnSDPGEN(5);

sdp :: BrnSDP(gen, tftp, /tmp/sdp);

tftp :: BrnTFTP(sdp, /tmp/storage);

to_dev_clf::DeviceClassifier(11:11:11:11:11:11,my_vlan,my_vlan);

proto_clf :: Classifier(0/0002, 0/0001) // TFTP, SDP

FromDevice(wlan0)

-> Classifier(12/8086)

-> EtherDecap()

-> proto_clf;

proto_clf[0] -> tftp;

proto_clf[1] -> sdp;

tftp -> to_dev_clf;

gen -> to_dev_clf;

sdp -> to_dev_clf;

to_dev_clf[0] -> Queue() -> ToDevice(wlan0);

to_dev_clf[1] -> Queue() -> ToDevice(vlan1);

to_dev_clf[2] -> Queue() -> ToDevice(vlan2);

59

60 APPENDIX B. CLICK CONFIGURATION FILES

A configuration for testing SDP without network

require(sdp);

require(brn);

AddressInfo(my_vlan eth0:eth);

gen :: BrnSDPGEN(5);

sdp :: BrnSDP(gen, tftp, /tmp/sdp);

tftp :: BrnTFTP(sdp, /tmp/storage);

gen2 :: BrnSDPGEN(6);

sdp2 :: BrnSDP(gen2, tftp2, /tmp/sdp2);

tftp2 :: BrnTFTP(sdp2, /tmp/storage);

out_queue :: Null();

in_queue :: Null();

out_queue2 :: Null();

in_queue2 :: Null();

proto_clf :: Classifier(0/0001, 0/0002) // SDP, TFTP

proto_clf2 :: Classifier(0/0001, 0/0002) // SDP, TFTP

in_queue

-> Classifier(12/8086)

-> EtherDecap()

-> proto_clf;

in_queue2

-> Classifier(12/8086)

-> EtherDecap()

-> proto_clf2;

proto_clf[0] -> sdp;

proto_clf[1] -> tftp;

tftp -> out_queue;

gen -> out_queue;

sdp -> out_queue;

out_queue -> to_dev_clf::DeviceClassifier(11:11:11:11:11:11,my_vlan,my_vlan);

to_dev_clf[0] -> out_q1_0::Null();

to_dev_clf[1] -> Discard();

to_dev_clf[2] -> Discard();

61

proto_clf2[0] -> sdp2;

proto_clf2[1] -> tftp2;

sdp2 -> out_queue2;

gen2 -> out_queue2;

tftp2 -> out_queue2;

connect both virtual nodes:

out_q1_0 -> in_queue2;

out_queue2 -> in_queue;

62 APPENDIX B. CLICK CONFIGURATION FILES

Appendix C

Scripts

The SDP activation script

#!/bin/sh

simple example SDP start/stop script

$Id: activate,v 1.2 2005/11/25 03:42:11 cvs Exp $

p=/tmp/clickrun

incomingdir=/tmp/storage

WLAN=wlan0

action=$1

if test -n "$action" ; then

shift

else

action=help

fi

sdpdir=$1

if test -n "$sdpdir" ; then

shift

else

use default, if no dir given - either flash or RAM

sdpdir=/var/updatelink

fi

beginsig="-----BEGIN SIGNATURE-----"

hash=sha1

remount="touch /var/updatelink/ || mount -o remount,rw /dev/root /"

revision=’$Revision: 1.2 $’

#eval $remount

mkdir -p $incomingdir $sdpdir/temp

63

64 APPENDIX C. SCRIPTS

cd $sdpdir

case "$action" in

start)

echo "starting click"

rm -rf temp/*

rm -rf $p

mkdir -p $p temp library

ver=$(cat current_id)

cd current

echo "starting version $ver $revision" > $p/debug.out

echo $* >> $p/debug.out

ls -l >> $p/debug.out

gzip -cd click.gz > $p/click

chmod a+x $p/click

SSID=$(/sbin/ifconfig $WLAN | awk ’/HWaddr/{print $5}’ |\

awk -F ":" ’{print $4$5$6}’)

sed -e "s/##brnSSID##/brn$SSID/" config.click > $p/current.click

cd $p

export CLICKPATH=$sdpdir/current

click-align current.click > current.aligned.click

./click current.aligned.click <&- &

./click current.aligned.click <&- >/dev/null 2>&1 &

echo $! > click.pid

;;

stop)

echo -n "stopping click"

pid=$(cat $p/click.pid)

(test -n "$pid" && kill $pid) || /usr/bin/killall click 2> /dev/null

n=0;

while [$n -lt 70] && kill $pid 2>/dev/null ;

do echo -n . ; n=$(expr $n + 1); sleep 1;

done

echo

rm -f $p/click.pid

;;

canceldownload)

ver=$1

test -n $ver || exit 1

rm -rf $incomingdir/$ver

;;

add)

eval $remount

newver=$1 ; shift

mkdir -p temp library

asssuming the new version is not there yet

test -n $newver || exit 1

65

rm -rf library/$newver

chmod a+x $incomingdir/$newver/activate

this is a non-atomic operation, because it copies from ram to flash

mv $incomingdir/$newver temp/

this is nearly atomic

mv temp/$newver library/

;;

schedule)

newver=$1 ; shift

time1=100

time2=$(expr $time1 * 2)

(

while sec=$(expr $(head -2 library/$newver/meta-info|tail -1) \

- $(date +%s)) && test "$sec" -gt $time2 ; do

echo $sec seconds to go ;

sleep $time1 ;

done

if test "$sec" -gt 0 ; then sleep $sec ; fi

$0 switch $sdpdir $(cat current_id) $newver

) &

;;

switch)

eval $remount

oldver=$1 ; shift

newver=$1 ; shift

echo "switching from $oldver to $newver"

test -n "$oldver" || exit 1

test -n "$newver" || exit 1

test $oldver = $newver && { $0 restart ; exit 0; }

touch $sdpdir/update_in_progress

current/activate stop $sdpdir

echo $newver > current_id

rm -f current ; ln -sf library/$newver current

rm -rf library/$oldver

current/activate start $sdpdir

rm -f $sdpdir/update_in_progress

;;

verify)

check signature of a newly downloaded meta-info file

echo $0 verifying authenticity of $1

sed "/$beginsig/{q}" $1 > /tmp/meta-info.hash

grep -A1000 -- "$beginsig" $1 | openssl enc -a -d |\

openssl rsautl -verify -inkey devel.pub -pubin |\

sed ’s/$/ \/tmp\/meta-info.hash/’ | ${hash}sum -c

exit $?

;;

66 APPENDIX C. SCRIPTS

restart)

$0 stop

$0 start

;;

status)

if [-e $p/click.pid] ; then

if kill -0 $(cat $p/click.pid) 2>/dev/null ; then

echo running

exit 0

fi

echo dead

exit 7

fi

echo "unused "

exit 6

;;

*)

echo "Usage: $0 {start|stop|restart|status|add|switch|schedule}"

exit 1;

;;

esac

List of Figures

1.1 BRN from a user’s point of view . 8
1.2 BRN from the internal network point of view 9

3.1 Overview of properties of software update methods 16
3.2 Netgear Flash and Firmware layout 23

5.1 Overview of the SDP components and their interaction 37
5.2 Click graph of a BRN-NTP time-server 39
5.3 The SDP click graph . 40
5.4 Typical clock skew with time adjustment 44
5.5 Distribution time and bandwidth over one hop 47
5.6 Click graph for testing without network 51

67

68 LIST OF FIGURES

Bibliography

[ClickDoc] Click Modular Router documentation -

http://pdos.csail.mit.edu/click/doc/

[Roofnet] J. Bicket, D. Aguayo, S. Biswas, R. Morris "Architecture and Evaluation
of an Unplanned 802.11b Mesh Network", 2005, M.I.T. Computer Science
and Artificial Intelligence Laboratory

http://pdos.csail.mit.edu/roofnet/

[Netgear] Netgear, http://www.netgear.com/

[Gentoo] Linux Documentation http://www.gentoo.org/doc/en/handbook/

[Trid1999] A. Tridgell "Efficient Algorithms for Sorting and Synchronization",
Australian National University, 1999

[HTTP] http://www.ietf.org/rfc/rfc2616.txt

[FTP] http://www.ietf.org/rfc/rfc0959.txt

[TFTP] http://www.ietf.org/rfc/rfc1350.txt

[CVS] http://www.nongnu.org/cvs/

[NTP] http://www.ietf.org/rfc/rfc1119.txt

[TimeProt] Time Protocol http://www.ietf.org/rfc/rfc0868.txt

[SHA1] NIST standard http://ietf.org/rfc/rfc3174.txt

[W3C1997] W3C, "The Open Software Description Format", 1997

http://www.w3.org/TR/NOTE-OSD

69

70 BIBLIOGRAPHY

[Perc2003] C. Percival "An Automated Binary Security Update System for
FreeBSD", 2003

http://www.daemonology.net/freebsd-update/binup.html

[WhIr2004] D. White, B. Irwin "Microsoft Windows server update services
(WSUS) review", 2004

[Tall1995] Owen H. Tallman "Automated Software Deployment in a Large Com-
mercial Network", Digital Technical Journal, 1995

http://www.hpl.hp.com/hpjournal/dtj/vol7num2/vol7num2art5.pdf

[GhRo2005] C. Ghantsidis, P. Rodriguez "Network Coding for Large Scale Con-
tent Distribution", IEEE Infocom 2005

http://www.research.microsoft.com/˜pablo/papers/nc_contentdist.pdf

[Cohen2003] B. Cohen "Incentives build robustness in bittorrent", Workshop on
Economics of Peer-to-Peer Systems, 2003

[Sapphire] "The Spread of the Sapphire/Slammer Worm", 2003

http://www.cs.berkeley.edu/˜nweaver/sapphire/

[RSA1978] R. Rivest, A. Shamir, L. Adleman "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems", Communications of the ACM,
1978

[Zimm1980] H. Zimmermann "OSI Reference Model—The ISO Model of Archi-
tecture for Open Systems Interconnection", IEEE Transactions on Communi-
cations, 1980

[Basili1984] V. Basili, B. Perricone "Software errors and complexity: an empirical
investigation". 1984

[Khosh1990] T. Khoshgoftaar, J. Munson "Predicting software development er-
rors using software complexity metrics", 1990

 3

Reports published by Humboldt University Berlin, Computer Science Department, Systems Architecture Group.
__

1. SAR-PR-2005-01: Linux-Hardwaretreiber für die HHI CineCard-Familie. Robert Sperling. 37
Seiten.

2. SAR-PR-2005-02, NLE-PR-2005-59: State-of-the-Art in Self-Organizing Platforms and
Corresponding Security Considerations. Jens-Peter Redlich, Wolf Müller. 10 pages.

3. SAR-PR-2005-03: Hacking the Netgear wgt634u. Jens-Peter Redlich, Anatolij Zubow, Wolf
Müller, Mathias Jeschke, Jens Müller. 16 pages.

4. SAR-PR-2005-04: Sicherheit in selbstorganisierenden drahtlosen Netzen. Ein Überblick über
typische Fragestellungen und Lösungsansätze. Torsten Dänicke. 48 Seiten.

5. SAR-PR-2005-05: Multi Channel Opportunistic Routing in Multi-Hop Wireless Networks using a
Single Transceiver. Jens-Peter Redlich, Anatolij Zubow, Jens Müller. 13 pages.

6. SAR-PR-2005-06, NLE-PR-2005-81: Access Control for off-line Beamer – An Example for
Secure PAN and FMC. Jens-Peter Redlich, Wolf Müller. 18 pages.

7. SAR-PR-2005-07: Software Distribution Platform for Ad-Hoc Wireless Mesh Networks. Jens-
Peter Redlich, Bernhard Wiedemann. 10 pages.

8. SAR-PR-2005-08, NLE-PR-2005-106: Access Control for off-line Beamer Demo Description.
Jens Peter Redlich, Wolf Müller, Henryk Plötz, Martin Stigge. 3 pages.

9. SAR-PR-2006-01: Development of a Software Distribution Platform for the Berlin Roof Net
(Diplomarbeit / Masters Thesis). Bernhard Wiedemann. 73 pages.

