
Studienarbeit

Concepts of Anonymous Reputation
Management

Henryk Plötz

ploetz@informatik.hu-berlin.de

WS 2006/2007

February 29, 2008 (Revision: 1.14)

Humboldt-Universität zu Berlin

Institut für Informatik

mailto:ploetz@informatik.hu-berlin.de

Contents

1 Introduction 3
1.1 Definitions . 3

1.1.1 Anonymity . 3

2 Reputation Systems 4
2.1 Eigentrust . 4

3 ARM4FS 6
3.1 System Components . 6

3.1.1 Storage Provider . 6
3.1.2 Anonymous Reputation Provider 6

3.2 Data Structures and Procedures . 7
3.2.1 Data Structures . 7

3.3 Protocols . 8
3.3.1 Client to Storage Provider 8
3.3.2 Client to Anonymous Reputation Provider 9
3.3.3 Anonymization Layer to Reputation System 14

4 Challenges 16
4.1 Sybil Attack . 16
4.2 Side Channels . 16

5 Bibliography 17

2

1 Introduction

1.1 Definitions

1.1.1 Anonymity

Anonymity (of an entity) refers to the property of that entity of not being identi-
fiable within a set –the so-called ‘anonymity set’– of similar entities.

Typically anonymity is an all-or-nothing property, e.g. one can’t be just a little
bit anonymous. In order to be able to differentiate between different anonymization
systems and the strength of their anonymity guarantees several measures can be
applied. The most common is the anonymity set size (first used in [Chaum, 1988]):
If there are two system with four users each, and the first system has an anonymity
set of size four and the second system has two anonymity sets of size two each,
then obviously the first system is to be preferred.

On a side note: For law enforcement purposes in constitutional states it’s suffi-
cient for the anonymity set size to be greater than or equal to 2 (of course including
possible circumstantial reductions of the set size, e.g. the remaining members must
not have alibis). For different purposes the anonymity set size might not be the
best metric.

Consider again a system with four users and an anonymity set of size four, with
respect to committing a particular action. If one of the members committed the
action with probability 0.91 and the other three members with probability 0.03
each, then it’s clearly not a particular good system. Under certain circumstances
and regimes this probability distribution might be enough to lead to serious con-
sequences for that particular member with the high probability.

This leads to a different –information theoretic– anonymity metric as given
in [Serjantov and Danezis, 2002], the effective size of the anonymity probability
distribution S is defined to be the entropy of that distribution. From its definition
it’s clear to see that 0 ≤ S ≤ log2 |Ψ| (where Ψ is the anonymity set). A value of
S = 0 means that the system offers no anonymity and a particular user is clearly
identified. A value of S = log2 |Ψ| is the maximum value and means perfect,
equally distributed anonymity for all users.

3

2 Reputation Systems

Reputation systems are usually collaborative systems where users rate each other,
for example based on their contributions. These ratings are then somehow inte-
grated to assign each user one or more ‘reputation’ values, based on that user’s
conduct in the past. The reputation value can be useful as a predictor either for
that user’s likely future conduct, or for contributions by that user which have not
yet been rated.

The addition of reputation systems can introduce accountability into peer-to-
peer systems and thus help to discourage misbehaviour and/or encourage good
behaviour.

2.1 Eigentrust

The Eigentrust reputation system has been described by Sepandar D. Kamvar,
Mario T. Schlosser and Hector Garcia-Molina in their 2003 paper “The EigenTrust
algorithm for Reputation Management in P2P Networks” ([Kamvar et al., 2003]).

The main idea behind Eigentrust is the notion of transitive trust: If peer X
trusts peer Y and peer Y trusts peer Z then peer X most likely also trusts peer
Z at least to some extent. This is modeled on the observation that real-life trust
relationships are usually transitive, though with reduced strength as the number
of intermediaries grows. It is worth noting that relationships other than trust rela-
tionships are not generally transitive, so the Eigentrust model will not be perfectly
suited for some reputation systems (depending on which types of relationships
these systems assign ratings to).

The Eigentrust algorithm starts with each peer i computing local trust values
sij for all peers j that it has ratings for. The original formula for the calculation
of these trust values is

sij = sat(i, j)− unsat(i, j)

where sat(i, j) and unsat(i, j) give the number of satisfying and unsatisfying trans-
actions that peer i had with peer j, respectively. These values are then normalized
to a maximum of 1 and cropped to be greater than or equal 0:

cij =
max(sij, 0)∑
j max(sij, 0)

4

Define matrix C =: [cij] and the vectors
−→
t i as the values tik and −→c i as the values

cij then
−→
t i can be calculated as

−→
t i = CT−→c i and is a trust vector for all peers

based on peer i’s trust and the weighed transitive trust of all of peer i’s direct
acquaintances.

When this is iterated even further as

−→
t n

i = (CT)n−→c i

for a large n it will eventually converge to some value
−→
t = (CT)n−→c i which is the

global trust value for the trust network. For specific reasons this will even converge
to the same trust vector

−→
t independent of which trust vector −→c i was originally

started with, namely the left principal Eigenvector of the matrix C. (Hence the
name Eigentrust.)

5

3 ARM4FS

3.1 System Components

The ARM4FS system consists of several system components: the Storage Provider
and the Anonymous Reputation Provider which in turn consists of the Anonymiza-
tion Layer and the Reputation System.

3.1.1 Storage Provider

The Storage Provider is responsible for the actual storage of the files in the system.
Several standard mechanisms exist for this purpose and the actual storage method
is not really important. In the following an HTTP based implementation will
be used, where a standard HTTP file server provides storage for the files and
associated meta-information.

3.1.2 Anonymous Reputation Provider

The Anonymous Reputation Provider is the composite system that keeps track of –
and performs calculations on– the user’s reputation information. It is comprised of
two subsystems, in order to facilitate easy replacement of the reputation function
being used.

Anonymization Layer

The Anonymization Layer is the part of the Anonymous Reputation Provider
that is communicating with the outside world. Its purpose is to safeguard the
anonymity of its users by restricting its output information. The Anonymization
Layer also handles all user management tasks.

Reputation System

The Reputation System is the sub-component that is actually responsible for the
calculation of the reputation values. It pseudonymized feedback values from the
Anonymization Layer sub-component and then answers queries for reputation val-
ues that are mediated by the Anonymization Layer.

6

Client

The Client is what the users actually use. With it the users can upload/down-
load/list files to/from/on the Storage Provider, query reputation values and send
feedback.

3.2 Data Structures and Procedures

3.2.1 Data Structures

In order to keep track of participant and resource information the system needs to
manage a few data structures which will be described in the following subsection.

ObjectKey An ObjectKey is a public identifier that uniquely identifies a resource
through an embedded hash representation of that resource (or a description
thereof). For obvious reasons the hash must have been generated with a
cryptographically strong hashing algorithm, such as SHA-1.

The ARM4FS system uses the general form of an URI for its ObjectKeys
and for the example of ARM4FS a SHA-1 hash will be appended as a query
string like so: http://sp /get?h=hash .

UserId A UserId identifies a user of the system through his or her asymmetric
public/private key pair and is generally not public. The private key will
always be kept private at the user’s client while the ‘public’ key will only be
used in a secure session to the Anonymization Layer and not be available to
the general public.

The term ‘UserId’ generally refers to the asymmetric key pair, even though
the server will of course only possess the public key part.

UserPseudonym A UserPseudonym is a randomly generated identifier that serves
as a pseudonym for the user’s identity when it is bound to a resource through
an AuthorTag. A new UserPseudonym is generated for each user/resource
combination (aka AuthorTag), and it is important that different UserPseudonyms
of the same user can not be correlated to each other. Therefore they must
actually be generated through a cryptographically strong random number
generator–and not for example by salting and encrypting the UserId.

Basically the UserPseudonym acts as a key for easier database access. It also
means that the Anonymous Reputation Provider does not have to store all
the ObjectKeys for each user.

7

AuthorTag An AuthorTag establishes authorship for a specific user on a resource
and is a (public) signed (by the Anonymous Reputation Provider) tuple
consisting of a UserPseudonym and an ObjectKey. A new UserPseudonym
is generated each time a new AuthorTag is created, and then internally (to
the Anonymization Layer) associated with the UserId.

AuthorTags are represented as empty XML elements of name AuthorTag

with three attributes: UserPseudonym, ObjectKey and signature. The
signature is a standard PKCS#1 padded RSA SHA-1 signature over the
string ObjectKey ?UserPseudonym .

3.3 Protocols

3.3.1 Client to Storage Provider

The client and the Storage Provider converse through a standard, REST-like,
HTTP-based protocol.

Uploading Files

In order to upload a file the client issues an HTTP PUT request to http://sp /put

and transmits the file that is to be uploaded. The Storage Provider then answers
with an HTTP 201 Created status code and a Location header. This Location
header indicated the new URI under which the file later will be accessible. This
URI also is the ObjectKey of that file.

It is expected that the file can not be retrieved until a user has established
authorship on it, and that unowned files will be deleted after some time.

Establishing Authorship

After retrieving an AuthorTag for the new file from the Anonymous Reputation
Provider the client will issue an HTTP POST request to http://sp /storePermanent
and submit the ObjectKey and AuthorTag to the Storage Provider (in the body of
the POST request, with a Content-Type of application/x-www-form-urlencoded).

The Storage Provider then takes the necessary steps to permanently store the
file and notes the AuthorTag in its meta-data for that file, to be delivered in all
file listings containing that file.

Listing Available Files

In order to retrieve a list of available files the client issues an HTTP GET request
to http://sp /xml index which will yield an XML formatted listing of the files

8

on that Storage Provider.
The document element is of name files with no attributes. This contains

several file elements (no attributes) which each in turn have several child elements
whose contents describe properties of the file they pertain to:

time A float containing the upload time as seconds (with fraction) since epoch
(January 1st, 1970).

name A server generated name to describe the file. For example this might be
generated from MP3 ID3 tags.

hash A SHA-1 hash of the contents of that file.

type The mime-type of that file, guessed by the server through the standard file(1)
command.

size The size of that file.

ObjectKey The ObjectKey of that file, also serves as the URI to retrieve the file.

AuthorTag The AuthorTag of that file, as generated by the Anonymous Reputa-
tion Provider. Differing from the other child elements in that it is an empty
element where all the data is in the attributes (see above).

3.3.2 Client to Anonymous Reputation Provider

All communications between the client and the Anonymous Reputation Provider
takes place within the context of a ‘session’. Each session is an authenticated
and encrypted channel, using SSL/TLS. This provides for end-to-end encryption
between both parties and also authenticates the Anonymization Layer component
through its server certificate.

For the authentication of the client there were two choices: the use of SSL client
certificates, or some custom mechanism. The SSL client certificate mechanism
would have had the advantages of being relatively well tested and having multiple
interoperable implementations. However, there would have been the disadvantages
of added complexity, and the impossibility of implementation in J2ME. Since a
goal was implementing the protocol on a mobile phone in Java, and therefore with
the heavily restricted J2ME subset of the Java features, SSL client certificates were
out of the question because a J2ME midlet has no way of accessing the phone’s
client certificate store which the phone uses to establish SSL connections.

Instead a simple, home-brewn challenge-response mechanism was chosen. After
establishing the encrypted channel and authenticating the Anonymous Reputation

9

Provider, the client can request a challenge from the ARP and then send back a
signature over the challenge to authenticate itself, thereby logging in.

A session thus is always in one of three states: unauthenticated, authentication-
in-progress and authenticated. In the unauthenticated state only a few commands
are allowed (e.g. those commands to start the authentication process). The
authentication-in-progress state is entered by requesting authentication and ex-
ited through successful authentication (or abortion of the session in the case of
unsuccessful authentication). In the authenticated state, finally, all regular com-
mands are available.

The protocol inside the encrypted session is a simple line-based request-response
protocol. All commands and all answers are sent on one line each and end with a
new-line character. Each command is answered with exactly one response (except
if the channel is closed, abnormally). Only the client can send commands and
therefore only the Anonymous Reputation Provider can send responses.

Each command is a line with at least one word (without any whitespace) speci-
fying the command to be executed. The command may optionally be followed by
a list of arguments, separated by exactly one whitespace each. Neither command
nor response may contain any line-break characters except for those that signal
the end of the command or response.

Each response starts with a smiley face that indicates success or failure of the
command. A ‘successful’ response starts with a happy smiley (“:-)”, that is: the
three characters colon, hypen-minus and right parenthesis) and an ‘unsuccessful’
response starts with an unhappy smiley (“:-(”, the three characters colon, hypen-
minus and left parenthesis). The unhappy smiley on an unsuccessful response is
then followed by a space, a three-digit error code and an optional human readable
error message.

The arguments of some of the commands and some of the responses inherently
are binary in nature (and thus not safe for a protocol relying on whitespace and
line breaks). These are defined to be transmitted using BASE64 encoding. The
affected arguments or responses are: The challenge, the response and the public
key of the client. Inside of the BASE64 encoding the public key is represented in
ASN.1 DER encoding.

The remaining arguments or responses need no special attention: reputation
and feedback information are string representation of numbers, the ObjectKey is
an URL and may thus not contain most special characters (including whitespace)
and the XML representation of the AuthorTag can be created without newlines.

Authentication The Anonymous Reputation Provider is authenticated through
the use of an SSL server certificate, as mentioned above. In order to use this type
of authentication the client must know the server certificate in advance, or at least

10

the server’s public key, or the server certificate must be signed by a trusted CA.
This is a common requirement for services using SSL and of no further significance.

The client is authenticated through its UserId –which is a public/private key
pair, as detailed above– by virtue of a simple challenge-response protocol. The
server generates a random challenge that is sent to the client and the client re-
sponds with a signature for that challenge. The signature scheme is standard
PKCS#1 SHA-1 RSA.

In order to guarantee correct authentication the commands in the authentication
process must be executed exactly as specified and no deviation is allowed. No
other command may be sent after sending the login or create commands and
before sending the authenticate command. Any violation of the protocol results
in immediate abnormal termination of the session. (The session also terminates
when a certain time has passed after the login or create commands with no
authenticate command received.)

User Management As has already been said each user is solely identified by
a public/private key pair called the UserId. This key pair is generated by the
client and the private part is never disclosed to an external entity. In order to
register to an Anonymous Reputation Provider the client sends a create command
with the public key as argument and is then given a challenge in the response.
The client then must prove its knowledge of the private key by computing the
right response and sending it in an authenticate command. When this protocol
is followed successfully, the Anonymous Reputation Provider takes all necessary
steps to create the new user in its internal database(s) and the session is in the
authenticated state.

Logging in to the Anonymous Reputation Provider works in a similar way, but
with the login command instead of authenticate (and no new user entry needs
to be created at the server).

Commands and Responses

This section details the commands and responses that are exchanged in the en-
crypted session between the client and the anonymous reputation provider which
is acting as the server. For each command a short synopsis of the command and
response format is given, followed by an explanation of the arguments, the state(s)
that this command is allowed in, a description of the command and its semantics
and a list of the possible positive or negative responses.

authenticate

Synopsis authenticate response value

→ welcome message

11

Arguments response value The response to the challenge, e.g. the chal-
lenge signed with the client’s private key.

State authentication-in-progress only

New State authenticated

Description This command completes the authentication procedure. It must
be sent immediately after receiving the response to the login or create
command. The response value parameter must be a BASE64 en-
coded representation of a PKCS#1 padded SHA-1 RSA signature over
the challenge that has been received as the response of the preceding
login or create command in a BASE64 encoded form. (Note that the
challenge is to be signed, and not the BASE64 encoded representation
of the challenge.)

Response
pos. welcome message An optional server welcome message. This

may be empty.

neg. None. In case of any error or protocol violation the session will
be terminated.

create

Synopsis create pubkey

→ challenge

Arguments pubkey The client’s public key, e.g. the public key part of the
UserId. The key must be given as a BASE64 encoded DER encoded
RSA key.

State unauthenticated only

New State authentication-in-progress

Description This command initiates the authentication procedure for a new
user. The server will respond with a challenge that the client must sign
and then respond with an authenticate command.

Response
pos. challenge The challenge, which is a BASE64 encoded, opaque,

random string.

neg. None. In case of any error or protocol violation the session will
be terminated.

login

Synopsis login pubkey

→ challenge

12

Arguments pubkey The client’s public key, e.g. the public key part of the
UserId. The key must be given as a BASE64 encoded DER encoded
RSA key.

State unauthenticated only

New State authentication-in-progress

Description This command initiates the authentication procedure for an
already existing user.. The server will respond with a challenge that the
client must sign and then respond with an authenticate command. If
the authenticate command is performed successfully then the server
will have created the new user account and it can be used with the
login command in the future.

Response
pos. challenge The challenge, which is a BASE64 encoded, opaque,

random string.

neg. None. In case of any error or protocol violation the session will
be terminated.

createAuthorTag

Synopsis createAuthorTag ObjectKey

→ AuthorTag

Arguments ObjectKey The ObjectKey that the server should create an an
AuthorTag for.

State authenticated only

Description This command asks the server to create an AuthorTag for a
given ObjectKey. The returned AuthorTag is represented as an XML
snippet in the form that was defined in 3.2.1.

Response
pos. AuthorTag The AuthorTag that has been created.

neg. 409 There already is an AuthorTag associated with this Objec-
tKey but for another user.

getReputation

Synopsis getReputation AuthorTagOrTags

→ reputations

Arguments AuthorTagOrTags The AuthorTag that the reputation should
be retrieved for. May also be a concatenation of multiple Au-
thorTags in order to reduce the number of round-trips necessary
for the retrieval of a large number of reputation values.

13

State authenticated only

Description This command lets the server retrieve the reputation values
that are associated with a list of AuthorTags.

Response
pos. reputations The reputation values as a list of string represen-

tations of floating point numbers, separated by spaces.

neg. 403 The AuthorTag was not created by this anonymous reputa-
tion provider.

404 The AuthorTag is not assigned to a reputation value on this
anonymous reputation provider.

Important note: If multiple reputation values were requested and any
of the queries fails then a negative response will be returned and it is
not possible to tell which of the queries failed.

submitFeedback

Synopsis submitFeedback AuthorTag feedback

→ ∅
Arguments AuthorTag The AuthorTag of the resource that feedback is

given on.

feedback The feedback that is being given, as a string representation
of an integer of either +1 or -1.

State authenticated only

Description This command submits user feedback on a particular resource
to the server.

Response
pos. None.

neg. 403 The AuthorTag was not created by this anonymous reputa-
tion provider.

404 The AuthorTag is not assigned to a reputation value on this
anonymous reputation provider.

3.3.3 Anonymization Layer to Reputation System

As the Anonymous Reputation Provider consists of two parts –the Anonymization
Layer and the Reputation System– there is a need for these to parts to communi-
cate. Once again this is done through a simple line-based text protocol over TCP.
This time encryption is not necessary, because this is internal communication on
the local host.

14

This approach offers great flexibility and makes it possible to code the Anonymiza-
tion Layer and the Reputation System in two different programming languages. It
also decouples the Reputation System so that it is possible to replace the Reputa-
tion System with a different one.

For this protocol the Reputation System acts as a TCP server on port 4444 on
localhost. All commands are sent by the Anonymization Layer, and all responses
are sent by the Reputation System. Commands and responses are one line each,
ending with a single newline character.

newuser n Indicates that a new user with index n has been added. There is no
response from the Reputation System.

feedback n m x Indicates that user n sent a feedback regarding user m with
value x . There is no response.

kcabdeef n m x Indicates the revocation of a previous feedback command. No
response.

query n m Queries the Reputation System for the reputation of user m as seen
from user n ’s perspective. Response:

y The reputation value of m from the perspective of n .

age a This command is used to create ageing in the reputation data by multiply-
ing all previous feedback values with a , thereby creating a moving average.
No response

n This command is used by the Anonymization Layer to query the current N , e.g.
the n from the last newuser command that was seen by the Reputation Sys-
tem. This is needed by the Anonymization Layer after startup to determine
the value that should be sent in the next newuser command. Response:

n The N .

In this protocol n and m are string representations of integers from the set{
1, . . . , N

}
(where N is the last n sent in a newuser command), x is from the

set
{
−1, +1

}
and a and y are string representations of real numbers (using the

C language format string g or G).

15

4 Challenges

4.1 Sybil Attack

A Sybil Attack, first described by John Douceur in [Douceur, 2002], is a common
attack pattern on peer to peer systems, and especially against their reputation
systems. The attacker creates multiple accounts or identities that are all under
his control. He can then gain advantages over other users of the system by using
this network of entities, e.g. to give particularly high ratings to the attacker’s
contributions. This can generally not be prevented without a central authority
that guarantees that distinct accounts are being held by distinct entities.

In the context of ARM4FS this need can be catered to with the inclusion of an
Identity Provider into the process. The Anonymous Reputation Provider would
then be modified to require either an authenticated guaranteed unique identifi-
cation –which might be problematic because this would likely involve personal
details of the user– or at least some external proof that the user in question does
not already have an account with the ARP.

4.2 Side Channels

Side channel attacks are an attack class that can compromise the anonymity offered
by the system, through the analysis of meta data and other obvious and non-
obvious. This includes for example the author information from office documents,
encoder comments from music files or user information from tar archives. As a
counter-measure these can be filtered out automatically at least some of the time.
The user must of course take care not to release documents that lead directly to
their identity, e.g. printed on letterhead.

A twist on this attack type are linking attacks where different documents from
the same contributor –where at least one was released with identifying information,
willful or not– are being linked together to the same author to reveal the source
of one of them to be the source of all of them. These have been take care of in the
implementation by not giving out the author’s ID explicitly and obscuring implicit
hints at which documents might have been submitted by the same user. The latter
is achieved by quantizing the returned reputation values to e.g. one of six possible
values, thereby creating six anonymity sets.

16

5 Bibliography

[Chaum, 1988] Chaum, D. (1988). The dining cryptographers problem: uncondi-
tional sender and recipient untraceability. J. Cryptol., 1(1):65–75.

[Douceur, 2002] Douceur, J. R. (2002). The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-Peer Systems, pages
251–260, London, UK. Springer-Verlag.

[Kamvar et al., 2003] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
(2003). The eigentrust algorithm for reputation management in p2p networks.
In WWW ’03: Proceedings of the 12th international conference on World Wide
Web, pages 640–651, New York, NY, USA. ACM.

[Serjantov and Danezis, 2002] Serjantov, A. and Danezis, G. (2002). Towards an
information theoretic metric for anonymity.

17

 Humboldt University Berlin
 Computer Science Department
 Systems Architecture Group

 Rudower Chaussee 25
 D-12489 Berlin-Adlershof
 Germany

 Phone: +49 30 2093-3400
 Fax: +40 30 2093-3112

 http://sar.informatik.hu-berlin.de

Concepts of Anonymous Reputation

Management

HU Berlin Public Report
SAR-PR-2008-08

Februar 2008

Author(s):

Henryk Plötz

Reports published by Humboldt University Berlin, Computer Science Department, Systems Architecture Group.

1. SAR-PR-2005-01: Linux-Hardwaretreiber für die HHI CineCard-Familie. Robert
Sperling. 37 Seiten.

2. SAR-PR-2005-02, NLE-PR-2005-59: State-of-the-Art in Self-Organizing Platforms and
Corresponding Security Considerations. Jens-Peter Redlich, Wolf Müller. 10 pages.

3. SAR-PR-2005-03: Hacking the Netgear wgt634u. Jens-Peter Redlich, Anatolij Zubow,
Wolf Müller, Mathias Jeschke, Jens Müller. 16 pages.

4. SAR-PR-2005-04: Sicherheit in selbstorganisierenden drahtlosen Netzen. Ein Überblick
über typische Fragestellungen und Lösungsansätze. Torsten Dänicke. 48 Seiten.

5. SAR-PR-2005-05: Multi Channel Opportunistic Routing in Multi-Hop Wireless
Networks using a Single Transceiver. Jens-Peter Redlich, Anatolij Zubow, Jens Müller.
13 pages.

6. SAR-PR-2005-06, NLE-PR-2005-81: Access Control for off-line Beamer – An Example
for Secure PAN and FMC. Jens-Peter Redlich, Wolf Müller. 18 pages.

7. SAR-PR-2005-07: Software Distribution Platform for Ad-Hoc Wireless Mesh Networks.
Jens-Peter Redlich, Bernhard Wiedemann. 10 pages.

8. SAR-PR-2005-08, NLE-PR-2005-106: Access Control for off-line Beamer Demo
Description. Jens Peter Redlich, Wolf Müller, Henryk Plötz, Martin Stigge. 18 pages.

9. SAR-PR-2006-01: Development of a Software Distribution Platform for the Berlin Roof
Net (Diplomarbeit / Masters Thesis). Bernhard Wiedemann. 73 pages.

10. SAR-PR-2006-02: Multi-Channel Link-level Measurements in 802.11 Mesh Networks.
Mathias Kurth, Anatolij Zubow, Jens Peter Redlich. 15 pages.

11. SAR-PR-2006-03, NLE-PR-2006-22: Architecture Proposal for Anonymous Reputation
Management for File Sharing (ARM4FS). Jens Peter Redlich, Wolf Müller, Henryk
Plötz, Martin Stigge, Torsten Dänicke. 20 pages.

12. SAR-PR-2006-04: Self-Replication in J2me Midlets. Henryk Plötz, Martin Stigge, Wolf
Müller, Jens-Peter Redlich. 13 pages.

13. SAR-PR-2006-05: Reversing CRC – Theory and Practice. Martin Stigge, Henryk Plötz,
Wolf Müller, Jens-Peter Redlich. 24 pages.

14. SAR-PR-2006-06: Heat Waves, Urban Climate and Human Health. W. Endlicher, G.
Jendritzky, J. Fischer, J.-P. Redlich. In: Kraas, F., Th. Krafft & Wang Wuyi (Eds.):
Global Change, Urbanisation and Health. Beijing, Chinese Meteorological Press.

15. SAR-PR-2006-07: 无线传感器网络研究新进展 (State of the Art in Wireless Sensor

Networks). 李刚 (Li Gang), 伊恩斯•彼得•瑞德里希 (Jens Peter Redlich)

16. SAR-PR-2006-08, NLE-PR-2006-58: Detailed Design: Anonymous Reputation
Management for File Sharing (ARM4FS). Jens-Peter Redlich, Wolf Müller, Henryk
Plötz, Martin Stigge, Christian Carstensen, Torsten Dänicke. 16 pages.

17. SAR-PR-2006-09, NLE-SR-2006-66: Mobile Social Networking Services Market Trends
and Technologies. Anett Schülke, Miquel Martin, Jens-Peter Redlich, Wolf Müller. 37
pages.

18. SAR-PR-2006-10: Self-Organization in Community Mesh Networks: The Berlin
RoofNet. Robert Sombrutzki, Anatolij Zubow, Mathias Kurth, Jens-Peter Redlich, 11
pages.

19. SAR-PR-2006-11: Multi-Channel Opportunistic Routing in Multi-Hop Wireless
Networks. Anatolij Zubow, Mathias Kurth, Jens-Peter Redlich, 20 pages.

20. SAR-PR-2006-12, NLE-PR-2006-95: Demonstration: Anonymous Reputation
Management for File Sharing (ARM4FS). Jens-Peter Redlich, Wolf Müller, Henryk
Plötz, Christian Carstensen, Torsten Dänicke. 23 pages.

21. SAR-PR-2006-13, NLE-PR-2006-140: Building Blocks for Mobile Social Networks
Services. Jens-Peter Redlich, Wolf Müller. 25 pages.

22. SAR-PR-2006-14: Interrupt-Behandlungskonzepte für die HHI CineCard-Familie.
Robert Sperling. 83 Seiten.

23. SAR-PR-2007-01: Multi-Channel Opportunistic Routing. Anatolij Zubow, Mathias
Kurth, Jens-Peter Redlich, 10 pages. IEEE European Wireless Conference, Paris, April
2007.

24. SAR-PR-2007-02: ARM4FS: Anonymous Reputation Management for File Sharing.
Jens-Peter Redlich, Wolf Müller, Henryk Plötz, Christian Carstensen, 10 15 pages.

25. SAR-PR-2007-03: DistSim: Eine verteilte Umgebung zur Durchführung von
parametrisierten Simulationen. Ulf Hermann. 26 Seiten.

26. SAR-SR-2007-04: Architecture for applying ARM in optimized pre-caching for
Recommendation Services. Jens-Peter Redlich, Wolf Müller, Henryk Plötz, Christian
Carstensen. 29 pages.

27. SAR-PR-2007-05: Auswahl von Internet-Gateways und VLANs im Berlin RoofNet. Jens
Müller. 35 Seiten.

28. SAR-PR-2007-06: Softwareentwicklung für drahtlose Maschennetzwerke – Fallbeispiel:
BerlinRoofNet. Mathias Jeschke, 48 Seiten.

29. SAR-SR-2007-07, NLE-SR-2007-88: Project Report: Anonymous Attestation of Unique
Service Subscription (AAUSS). Jens-Peter Redlich, Wolf Müller, 19 pages.

30. SAR-PR-2007-08: An Opportunistic Cross-Layer Protocol for Multi-Channel Wireless
Networks. Anatolij Zubow, Mathias Kurth, Jens-Peter Redlich, 5 pages. 18th IEEE
PIMRC, Athens, Greece, 2007.

31. SAR-PR-2007-09: 100% Certified Organic: Design and Implementation of Self-
Sustaining Cellular Networks. Nathanael A. Thompson, Petros Zerfos, Robert
Sombrutzki, Jens-Peter Redlich, Haiyun Luo. ACM HotMobile'08. Napa Valley (CA),
United States, Feb 25-26, 2008.

32. SAR-SR-2007-10, NLE-SR-2007-88: Project Report: Summary of encountered Security
/ Performance / Scalability problems with uPB and Wireless Thin Client Architecture.
Jens-Peter Redlich, Wolf Müller, 26 pages.

33. SAR-PR-2008-01:On the Challenges for the Maximization of Radio Resources Usage in
WiMAX Networks. Xavier Perez-Costa*, Paolo Favaro*, Anatolij Zubow, Daniel
Camps* and Julio Arauz*, Invited paper to appear on 2nd IEEE Broadband Wireless
Access Workshop colocated with IEEE CCNC 2008. *NEC Laboratories Europe,
Network Research Division, Heidelberg, Germany

34. SAR-PR-2008-02: Cooperative Opportunistic Routing using Transmit Diversity in
Wireless Mesh Networks. Mathias Kurth, Anatolij Zubow, Jens-Peter Redlich. 27th IEEE
INFOCOM, Phoenix, AZ, USA, 2008.

35. SAR-PR-2008-03: Evaluation von Caching-Strategien beim Einsatz von DHTs in
drahtlosen Multi-Hop Relay-Netzen - Am Beispiel eines verteilten Dateisystems. Felix
Bechstein. Studienarbeit.

36. SAR-PR-2008-04: Precaching auf mobilen Geräten. Sebastian Ehrich, Studienarbeit, 23
Seiten.

37. SAR-PR-2008-05: Towards using 900 MHz for Wireless IEEE 802.11 LANs -
Measurements in an Indoor Testbed. Matthias Naber, Moritz Grauel, Studienarbeit, 58
Seiten.

38. SAR-SR-2008-06, NLE-SR-2007-88: Project Report: Standardization / Competitor /
Free Software activities related to uPB and Wireless Thin Client – An Overview. Jens-
Peter Redlich, Wolf Müller, 13 pages.

39. SAR-PR-2008-07: XtSpaces - A language binding for XVSM. Diploma thesis. Christian
Föllmer, 101 Pages.

	SAR-PR-2008-08
	studienarbeit
	1 Introduction
	1.1 Definitions
	1.1.1 Anonymity

	2 Reputation Systems
	2.1 Eigentrust

	3 ARM4FS
	3.1 System Components
	3.1.1 Storage Provider
	3.1.2 Anonymous Reputation Provider

	3.2 Data Structures and Procedures
	3.2.1 Data Structures

	3.3 Protocols
	3.3.1 Client to Storage Provider
	3.3.2 Client to Anonymous Reputation Provider
	3.3.3 Anonymization Layer to Reputation System

	4 Challenges
	4.1 Sybil Attack
	4.2 Side Channels

	5 Bibliography

