
Peeling Away Layers of an
RFID Security System

Henryk Plötz1 and Karsten Nohl2

1 Humboldt-Universität zu Berlin
2 Security Research Labs, Berlin

Abstract. The Legic Prime system uses proprietary RFIDs to secure
building access and micropayment applications. The employed algorithms
rely on obscurity and consequently did not withstand scrutiny.
This paper details how the algorithms were found from opening silicon
chips as well as interacting with tags and readers. The security of the tags
is based on several secret check-sums but no secret keys are employed that
could lead to inherent security on the cards. Cards can be read, written
to and spoofed using an emulator. Beyond these card weaknesses, we
find that Legic’s trust delegation model can be abused to create master
tokens for all Legic installations.

1 Introduction

The “Legic Prime” RFID card is used for access control to buildings
throughout Europe including critical infrastructure such as military in-
stallations, governmental departments, power plants, hospitals and air-
ports. Despite its use in high security installations, access cards can be
cloned from a distance or newly created using a spoofed master token.
The Legic Prime cards use proprietary protocols and employ simple
check-sums, which have not previously been revealed. This paper dis-
cusses how the proprietary protocol and crypto functions were found us-
ing a combination of silicon reverse engineering and black box analysis.
Since the cards do not employ cryptographic encryption or authentica-
tion, knowledge of the proprietary protocol alone allows for cards to be
read, written to, and spoofed.
Legic’s Prime technology is unique among RFID access technologies in
several respects: The Prime chip is the oldest RFID card to use the 13.56
MHz band, it is the most mysterious for none of its protocol is docu-
mented, access to Legic hardware is closely guarded, and Legic cards
have long been the only ones supporting trust delegation to model orga-
nizational hierarchies. We find that due to its lack of public documenta-
tion, weaknesses in the cards have gone unnoticed for two decades. The
weaknesses allow for Prime cards to be fully cloned with simple equip-
ment and for the trust delegation to be circumvented, which enables an
attacker to create Legic tokens for all installations where the technology
is used.
Besides for access control, Prime cards are also used as micropayment
tokens in cafeterias, resorts and public transport. Money stored on the

Reader

Card
Host

Radio channel USB connection

Partially
emulate

Emulate

Sniff Sniff

Sand &
Scan

Fig. 1. Legic Prime system overview. Our analysis techniques are marked in light grey.

cards can be stolen from a distance. Legic’s Prime technology must be
considered insecure for its intended applications and should be replaced
with cards employing peer-reviewed cryptography in open protocols.
The paper makes three main contributions by showing that:
1. Reverse engineering is possible with simple tools even for undocu-

mented systems with multiple layers of obfuscation.
2. Legic Prime is insecure since attacks exists to clone tags and to spoof

chains of trust.
3. While the trust delegation model in Legic is insecure, the same con-

cept could be implemented securely using hash trees.
A general overview of the system that we worked with and our analysis
techniques are given in Fig. 1. We partly analyzed the USB protocol and
used that knowledge as a stepping stone to experimenting with the radio
protocol. Concurrently silicon analysis took place on the chip embedded
in the card.
The following section illustrates our two complementary approaches to
reverse engineering RFID systems. Section 3 documents the Legic Prime
card layout and protocol and points out several weaknesses. The concept
of a trust hierarchy is introduced in Section 4 along with a discussion
of why Legic’s implementation is insecure while secure implementations
are not hard to built.

2 RFID Reverse Engineering

Embedded computing systems such as RFID tokens often use proprietary
protocols and cryptographic functions. The details of the algorithms are
typically kept secret, partly out of fear that a system compromise will be
easier once its operation principles are known. We found that the Legic
Prime security system does not provide any inherent security beyond
this secrecy.
A necessary first step in the security assessment of a proprietary system
is reverse engineering of its functionality, which is achieved using one of
two methods: a) Reverse engineering circuits from their silicon imple-
mentation as the more cumbersome method that is almost guaranteed
to disclose the secret functions; b) Black-box analysis that can often be
executed faster but requires prior information about the analysed sys-
tem or lucky guesses. We employed both approaches in analyzing Legic
Prime.

Fig. 2. Layers of a silicon chip: transistor layer, logic layer and one of the interconnect
metal layers

2.1 Silicon Reverse Engineering

Disclosing secret algorithms from an RFID chip through reconstructing
circuits has been demonstrated before when the Crypto-1 cipher was
extracted from a Mifare Classic chip [5]. This project produced a suite
of image analysis tools that work on images of the silicon chips. These
images of the different chip layers are produced by polishing down the
chip – a micrometer at a time – and photographing with an optical
microscope. The tools then automatically detect recurring patterns in
images such as those shown left in Figure 2. These patterns represent
logic functions that are used as building blocks for algorithms similar to
instructions in an assembly language.
The tools further support semi-automatically tracing of wires between
the logic gates that disclose the chip circuit. In the case of Mifare Classic,
around five hundred gates (out of a larger chip) and the connections
among them were documented to disclose the encryption function [5]. In
case of Legic Prime, the entire tag only consists of roughly five hundred
gates, less than one hundred of which form a key stream generator. This
key stream generator and part of the protocol initialization (described
later in the paper) are detailed in Fig. 3. Reverse engineering the circuit
of the entire digital part of the Legic Prime chip took two weeks3.
The same reverse engineering techniques extend to any silicon chip in-
cluding smart cards and trusted platform modules. The effort scales with
the size of a chip; fully reverse engineering a microprocessor with millions
of gates, for example, seems impractical with the current tools. However,
security functions such as the on-chip encryption of smart cards are often
small separated entities that can be imaged and disclosed independent
from the rest of the chip. Currently the best protections against silicon
reversing are randomly routed chips that mix security and other func-
tionality, and chips of small feature sizes that require equipment more
expensive than optical microscopes for imaging.

3 The tools for silicon analysis (Degate) and the whole Legic Prime circuit can be
downloaded at http://degate.org/.

6543210 76543210B:A:

RAND1RANDInitialization

Operation

8-to-1 Mux

Output

Fig. 3. The Legic Prime key stream generator and initialization function.

2.2 Black Box Analysis

Complementary to silicon reverse engineering, tests are conducted on the
running system to add missing information. These two steps are roughly
equivalent to disassembling and debugging in the software domain.
Given a functioning system – consisting of host software, a reader and
cards – the goal of black box analysis is to learn system details by a)
observing the behavior of the system on its communication channels in a
passive manner, then b) trying to emulate parts of the system based on
the observations from the first step, and finally c) varying the emulation
by deviating from already observed behavior in order to observe new
behavior. This approach was previously used for reversing the Texas
Instruments DST40 cipher and protocol [4].
Our experimental setup consisted of a host PC running original Legic
provided software and custom scripts. We wrote the scripts based on
observations on the USB interface to replace functionality of the original
software without necessarily abiding to its constraints.
As hardware we used a genuine Legic reader, a Proxmark3 RFID tool [3],
and a logic analyzer. The Proxmark device was fulfilling multiple pur-
poses: In the simplest case it is a short range RFID sniffer that outputs
a demodulated carrier envelope signal on a debug test point to which we
connected the logic analyzer. This setup allows for the traces of the com-
munication between the original reader and original cards to be recorded
with the stock Proxmark firmware. We could then look at the recorded
waveforms on the PC for a rough visual, qualitative inspection and use
custom scripts for further analysis of the data with the goal of decoding
frames.
An initial survey showed that Legic had already published parts of its
lower level protocols when applying for standardization as ISO 14443 An-
nex F [1]. While the application was rejected the material is still available
online [2]. Using this information we were able to separate our trace into
frames from reader and card and decode each frame to a bitstream. Later
we were also able to write Proxmark3 firmware with the ability to receive
and send frames, both in reader and card emulation mode. Without the
ISO application document many of the modulation and encoding param-
eters would have had to be guessed. However, the parameter choices for
the Legic Prime protocols are straight-forward (see Section 3) and could
have been guessed with at most a few tries (long vs. short modulation
from the reader, modulation vs. no modulation from the card).

Replay. Legic Prime allows for transactions to be replayed without nec-
essarily understanding the protocol details. This is made possible by the
lack of a random number from the card side, which happily accepts any
past transaction. More importantly, from an attack perspective, transac-
tions can also be replayed to a reader since the random numbers involved
are weak. Replaying a transaction has an average success probability of
up to 10% and the replay can usually be tried several times (e.g. at a
door reader) until accepted (door opens).

USB protocol. To generate lots of similar RF traces for comparison we
first partly reverse engineered the USB protocol used between the Legic
host software and the Legic reader. The reader is connected to the host
using an FTDI USB-to-serial converter (with a custom vendor and prod-
uct id). We used usbsnoop for Windows to record all exchanges between
host and reader. We then used custom scripts to extract the serial com-
munications stream. The general frame format is similar to other Legic
readers for which we found documentation on the internet4: each frame
has a length byte, a body and a Longitudinal Redundancy Check (LRC,
simple XOR over all the bytes including the length byte). The length byte
does not count itself. When analyzing the USB communication we found
one command that always preceeded all other commands and seemed to
return the UID of the card in the field: 02 B0 B2. We designated this
command “GET UID” and wrote custom software to repeatedly (and
rapidly) send this command to the reader on its USB channel.

RF protocol: UID command. A single GET UID command will try
to enumerate cards of all supported protocols in the field: LEGIC RF,
ISO 14443-A and ISO 15693. Using our sniffing setup we looked at the
LEGIC RF portion of this sequence to understand the general layout
of the protocol. We have not investigated the remaining two protocols,
which are used by Legic’s Advant tags.

Even for the same card, different GET UID sequences looked very dif-
ferent. Each sequence starts with a 7-bit frame from the reader, which
seems to be mostly random, but always has the first bit set to 1. We
designated this frame “RAND“ since it looked like the initialisation vec-
tor of a stream cipher: For all transactions with the same RAND, the
sequence of reader commands is identical, while the sequences of card
responses are identical only for identical UIDs.

By comparing multiple traces and looking for the first and last modula-
tion observed from the card we found the following general structure in
the protocol: 7 bits from reader, 6 bits from card, 6 bits from reader, then
five repetitions of 9 bits from reader, 12 bits from card. This structure
was observed for a 256byte card (MIM256); a MIM1024 card receives 11
instead of 9 bits from the reader. We named the 7-6-6 part the ‘setup
phase’ and the remainder the ‘main phase’. The contents of the setup
phase only depend on the RAND frame. The remainder is always iden-
tical (within a card type; a MIM1024 card has one bit flipped in the
6-bit card response). So far the protocol looked like an authenticating
stream cipher, with weak initialization vector from the reader. The ran-

4 http://www.rfid-webshop.com/shop/product info.php/info/p318

LEGIC-Plug---Play-module.html/

dom numbers from the readers are not only short but also statistically
biased: 0x55 appears in roughly 1 out of 10 tries. Here, and in the fol-
lowing discussion, frames are represented as single integers transmitted
in LSBit-first order.

Since the GET UID sequence must contain the UID of the card we
XORed two traces from cards with different UID (but same RAND)
to learn about the order of transmission. We found that the first card
response in the main phase contained the first byte of the UID in the
lower 8 bits, and something else (probably a checksum) in the higher 4
bits. The second card response contained the second byte of the UID,
and so on5. Since there are only four bytes to the UID, but five data
transmissions in the main phase for GET UID, we assumed that the
fifth transmission would be some kind of checksum, most likely a CRC-
8, which we called the storage CRC.

In order to further test our hypotheses and learn more about the sys-
tem we implemented a card and a reader emulator which could replay
previously recorded frames. In the first attempts we replayed the sniffed
frames verbatim. This was made possible by the absence of any random
number from the card –a reader emulator can completely play back a
recorded transaction– and a weak random number from the reader –a
card emulator can completely replay certain transactions with ∼ 10 %
probability. Completely replaying frames worked flawlessly (as long as
the timing of the original trace was followed precisely), so next we ex-
perimented with changing single bits in the main phase of the replayed
traces, without touching the setup phase.

Flipping a single bit in the card responses in the main phase would
make the reader abort the session, clearly indicating the presence of a
checksum. Since we already knew that the data is transmitted in the
lower 8 bits, the checksum must be in the high 4 bits, most likely some
form of CRC-4, which we called the transport CRC. Since there are only
16 possibilities we opted for a quick brute force approach: Flip one bit
in the data section, then try all 16 flip variants on the CRC section to
find the variant where the reader would not abort the session. Using
this approach we found a table with 8 entries of 4 bits each that would
allow us to correctly fix the CRC for an arbitrary change of the data
section, given a trace with correct transport CRCs. This approach works
since CRCs are linear: CRC(a ⊕ b) = CRC(a) ⊕ CRC(b), under some
preconditions (see [7]).

With this table we were able to send arbitrarily modified card responses
(based on our initial guess to what the responses would mean) that were
accepted by the reader. The reader would still not accept the complete
UID, because of the checksum in the fifth byte. We attacked this byte in
a similar manner, yielding a table of 32 entries with 8 bits each, allowing
to spoof an arbitrary UID in the GET UID sequence. This validated our

5 Different versions of the official host software display the UID in different formats.
Older versions display the UID in order first byte, fourth byte, third byte, second
byte. This seems to relate to a structure in the UID: The first byte is a manufacturer
code, and the remaining three bytes are treated as a LSByte-first integer. We use
the transmission and storage order in this paper.

assumptions on the meaning of all the parts of the card responses and
further provides known keystream for all the UID data bytes.
From the CRC tables we could derive the used CRC polynomial: Since
the CRC is over known data with only a single bit set, the differences
between the different entries in the table differ only by the amount of
shifts in the CRC calculation. Whenever a 1-bit is shifted out, the CRC
polynom is XORed onto the state. By looking for these two properties
in our tables we found the transport CRC polynomial to be 0xc and the
storage CRC polynomial to be 0x63 (but with a reversed shift direction).
RF protocol: reading memory. Based on the simplicity of the proto-
col so far observed we formed the following hypothesis about the reader
commands: The GET UID sequence is not really requesting the UID
(e.g. such as anticollision ISO 14443) but simply reading the first 5 bytes
of memory. Each reader command in the GET UID sequence is a “read
byte x” command. Since the command is 9 bits, and 8 bits are necessary
to address all 256 bytes on a MIM256 card, that leaves 1 bit for the
command code, namely “read” in this case.
We verified this assumption by replaying modified frames with correct
timing: changing the first bit of the reader command would make the
card never respond, while changing any other bit or bit combination
would always lead to a response. This confirmed three things:
– The first bit is the command code and only a correct command code

will lead to a response. The other command, presumably “write”
must have another frame format.

– The remaining bits (8 for MIM256, 10 for MIM1024) are the address.
– The entire memory space can be read, with no restrictions (there is

always a response, no matter the address).
Using the recorded first command of the GET UID sequence (which we
now know is “read byte 0”), known keystream from its response and by
changing the address in that command, we were able to completely dump
the contents of any card; including unused and deleted segments.
RF protocol: key stream obfuscation. Next we sought to understand
a phenomenon that we encountered early on in the implementation phase
of the reader emulator: Not exactly following the timing of the recorded
traces would sometimes make the card not respond. We concluded that
the cipherstream generator must be continuously running, after the end
of the setup phase, and replaying a recorded frame with some offset
against the recorded timing would lead to a completely different frame
on the card side, after decoding. In the instances where the card would
not respond this changed frame was invalid. Since we know that the card
will always respond to a command with a ‘read’ command code we could
assume that the non-responding cases were those where the command
code bit was received different from the ‘read’ command code.
Following up on the assumption of the continuously running cipherstream
generator we leveraged existing known keystream to find new known
keystream. First we determined the clock of the generator to be around
99.1µs, which approximately matches the bit duration in card originated
frames. We did this by a simple sweep over the possible delays before the
first command in the main phase, and then sending a fixed command (all
1). Since the card responds if, and only if, the first bit of the received

and decoded command is a correct read command code we could deter-
mine the current output of the keystream generator at the start of the
command frame: Using our known keystream we found that the ‘read’
command code is 1, so when we got a card response for some delay value
we knew that the cipherstream at that point started with 0.
By repeating this experiment for many different delay values (while al-
ways powering the card down between two trials) we got a time series
that clearly showed the cipherstream output (with transitions only every
99.1µs). Using this method it is possible to use the card as an oracle to
generate cipherstream for any setup phase. From reverse engineering the
silicon chip we knew that the stream generator has only 15 bits of state,
so the stream repeats after 215 − 1 = 32767 bits. Reconstructing the
complete stream from the card responses would take approximately 14
hours (due to the wait times incurred by powering down the card). This
key stream can then be used to fully emulate a card or a reader without
knowledge of the key stream generator, which we gained from the silicon
chip.
By this point it is also clear that there is no key input to the stream
generator since the recorded stream is portable between any card and
any reader. We will no longer refer to it as an encryption (which it
is not due to a lacking key) but only obfuscation function. Other radio
protocols such as Bluetooth have similar mechanisms to enhance physical
radio properties, called whitening.

3 Legic Prime Protocol

The rejected ISO 14443 annex F describes the lower layer radio protocol
of Legic RF: Reader to card is 100% ASK with pulse-pause-modulation
(1-bit is 100µs, 0-bit is 60µs, pause is 20µs), card to reader is load
modulation on a fc/64 (≈ 212 kHz) subcarrier with bit duration tbit =
100µs (subcarrier active means 1-bit). The annex does not specify the
framing of card originated frames, merely stating that it is “defined by
the synchronization of the communication”. From our observations we
found this to mean that the card frame starts at a fixed time after the
reader frame (this time was measured to be ∼ 330µs, which approxi-
mately equals 3 tbit) and that the reader must know in advance how
many bits the card will send, since there is no explicit frame end indi-
cation. Most notably this also means that not sending a frame (e.g. due
to no card present, or card removed) is indistinguishable from sending a
frame of only 0-bits.
The protocol consists of two phases: setup phase and main phase. The
setup phase starts with the reader sending an initialization frame RAND
of 7 bits (in LSBit-first order) with the lowest bit set to 1. At this point
the obfuscation stream generator is started by setting LFSRA :=RAND
and LFSRB := (RAND� 1) | 1 and all further communications are
XORed with the current generator output. When no frame is being trans-
mitted the generator generates one new bit every tbit. When a frame is
transmitted the generator is clocked with the data bit clock (this espe-
cially applies to reader originated frames which can have bit durations

that are smaller than tbit). We found the generator initialization by
trying different obvious variants of assigning RAND to the generator
registers and comparing the output to the known obfuscation stream
output from the previous section. Knowledge of the generator and ini-
tialization made it possible to completely deobfuscate all recorded traces
of communication between the official Legic software, reader and card
and observe all the remaining protocol specifics.
The card responds to the RAND frame, after a wait time of 3 tbit, with
an obfuscated type frame of 6 bits. This frame is either 0xd for MIM22,
0x1d for MIM256 or 0x3d for MIM1024. The reader must wait at least
one tbit before sending its obfuscated acknowledgment frame of 6 bits.
This is 0x19 for MIM22 and 0x39 for MIM256 and MIM1024. After this
frame is sent the setup phase is complete and the main phase starts.
In the main phase the reader can send commands at any point in time.
Each command has an address field of either 5, 8 or 10 bits (for MIM22,
MIM256, or MIM1024 respectively). The following discussion only covers
the 8-bit-address case, which is the most common card variant.
There are two types of commands: Read and Write. A read command
consists of one bit command code 1, followed by the address. After a wait-
ing time of 3 tbit the card will respond with 12 bits: The first 8 bits are
the data byte from the transponder memory at the given address (LSBit
first), the next 4 bits are the transport CRC-4. The transport CRC-4 is
calculated with polynomial 0xc, initial value 0x5, and is calculated over
the command code, address and data byte.
A write command consists of the command code 0, the address, 8 bit
data and 4 bit transport CRC-4. The transport CRC is calculated as
above (just that the command code is now 0). If the write is successful,
the card will respond with an ACK: a single unobfuscated 1-bit. The
time until the ACK can vary, but will be approx. 3.5 ms.

3.1 Card Layout

The memory space of a Legic Prime transponder is separated into three
distinct physical zones: the UID (with its CRC), which is read-only, the
decremental field (DCF), which, taken as a little endian integer, can only
be decremented, and the remainder of the card, which can be freely writ-
ten to. The entire memory space can always be read from. There are two
variants for the logical organization of the card’s payload data: unseg-
mented media (with master token being a special case), which contain
exactly one segment, and segmented media, which can contain multiple
segments. The protection features (on a reader firmware level) for both
kinds of segments are essentially identical, and the headers are very sim-
ilar. For this reason the rest of the paper will only consider the segment
headers on segmented media, which now make up most of the market,
and will cover master token as a special case of unsegmented media.
The general layout of a segmented Legic Prime medium is shown in Fig. 4.
The remainder of the card that is not shown in the figure, starting at
byte 22, contains the payload segments.
The payload area is obfuscated with the CRC of the UID: All bytes,
beginning with byte 22, are XORd with CRCUID (address 4). Within

UID0 UID1 UID2 UID3 CRCUID DCFlo DCFhi 9F

FF 00 00 00 11 BCK0 BCK1 BCK2
BCK3 BCK4 BCK5 CRCBCK00 00

payload

...

Fig. 4. Legic Prime card layout of segmented medium, containing a unique identifier
(UID), decremental field (DCF), and a segment header backup (BCK) with its own
CRC

the payload area the different segments are stored consecutively and each
segment starts with a five byte segment header. This header consists of
– byte 0: lower byte of segment length, segment length includes the 5

bytes for the segment header
– byte 1, bits 0-3: high nibble of segment length
– byte 1, bit 6: segment valid flag, if this flag is not set, the segment

has been deleted
– byte 1, bit 7: last segment flag, if this bit is set, no more segments

are following
– byte 2: WRP, “write protection”
– byte 3, bits 4 through 6: WRC, “write control”
– byte 3, bit 7: RD, “read disabled”
– byte 4: CRC over the segment header

The different protection features are implemented in the firmware of all
official Legic readers. To this end the data portion of a segment usually
starts with the stamp of that segment, with the length of the stamp
contained in the WRC field. A reader will compare this stamp to an
internal database of stamps that it is authorized to operate on and then
behave accordingly: write access is only allowed if the reader is authorized
for that stamp. If the RD flag is set and the reader is not authorized
for the stamp, then it will not allow any read access to the segment
(including to the stamp). A reader will never allow write access to the
bytes protected by the WRP field. A reader emulator can ignore all of
these rules.
When writing a segment header, the official readers follow a special
backup procedure to ensure that the segment structure cannot be cor-
rupted by prematurely removing the card. Before changing a segment
header which is included in the existing segment chain (e.g. all segment
headers up to and including the first header that has the ‘last’ flag set),
the complete header, including the CRC, is copied to BCK1 through
BCK5, BCKCRC is set to the CRC over BCK0 through BCK5 (note
that BCK0 has not been written yet). Then BCK0 is written: bit 0
through 6 contain the number of the segment header (with 1 being the
first segment header, this limits a card to maximal 127 segments) and
bit 7 is a ‘dirty’ flag, which is set. Only after the backup area has been
written will the actual segment header be changed. As soon as the new
header is completely written, the backup area is invalidated by clearing

the ‘dirty’ flag. Should the write to the segment header be interrupted,
a reader will notice the flag next time when the card is presented and
restore the the original segment header and then clear the flag. This pro-
cedure guarantees that any single change to any header is always handled
atomically.

3.2 Weaknesses

Most protection functions are implemented in the firmware of the official
Legic readers. The only hard protections in the card are the read-only
state of bytes 0 through 4 (UID) and the decrement-only logic of bytes
5 and 6. Everything else on the card is freely read- and writable with
a custom reader that ignores the protection flags. For all applications
that do not explicitly check the UID it is possible to directly copy data
from one card to another, as long as one fixes the payload obfuscation
and CRCs (which both depend on the UID). Moreover there is no keyed
authentication involved anywhere, so a clean dump and full emulation of
cards are possible to trick even application that do check for the UID.
Since no keys are involved it is then also possible to spoof new, non-
existing cards, including master tokens. Spoofed master-tokens can sim-
plify attacks since with them it is not necessary to reverse engineer the
complete payload format of an application: one can simply use an ex-
isting, official reader for that application and make it believe that it is
authorized to work on the cards to be attacked.
Legic Prime poses an unusually large skimming risk, since, unlike most
other card types, there is no read protection. A reader can read any card
that is in its range. Because Prime was developed with read range in mind
and uses very low power due to its simplicity, skimming ranges above
what is common with ISO 14443 should be possible. The manufacturer
variously states up to 70 cm read range for their official readers.
We also observed that the reader would usually only do the absolutely
minimum changes necessary to modify the linked segment structure. For
example when deleting a segment it will only clear the ‘valid’ bit in the
segment header and not clear the segment payload. Also the backup area
is never cleared after use. This means that a custom reader can gather
much more data from a card than an official Legic reader: Most ‘deleted’
segments will still be intact and through the backup area there is a trace
that shows which segment header was changed last.

4 Legic Trust Delegation

4.1 Card Hierarchy Concept

Legic systems are designed as a replacement for mechanical locking sys-
tems and implement not only their functional properties but also the
organizational concepts of locking systems. The cards are organized in
a hierarchy that represents the distribution path from Legic to the cus-
tomer as well as the permission hierarchies within the customer’s orga-
nization.

5B Legic/Legic license partner

5B 01 5B AD Systems integrator

5B AD
CO

Customer5B AD
01

5B AD
CO DE

5B AD
CO 01

Customer divisions/sites/etc

Example
Corp.

ACME
Ltd. ...

...

... Berlin
site

Bonn
site

...

...

...
... ...

Fig. 5. Legic card trust delegation: The length of a card’s stamp encodes its level in
the hierarchy.

Cards that are higher in this virtual hierarchy can produce all cards
below them. For example, a distributor can generate master tokens for
all of its customers, even after the system was fully deployed; and Legic
itself can generate tokens for all distributors. By delegation of trust, Legic
can clone any card in existence or create new cards for any system since
all cards are part of the same trust tree. While it is arguable whether
a single company should have this level of control over its customers’
systems, the trust tree implementation of Legic Prime allows for more
concerning attacks: Anybody can move to the highest level of the tree
thereby gaining control over all Legic Prime systems.

4.2 Legic Prime Implementation

Legic Prime distinguishes at least three types of master token:

– General Authorization Media (GAM), to create further master to-
kens

– Identification Authorization Media (IAM), to create segments on
cards

– System Authorization Media (SAM), to transfer read/write autho-
rizations to readers

Each node in the trust delegation hierachy has an identifier which is
called the stamp (sometimes also “genetic code”). When creating a child
node at least one byte is appended to the stamp, so nodes that are farther
down in the hierarchy have longer stamps, see Fig. 5 for an example
hierarchy6. Authorization decisions are made by a prefix match: A reader
that is authorized to read segments with stamp 5B AD is also authorized
to read segments with stamp 5B AD C0.

6 The stamp 5B AD C0 DE was chosen as a fictional example. Any resemblance to any
real-world stamps is purely coincidental.

Creation of sub-tokens is controlled by another bit: Organization Level
Enable (OLE). Only when this control bit is set is a master token au-
thorized to create sub-tokens. A GAM (with OLE=1) can create any
non-GAM master token with the same stamp as its own, or any mas-
ter token with a stamp that is longer than its own and has the same
prefix. IAM and SAM (both with OLE=1) can create IAMs and SAMs,
respectively, with a stamp that is longer than their own and has the same
prefix.

A master token is a special case of an unsegmented Legic medium which
uses 22 bytes of data (exactly fits a MIM22 card, but can be written
to larger media). The token type is encoded in the DCF, which has
two main consequences: a master token cannot at the same time be
a normal segmented medium and there are certain restrictions when
writing master tokens to original Legic cards. For easier experimentation
we performed the analysis of the master token structure with our card
emulator which was implemented on the Proxmark and which allowed
free change of the DCF. We first emulated the verbatim contents of a
real master token and then performed incremental changes to the data,
followed by a read using the official Legic software, in order to determine
the meaning of the different fields.

For master tokens the header is interpreted as follows:

– DCFlo (byte 5), bit 7: OLE, organization level enable flag

– DCFlo, bits 0 through 6: token type: 0x00-0x2f IAM, 0x30-0x6f
IAM, 0x70-0x7f GAM

– DCFhi (byte 6): must be 0xfc - (stamp length), indicates level in
the hierarchy

– byte 7, bits 0 through 3: WRP, contains the stamp size

– byte 7, bits 4 through 6: WRC, on SAM cards contains the number of
stamp bytes that will be stored in the internal authorization database

– byte 7, bit 7: RD, not set for master token

– bytes 8. . .: stamp, variable length

– byte 21: CRC-8 over UID0...3, DCFhi, DCFlo, byte 7, byte 8. . .

Note that this is the same general format as with unsegmented non-
master token media (though we’ve only seen one such medium to date).
For all non-master token the highest DCF value observed was 0xEA60

which is less than the minimal DCF value for a master token (0xF000
for an IAM in level 12), so this field alone gives the distinction between
master and non-master tokens. There might be other interpretations for
the DCF: We didn’t perform a comprehensive search over the DCF space,
since the Legic software is rather picky and crashes when it encounters
an unexpected DCF value.

The multiple possible values for the same master token type in the same
hierarchical level can perform different functions. Setting DCFlo, bits 0
through 6 to 0x31 gives a SAM63 in Legic lingo, while setting it to 0x30

gives a SAM64. SAM63 is also known as “Taufkarte”, or launching card,
while SAM64 is an “Enttaufkarte”, or delaunching card. This refers to
the processes of storing and deleting the authorization for a stamp in a
reader which are known as “taufen”/launch and “enttaufen”/delaunch,
respectively.

4.3 Weaknesses

Due to the way the DCF field is used, an existing master token cannot be
freely modified and indeed can only be changed into a lower level master
token. However, no such restriction applies when writing to a fresh card
(or when using a card emulator). On a new card the DCF field is set to
0xFFFF so it is possible to write any master token to such a card. Within
the normal Legic system there are protections in the reader firmware
that prevent creating a master token without the proper authorization,
but no such mechanism applies when using a custom reader.

This means that master tokens can be freely copied to empty cards, and
indeed freely generated for any desired stamp value. We also found that
the prefix match for IAM and SAM is unrestricted: We have created an
IAM of stamp length 0, which will prefix-match any stamp value. This
Uber-IAM can authorize an official reader to read and write segments
with arbitrary stamps. It is, however, not possible to launch a reader
with a SAM with stamp length 0, since WRC must be ≥ 1 for a launch
process to take place. Also GAMs with stamps shorter than 2 bytes seem
to be specifically locked out in the host software: when trying to load
such a GAM, the software will stall for a few seconds and then pretend
that the card was empty.

The problem that master tokens can be cloned is inherent in the work
flow of the Legic system (and therefore most likely also present in Legic
Advant): In order to use a master token to create a new segment, first the
master token (an IAM or GAM) is presented to the reader, which then
stores the authorization information internally. Afterwards the reader
will allow, until a configurable timeout occurs, to create segments on
normal cards with this stamp or a longer stamp. The master token is
not inherently necessary for the segment creation: by the time the seg-
ment is actually being created, the master token can long be back in
a safe. This clearly shows that the complete ‘essence of being’ of that
master token has been transferred into the reader, which means it’s pos-
sible to read out and store all the data that is necessary to perform the
functions that the master token allows. In the case of Legic Prime this
only includes the stamp value and token type, but even if there was cryp-
tographic key material in the master token, as might be the case with
Legic Advant, it must be exportable. This export process cannot use any
strong authentication, since the reader and the token share no previous
association with each other, and the user is not prompted for a PIN or
similar.

4.4 Improvement Potential

The concept of organizing access credentials in a trust hierarchy is not
flawed in itself. In fact, the same idea is used very successfully –and
securely– in virtual credential systems such as Microsoft’s Active Direc-
tory service. For an implementation of trust delegation to be secure, the
delegation process has to be one-way in the sense that only higher level
entities are trusted. Legic’s current implementation clearly is two-way as

stamps can be shortened and lengthened at will, thereby moving up and
down the trust hierarchy.
A sensible system would use a one-way function such as a cryptographic
hash function to assure that the access credentials of tokens cannot be
elevated. The stamp of a lower level card would be created as

stampchild = Hash
(
stampparent,metadatachild

)
where the metadata is used to distinguish several child cards. Going one
step beyond the functionality of the Legic Prime system, these stamps
would not be exchanged in cleartext but rather used as secret keys in a
strong encryption function such as 3DES or AES, which are available on
several modern RFID tags. The idea of using hash trees for authentica-
tion hierarchies has already been discussed as early as 1988, in [6].

5 Conclusion

Systems must not rely on obscurity but should rather employ cryptog-
raphy as a base for security functions. The Legic Prime security chain
breaks in two places where cryptography is missing. First, cards and
readers cannot authenticate each other, which allows an attacker to as-
sume either role and read, write, or spoof cards and readers. Secret keys
and a simple encryption or hash function would mitigate these problems.
The second place where the lack of cryptography enables attacks against
Legic systems is their unique trust delegation model. Since no secret
information exists that could distinguish higher permission from lower
levels, any of the levels can be spoofed. The idea of having secure trust
delegation, however, models many organizations’ needs very well, which
may have contributed to the popularity of Legic cards. Creating a system
with secure delegation features is left for further research and develop-
ment.

References

1. Article “ISO14443” in the openpcd wiki, section “LEGIC RF”, revi-
sion as of 00:32, 6 september 2010, http://www.openpcd.org/index.
php?title=ISO14443&oldid=193#LEGIC_RF

2. ISO 14443 Part 2 Amendment 1, dRAFT 2nd P-DAM BALLOT
TEXT

3. PROXMARK III community, http://www.proxmark.org/
4. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A., Szydlo,

M.: Security analysis of a cryptographically-enabled RFID device. In:
USENIX Security Symposium (2005)

5. Nohl, K., Evans, D., Starbug, Ploetz, H.: Reverse-engineering a cryp-
tographic RFID tag. In: USENIX Security Symposium (2008)

6. Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for
access control. Information Processing Letters 27(2), 95–98 (February
1988), http://dx.doi.org/10.1016/0020-0190(88)90099-3

7. Stigge, M., Plötz, H., Müller, W., Redlich, J.P.: Reversing crc–
theory and practice (2006), http://sar.informatik.hu-berlin.de/
research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf

