
Local threads
A programming model that prevents data races

while increasing performance.

Tobias Rieger

May 12, 2014

Abstract

Data races are evil and must be prevented12.
A data race is defined as two threads accessing the same memory location at the same time
with one writing. This leads to four ways of preventing data races: Single threaded program-
ming, making sure threads use distinct memory locations, using mutual exclusion to prevent
concurrency or not modifying the values.
This paper proposes a new programming model that prevents data races while improving per-
formance compared to the common model of sequential consistency under the condition that no
data races exist. This paper uses C++ for code examples3. The principles, however, also apply
to other imperative programming languages such as C, Python and Java.

1Boehm, “How to Miscompile Programs with "Benign" Data Races”.
2Boehm, “Position Paper: Nondeterminism is Unavoidable, but Data Races Are Pure Evil”.
3#includes, the required main function and the std namespace are intentionally left out.

1

1 Local thread definition

Local threads are threads that use thread_local

storage (TLS) for every variable. TLS is sup-
ported in C++11 through the storage mod-
ifier thread_local4. A variable with the
thread_local modifier exists once per thread,
each thread accessing its own separate version.
For local threads this behavior is the default
for all global variables. Consider example 1:

Example 1: Race from zero to non-zero

1 int var = 0;

2 void inc{

3 for (int i = 0; i < 10000; i++)

4 var ++;

5 }

6 void dec{

7 for (int i = 0; i < 10000; i++)

8 var --;

9 }

10 int main (){

11 async(inc);

12 async(dec);

13 wait_until_threads_finished ();

14 return var;

15 }

There are three threads involved in this exam-
ple: The main thread and the two threads cre-
ated by async5. In the C++11 memory model
this would be a data race since var is modi-
fied in two threads at the same time and thus
this would be an ill-formed program. While no
guarantees can be made about the behavior of
such a program the typical effect is that even
though var starts at 0, is incremented 10000
times and decremented 10000 times, var may
have a seemingly random value at the end, for
example −2131832621.

When using local threads, however, this pro-
gram is completely legal, because var is auto-
matically thread_local and exists three times,
once for each thread. Consequently each thread
accesses its own copy6 of var and no two threads
access the same variable. Therefore no data race

4It will turn out later that the thread_local keyword is insufficient for local threads, so this does not
impose a limitation on the languages local threads can be applied to.

5For C++ experts: Assume for these examples that the issue of the destructor of the future returned
by async blocking until the thread finishes does not apply and that the compiler always chooses the
launch::async policy.

6The starting value of the thread_local variable could be either the value defined at program start (as
done by C++11) or the value of the variable of the creating thread. In this example it makes no difference.

Tobias Rieger 2

exists in this program. The first thread created
by async counts its var up to 10000, meanwhile
the second thread counts its different var down
to -10000. Finally the main thread returns its
unmodified version of var with the value of 0.

Local threads always automatically prevent all
data races since no two threads can ever7 access
the same memory location, which is a precondi-
tion for data races. However, this introduces
a problem, because now threads are not able
to communicate through shared memory any-
more. To solve this problem the keyword sync

is introduced. The sync keyword revokes the
thread_local nature of the global variable (so
there is only one variable for all threads) and
also adds mutual exclusion for the sync-modified
variables similarly to atomic in C++. Mutual
exclusion means that no two threads can access
a variable at the same time. Typically this be-
havior is implemented using a mutex, but may
also be generated by special assembler instruc-
tions without an actual mutex.

Local threads therefore make sure that all vari-
ables are either thread_local or properly syn-
chronized and thus data race free without the
need of manual synchronization by the program-
mer. It needs to be possible to manually lock the
implicit mutex of one or more sync variables8

though to implement for example a compare-
and-swap-function and complex data structures.
In the following examples a sync_lock function
is used that takes an arbitrary number of sync

variables and locks their mutex.

The mentioned C++ keyword thread_local is
insufficient for local threads in two aspects.
First it is only a storage specifier (such as
static, register and extern), not an access spec-
ifier (such as private, protected and public).
It only specifies how a variable is stored, not
who can access it. A thread can access an-
other thread’s thread_local variable, provided
it somehow gets a pointer or reference to that
variable or just guesses the address. For local
threads this must be disallowed, resulting in un-
defined behavior9 if bypassed10. The other in-

7It is possible to attempt to access any memory location in C++. Doing so with another thread’s
thread_local copies would result in undefined behavior.

8In C++ atomics cannot be locked. Therefore sync variables can only be implemented as atomics if
locking of the implicit mutex is not required.

9The term “undefined behavior” comes from the C++ standard and means that any behavior is legal and
no guarantee can be made.

10In C++ it is not possible to prevent code from attempting to access arbitrary memory locations. In some
other languages such as Java this problem does not occur.

Tobias Rieger 3

sufficiency is the lack of thread_local dynamic
memory. In the C++11 standard it is not pos-
sible to allocate memory with the new operator
that is thread_local11. Dynamic thread_local

memory needs to be added in order to use lo-
cal threads effectively. To be able to compare
the performance of local threads to established
forms of programming the established models
will be introduced.

2 Established memory models12

2.1 Strict sequential consistency (S-SC)

Sequential consistency seems to be the dominat-
ing memory model as of today13. It is the only
memory model for Java and the default mem-
ory model for C++11. Sequential consistency
requires that the code needs to appear to exe-
cute in the order it was written in with some
interleaving for threads. Sequential consistency
is generally not used in its strict form, because
it is very inefficient. Consider the following ex-
ample:

Example 2: Optimization potential

1 int va , vb;

2 int foo (){

3 va = 1;

4 vb = 6;

5 va ++;

6 vb --;

7 return min(va , vb);

8 }

This code has some optimization potential. For
one the va = 1 and va++ could be combined to
va = 2 and the vb = 6 and vb-- to vb = 5. Ad-
ditionally the minimum of 2 and 5 is 2, so the
call to min (returning the minimum of va and
vb) could be optimized away as shown in the
following example:

11The Windows API includes the functions TlsAlloc, TlsGet, TlsSet and TlsFree since Windows XP
that do implement dynamic thread_local memory.

12If you are very familiar with the various versions of sequential consistency you may skip the section on
established memory models (since they do not contain new information) and continue reading “Opti-
mizations in local threaded sequential consistency” on page 10.

13Other memory models such as causal or eventual consistency memory models could also be supported by
local threads.

Tobias Rieger 4

Example 3: Faster, more elegant and wrong

1 int va , vb;

2 int foo (){

3 va = 2;

4 vb = 5;

5 return 2;

6 }

It is possible to tell that this optimization is not
sequentially consistent by using a debugger or
other thread to monitor the value changes of
va and vb. One could see that the assignments
va = 1 and vb = 5 are never executed. Addi-
tionally, if the value of va would be changed to 9
by a debugger or other thread during the assign-
ment to vb, the return value would change from
2 to 5 in the original code, but it would stay 2 in
the optimized code. Optimized code returning a
different result than the original code is not cor-
rect, thus this transformation is not legal in a
strictly sequential consistency model. One may
object that looking at or changing the variable
va creates a data race, which is correct. S-SC
does not forbid data races though, so it is le-
gal to do so. A system running with the S-SC
model needs to work correctly even in the pres-
ence of data races. This can be achieved by not

reordering any code and using memory barriers
to synchronize every memory access. Such a sys-
tem would be very slow and almost impossible
to optimize and thus is generally never imple-
mented.

2.2 Single threaded sequential
consistency (ST-SC)

While understanding why such optimizations
are not correct, one may feel that they should
be correct. A much better14 system is sin-
gle threaded sequential consistency (ST-SC). It
adds the rule that only a single thread may be
used. In this model the above optimizations be-
come correct, because it is impossible to tell if
the optimization has been done or not. A second
thread or debugger could tell the difference, but
different threads have been explicitly forbidden.
Furthermore a debugger is an activity that is
not part of the one and only allowed main thread
and thus forbidden. The only observable actions
of foo are the change of the variables va and vb

and the return value of foo15, which are identical
between the original and the optimized version
of foo, thus making the optimization legal. Now
consider a less commonly seen optimization:

14From an optimization possibility point of view.
15One may object that one could measure the run time of the function and figure out if the function executes

faster than it should. However, the point of optimizing code is to make it run faster, so this effect is
intended.

Tobias Rieger 5

Example 4: Protected

1 int var;

2 mutex varmut ;

3 void moo (){

4 varmut .lock ();

5 var ++;

6 varmut . unlock ();

7 }

Here a mutex varmut is used to protect the ac-
cess to the variable var. Remember that a sin-
gle threaded environment is used, so there is
no other thread that can be mutually excluded.
Mutexes do not seem to make sense in a sin-
gle threaded environment. However, common
functions, operators and objects such as printf,
cout, malloc, new and shared_ptr are synchro-
nized using some form of mutual exclusion, be-
cause they need to be thread safe. Not all en-
vironments and libraries offer different imple-
mentations for single- and multithreaded situ-
ations. Thus being able to optimize synchro-
nization mechanisms away is important for sin-
gle threaded performance and reduction of code
duplication and programming effort. On a first
attempt one may just remove all mutex related

code. However, if varmut is already locked be-
fore moo is called, it would result in a deadlock
(which interestingly single threaded applications
are able to do). A deadlock and increment-
ing var are not the same result, thus removing
all mutexes is not correct16. If reentrant mu-
texes17 were used, just removing all mutex re-
lated code would be correct, since reentrant mu-
texes never have any effect in a single threaded
environment. But even non-reentrant mutexes
may be optimized by implementing them with
simple boolean variables and normal memory
accesses instead of the usually more expensive18

synchronizing instructions. Another interesting
optimization is to move var++ out of the criti-
cal section. This may seem odd, since varmut is
meant to protect var, which is defeated by mov-
ing var out of the varmut.lock-varmut.unlock

area. However, there is no other thread to syn-
chronize with. Moreover, moo has one of two
effects: It either increments var or it deadlocks.
It is impossible to tell if var was incremented
before or after a deadlock, since the only legal
thread that could figure it out is deadlocked, so
it does not matter when var is incremented.

16For an example why one would insist on producing a deadlock consider a nuclear power plant controller
application that rather deadlocks than making the wrong decision.

17Reentrant mutexes are those that may be locked repeatedly by the same thread. The idea is that if a
thread already locked a mutex, locking it again can automatically be allowed.

18This is interestingly not as often the case as one might expect.

Tobias Rieger 6

2.3 Data race free sequential consistency
(DRF-SC)

While the optimization possibilities for single
threaded code are astounding, it is believed for
some time now that its performance will not
increase significantly in the future19. When
more performance is required multiple proces-
sors (cores) need to be utilized by multithreaded
code. This also changes the memory model,
since ST-SC does not allow multiple threads,
while S-SC allows multiple threads, but does not
deliver the required performance. The problem
is that unknown threads20 may read or write any
variable at any time, thus making optimizations
near impossible. In data race free code, how-
ever, one can tell if and when a variable will
be accessed, because it must be protected by
some mutual exclusion mechanism. Mutual ex-
clusion mechanisms and protected variables may
therefore not be reordered to preserve sequential
consistency of those variables. The optimization
rules for DRF-SC state that code cannot move
out of mutexes anymore, but can still move into
mutexes21. Consider the following example:

Example 5: Mutex optimizations

1 int var;

2 mutex varmut ;

3 void lu (){

4 var = 1;

5 varmut .lock ();

6 varmut . unlock ();

7 var = 2;

8 }

In this example var is needlessly being assigned
twice. The first assignment should be optimized
away. Optimizing across mutexes is usually in-
correct, since mutexes potentially allow another
thread to look at the variables without produc-
ing a data race, in which case sequential consis-
tency must be maintained. Using the rule that
code can move into the mutex, however, both
assignments can be put into the critical section
and then the first assignment can be eliminated:

19Sutter, “The free lunch is over - A Fundamental Turn Toward Concurrency in Software”.
20A compiler may not see the whole code because source files may be compiled separately or libraries may

be linked to the program.
21Moving code into critical sections is legal but not advisable since one wants to keep the time of locking a

mutex to a minimum to allow for concurrent execution. Having all but one thread wait to get a mutex
defeats the purpose of multithreading.

Tobias Rieger 7

Example 6: Mutex optimized

1 int var;

2 mutex varmut ;

3 void lu (){

4 varmut .lock ();

5 var = 2;

6 varmut . unlock ();

7 }

One may get the idea that this optimization is
incorrect since the assignment var = 1 has been
removed. Also varmut may have been locked,
stopping the thread executing lu at the exact
position where the assignment of 1 to var should
have happened and the assignment of 2 has not
happened. To attempt to proof that the above
optimization is incorrect a test function can be
written:

Example 7: Challenge

1 void lutester (){

2 var = 0;

3 varmut .lock ();

4 async(lu);

5 while (var != 1){

6 // wa i t u n t i l l u changes var to 1
7 }

8 varmut . unlock ();

9 }

The function lutester sets var to 0, locks
varmut, starts a thread executing lu and waits
for var to change to 1. Meanwhile the unop-
timized function lu will set var to 1 (allowing
lutester to continue), then get stuck on lock-
ing varmut. Then lutester’s thread continues
to unlock varmut which lets both threads finish.
If the optimized version of lu is used instead, var

will not be set to 1 and both threads get stuck,
creating a deadlock. So this was obviously not
a sequentially consistent transformation. The
reason for that is that the example does not not
obey the only restriction imposed in DRF-SC,
which is to not write data races (if you did not
see the data race immediately consider switch-
ing to local threads where this mistake cannot
happen). In the above code, var is read in the
while loop, meanwhile it is written inside lu.
This is a read-write data race, making the pro-
gram ill-formed and thus voiding (among other
things) the guarantee of sequential consistency.

To fix a data race on an integer, atomic22 seems
an appropriate choice, so one can change the
declaration of int var to atomic<int> var. In
the lu function variable var cannot be moved
into the mutex anymore, because every access
to var is now protected by mutual exclusion,
which may not be reordered. So now two as-

22Variables declared atomic are automatically accessed in a mutually exclusive way. This is typically im-
plemented more efficient than actually having, locking and unlocking a mutex. In C++11 only primitive
data types can be declared atomic, including arrays.

Tobias Rieger 8

signments to var are required. Additionally, in
lutester before making var atomic in the while

loop, var may have been register promoted23.
So even if lu had changed var to 1, lutester

may not have noticed since only the memory of
var changed, not the register. This optimization
was legal, because no other thread could change
var, because that would be a data race, which is
forbidden. Now, because var is accessed mutu-
ally exclusively, it is not possible to keep var in
a register, instead it needs to be reloaded from
memory every time, because it may have been
changed by another thread. Without the data
race the code again behaves sequentially consis-
tent, but fewer optimizations are possible. Con-
sider another example24:

Example 8: Not obvious

1 int va = 0, vb = 0;

2 void Fa (){

3 if (va != 0)

4 vb ++;

5 }

6 void Fb (){

7 if (vb != 0)

8 va ++;

9 }

The functions Fa and Fb run concurrently. First
note that this code does not contain a data race.
Since va and vb are both 0, the function Fa reads
only va, while Fb reads only vb. Since the code
is data race free, all optimizations must be se-
quentially consistent. A possible optimization is
speculative execution.

Example 9: Data race insertion

1 void Fa (){

2 // same op t im i z a t i o n f o r Fb
3 vb ++;

4 if (va == 0)

5 vb --;

6 }

First the work is done, then, if it was wrong
to do so, the mistake is undone. Similar op-
timizations are known as lock free algorithms.
This would be a legal optimization in ST-SC,
however, in DRF-SC this optimization creates a
data race25. Fa as well as Fb now access va and
vb concurrently. When executed at the same
time Fa will increment vb while Fb increments
va. Then they see that their speculative execu-
tion paid off, since they do not need to undo it,
since both va and vb are not 0. The problem

23Register promotion means to keep a variable in a CPU register instead of in memory. This speeds up
execution.

24Example from "atomic Weapons: The C++ Memory Model and Modern Hardware" 2013-02-11 H. Sutter
25This is not necessarily a problem, because in assembler code it is possible to write benign data races,

which is not really possible for C++ code.

Tobias Rieger 9

is, that the result is incorrect, va and vb ending
up with the value 1 is impossible in the orig-
inal code. Thus this optimization is not legal
in DRF-SC. The above examples show that the
switch from ST-SC to DRF-SC made some op-
timizations illegal, thus decreasing performance,
which may or may not be compensated by uti-
lizing multiple cores or processors. Still one may
argue that DRF-SC is optimal since it keeps the
shared variables in sequentially consistent order
while allowing optimizations on non shared vari-
ables26. I will now return to local threads to
show that it can be done better.

3 Optimizations in local threaded
sequential consistency

The precondition of local threaded sequential
consistency (LT-SC) is that only local threads
are used, which use thread_local storage by
default and mutual exclusion when specified
with sync. Traditional non-local threads with-
out the limitation of not being able to access
other threads’ data are not allowed in LT-SC.

There is no rule not to write data races since
it is inherently impossible27 to do so when us-
ing local threads. The optimization rules are
similar to those for DRF-SC. Accesses to sync

variables as well as the sync_lock function are
not allowed to be reordered to preserve sequen-
tial consistency, but everything else can be op-
timized. The previously mentioned limitations
of DRF-SC, however, do not apply to LT-SC.
While DRF-SC cannot reorder around mutexes,
LT-SC can. Consider the following example:

Example 10: Locked

1 sync int va;

2 int vb;

3 void mo (){

4 sync_lock (va){

5 vb *= 2;

6 va = vb * vb;

7 }

8 }

Note that va is a sync variable and therefore
has an implicit mutex28 associated with it while
vb is a thread_local variable. The function

26The error in this argument is that DRF-SC cannot tell which mutex protects which variable, so it as-
sumes that all variables are protected by all mutexes, which results in unnecessary restrictions in possible
optimizations.

27It actually is possible to produce data races by accessing another threads local storage or using a debugger.
This is not allowed in the LT-SC model.

28The mutex may or may not be implemented by an actual mutex. In this case assembler instructions
similarly to an atomic<int> would be sufficient.

Tobias Rieger 10

sync_lock will acquire the implicit mutex for va,
execute the code inside the sync_lock and re-
lease the mutex. To optimize this code the time
the mutex is held can be minimized, which max-
imizes concurrency and thus performance. Even
though vb is inside a mutex, sync_lock clearly
states that it protects va and not vb, which can-
not be accessed by other threads. Therefore vb

can be moved out of the mutex protected area.

Example 11: Unlocked

1 sync int va;

2 int vb;

3 void mo (){

4 vb *= 2;

5 // l e t r be a r e g i s t e r
6 r = vb * vb;

7 sync_lock (va){

8 va = r;

9 }

10 }

The calculations have been moved out of the
lock and only an assignment remains. There-
fore the synchronization is minimized. It turns
out that LT-SC can do all ST-SC transforma-
tions except that it needs to keep accesses to
sync variables and the sync_lock function in or-
der and cannot optimize the implicit mutexes
away. Note that local threads can not prevent
all errors. Consider the following example:

Example 12: What to do?

1 sync int var = 0;

2 void inc (){

3 for (int i = 0; i < 10000; i++){

4 var = var + 1;

5 }

6 }

7 int main (){

8 async(inc);

9 async(inc);

10 wait_for_threads_to_finish ();

11 return var;

12 }

Local threads make sure that this program is
properly synchronized. However, the program
may not do what the programmer intended it to
do. A programmer may assume that the pro-
gram always returns 20000, but in fact it may
return any number between 10000 and 20000
inclusively (but no other numbers like in the
first example). Consider one thread running
first, incrementing var to 9999, then reading
the 9999, incrementing it to 10000 and then get
preempted before writing the changed var back.
The other thread runs to completion, increment-
ing the 9999 to 19999. Finally the first thread
finishes writing its 10000. The final result is only
10000, not 20000. This is known as the lost up-
date problem which is a determinacy race. In
this case it is a logic error, which cannot be

Tobias Rieger 11

prevented29. The program does exactly what
the code says it should do, it just may not do
what the programmer wanted. The program has
no way of knowing if it was intended to return
20000 or any number between 10000 and 20000
(which I intended it to do, so it may actually do
exactly what it is meant to do, depending on the
perspective). To fix this problem one would ei-
ther use sync_lock or var++, which prevent this
lost update.

4 A model for comparing memory
models

Comparing memory models seemed unnecessary
for programmers before LT-SC. If an applica-
tion is single threaded choose ST-SC, for mul-
tithreaded applications choose DRF-SC. Now
that LT-SC is an option one needs to decide
if DRF-SC or LT-SC is to be preferred. Ad-
ditionally, since ST-SC and LT-SC have the
same optimizations in case no sync variables are
used (which are unnecessary in single threaded
mode), one could always pick LT-SC regardless
of threading concerns. Additionally the future
may bring more memory models to choose from.
Thus an objective metric to compare memory
models is needed. The core problem is prevent-
ing data races. Just letting the system deal with

it by choosing S-SC is not an option from a per-
formance point of view. There are four precon-
ditions for data races: Two threads, concurrent
access, same memory location and one thread
modifying data. This definition directly leads
to the four ways to prevent data races: Allow-
ing only one thread, mutually excluding concur-
rent access, keeping memory locations disjunct
for all threads and not allowing modifications.
Every variable must have at least one of these
DRF strategies at any time. A memory model
should support all of the above strategies on a
per variable per logical time frame basis. Note
that these strategies may change over time (ex-
ample in DRF-SC):

29Boehm, “Position Paper: Nondeterminism is Unavoidable, but Data Races Are Pure Evil”.

Tobias Rieger 12

Example in DRF-SC:

Example 13: DRF strategy change

1 int var;

2 mutex mvar;

3 void inc (){

4 for (int i = 0; i < 10000; i++){

5 mvar.lock ();

6 var ++; // l o c k r e q u i r e d
7 mvar. unlock ();

8 }

9 }

10 int main (){

11 async(increment);

12 async(increment);

13 wait_for_threads_to_finish ();

14 return var; // l o c k not r e q u i r e d
15 }

In LT-SC the example would look like this:

Example 14: Local thread imperfection

1 sync int var;

2 void inc (){

3 for (int i = 0; i < 10000; i++){

4 var ++;

5 // l o c k r e q u i r e d and
6 // au t oma t i c a l l y a c qu i r e d
7 }

8 }

9 int main (){

10 async(increment);

11 async(increment);

12 wait_for_threads_to_finish ();

13 return var;

14 // au t oma t i c a l l y a c q u i r e s l o c k
15 // f o r var , which i s not
16 // r equ i r ed , but cannot be
17 // avo ided by the programmer
18 }

Tobias Rieger 13

In this example two threads increment the same
variable. To prevent a data race a mutex is
locked, either explicitly for DRF-SC or implic-
itly when accessing a sync variable for LT-SC.
Note that while var is a shared variable inside
inc, in the main function it is not shared any-
more. Inside the inc function mutual exclusion
is used to prevent data races while inside the
main function single threaded execution is uti-
lized to prevent a data race.

The data race prevention strategy changes over
time and one can imagine that a more sophis-
ticated program might change its DRF-strategy
multiple times for various variables. The DRF-
strategy needs to be part of the type system
to prevent accidental data races, however, since
in C++ data types do not change over time30,
changes can not be expressed through types.
Consider another example in DRF-SC:

Example 15: Strategy composition

1 mutex strmutex ;

2 void makePalindrome (string &s){

3 // th r ead s a f e due to
4 //mutual e x c l u s i o n
5 strmutex .lock ();

6 s += string (rbegin (s), rend(s));

7 strmutex . unlock ();

8 }

9 bool isPrintable (const string &s){

10 // th r ead save due to
11 //non−mo d i f i a b i l i t y
12 for (const auto &c : s)

13 if (! isprint (c))

14 return false;

15 return true;

16 }

The above code runs two functions on the same
string concurrently (main function starting the
threads and passing the same string to both
functions is not shown). One function uses mu-
tual exclusion to protect the string while the
other function uses the string in a non-modifying
way to prevent data races. Yet even though
mutual exclusion as well as not modifying any
variable are valid ways to prevent data races,
the above example contains a data race and is
thus illegal in DRF-SC. The data race preven-
tion strategies only work if all threads use the
same strategy per variable per time frame. The
model also needs to ensure that at least one DRF
strategy is used to guarantee that the code is
data race free and thus correct and fast.

30Polymorphism as implemented in C++ does not help.

Tobias Rieger 14

To summarize, here are the seven features that
an optimal memory model needs to support:

• thread local variables

• Mutual exclusion

• Constant variables

• Single threading

• Switching strategies

• Enforcing the existence of one strategy for
all threads per variable per time frame

• Allow optimizations

One may argue that ease of use or understand-
ability is another important feature, but that is
difficult to evaluate objectively31. Let us see how
the mentioned memory models would be evalu-
ated.

S-SC allows data races, as such it does not re-
quire any DRF strategy, so it would get full
points for the first four features. Switching
strategies or enforcing strategies is not required
either, so full points there also. In the last cat-
egory, however, S-SC does terrible. Basically no

optimizations are possible resulting in very poor
performance.

ST-SC enforces the single threaded DRF strat-
egy. It does not allow multithreading.

Functional programming languages can be seen
as enforcing all variables to be non modifiable as
their DRF strategy, but do not allow switching
to other strategies.

DRF-SC allows all DRF strategies as well as
switching between them, but does not enforce
a DRF strategy and thus makes it possible to
compile illegal (as in not DRF) code. DRF-SC
has fewer optimization possibilities than ST-SC,
but more than S-SC.

Finally let’s look at LT-SC. It excels at
thread_local variables, which is its main fea-
ture. Mutual exclusion is built into the
sync variables and is also available through
sync_lock, while other forms of mutexes can be
optimized away. Single threaded mode is sup-
ported by means of not using sync variables,
which bares no overhead over using ST-SC. It
also has the added benefit of working correctly

31I would argue in favor of LT-SC, that in this model it is not necessary to understand what memory
models or data races are. Having all variables be thread_local by default seems somewhat arbitrary,
but not difficult. Forgetting synchronization may still result in a determinacy race, but that cannot be
avoided. The guarantee of sequential consistency and absence of data races make debugging easier than
in DRF-SC when data races are present.

32Initially every thread has its own constants, but that can be optimized away by the compiler or linker so
that all threads use the same constant.

Tobias Rieger 15

even in the presence of other threads. Constants
are also supported32. Adding const to a sync

variable makes it unnecessary to lock it, other-
wise a local copy can be used. Switching strate-
gies works with some overhead. Switching to
single threaded mode can be done by making
local copies of all sync variables and only ac-
cess the local variables. The same applies to the
non modifiable strategy. An unnecessary syn-
chronized read per variable is required to per-
form the switch to single threaded or the non
modifying strategy as well as keeping possibly
unnecessary copies of the data. Switching to a
mutual exclusion based approach is also easily
done with sync variables. LT-ST also forces ev-
ery variable to either be thread_local or prop-
erly synchronized. By maliciously attempting
to access other threads’ thread_local storage or
modifying top level constants one may still man-
age to create a data race, but it seems unlikely
that this happens accidentally. Finally LT-SC
allows ST-SC optimizations with the limitation
of not being able to reorder memory accesses to
sync variables and sync_lock function calls and
not being able to optimize away implicit mutual
exclusion.

Overall LT-SC looks very promising. What it
keeps from being optimal is the overhead of
switching strategies, which generally costs one

unnecessary synchronized read of variables and
some unnecessary copies of thread local con-
stants. Additionally a memory model may exist
that can reorder sync variables and sync_lock

operations without for-fitting sequential consis-
tency in some cases, which LT-SC is unable to
do.

5 Cache coherency protocols

Modern computers have multiple processors or
cores. For performance reasons they each have
their own cache. This makes it possible that one
processor33 has a different view of the memory
than another, since one processor may see a vari-
able having one value while another sees it hav-
ing a different value, both looking at different
stale cached values. Cache coherency protocols
(CCPs) make sure that changes in one cache will
propagate to all other caches and an inconsistent
view as described above is not possible. CCPs
do not scale well since for n caches any CCP
must send n2 messages between caches. With
enough processors, they will spend most of their
time invalidating each others caches.

LT-SC provides an approach to solve this prob-
lem. Software can now precisely tell for every
memory location if it is shared or not. All vari-
ables fall in two categories: thread local and

33In this section processor, thread, core and cache can be used interchangeably.

Tobias Rieger 16

synchronized. The thread local memory can be
cached without the need for invalidating oth-
ers’ caches since only one thread can access that
memory. The global memory can be divided into
mutexes and global data. Caching mutexes is
useless34. Caching global data only pays off if
the same thread accesses the same global data
twice in a row without another thread making
changes, which should not happen often. So
caching of global data can also be given up with-
out significant performance loss. Consequently
CCPs can be either removed, reduced or made
more efficient when running under the LT-SC
model.

6 Weaknesses and improvement
potential

Local threads do not prevent deadlocks. It may
be possible to specify local thread semantics in
a way to do that while keeping sufficient flexi-
bility.

Local threads bind mutexes on variables which
becomes inefficient when one mutex could pro-
tect multiple variables or different variables at
different times. This can be mitigated by com-
piler optimizations.

7 Future Work

When programming in LT-SC one will find that
declaring and using complex data structures
which use mixed strategies is non-trivial and
should be explored further. One should figure
out what should happen when a CPU switches
execution to another thread when using the
thread local information to boost performance.
An idea is to just invalidate the whole cache or to
push it into a backup cache that allows efficient
cache swapping. LT-SC should be implemented,
which should be easy since LT-SC is very similar
to ST-SC, which is already implemented. Once
a good implementation exists further studies on
efficiency such as the average speedup of com-
mon problems is possible. A metric on ease of
use and understandability with a comparison of
DRF-SC and LT-SC would be of interest. Lo-
cal threads do not require sequential consistency
and could be combined with causal or delta con-
sistency.

8 Conclusion

Local threads potentially have significant im-
provements in terms of performance over the
common DRF-SC model, albeit still having

34If the state of a mutex is known it still needs to be locked and it also needs to be made sure concurrent
locking of one mutex by multiple threads is prevented. Knowing the state of a mutex ahead of time
provides no advantage.

Tobias Rieger 17

some unnecessary overhead. LT-SC makes de-
bugging of synchronization errors easier, since
it guarantees sequential consistency even in the
presence of errors, unlike DRF-SC with data

races. Local threads also offer new potential for
building more efficient caches. In the future ST-
SC and DRF-SC should be replaced by either
LT-SC or an even better system.

Tobias Rieger 18

References

Boehm, Hans-J. “How to Miscompile Programs with "Benign" Data Races”. In: HotPar’11.
Boehm, Hans-J. “Position Paper: Nondeterminism is Unavoidable, but Data Races Are Pure Evil”.
In: RACES ’12.

Sutter, Herb. “The free lunch is over - A Fundamental Turn Toward Concurrency in Software”. In:
Dr. Dobb’s Journal (Mar. 2005).

Tobias Rieger 19

9 Appendix - Implementation specification for C++

The implementation of local threads depends on the programming language used. Local threads
restrict which and how memory can be accessed. Integrating local threads into C++ seems to
be more difficult than in other languages, because C++ generally does not make such restrictions
and gives the programmer tools to bypass restrictions. Some other languages do not allow unsafe
accesses35 and may instead have trouble with garbage collection since deleting a sync variable requires
locking that variable which may indefinitely block. The following section explores the problems and
possible solutions specifically for C++ and assumes the reader has a basic understanding of C++11.
This is only an example specification for academic purposes. A real specification should be done by
an appropriate standardization committee including peer review which is beyond the scope of this
paper.

9.1 Pointers36

Local threads are based on the idea that all variables and variable accesses are either thread local
or properly synchronized. Any implementation of local threads must guarantee this. In C++ one
problem is to specify pointers. Either a pointer points to thread local data or it points to a sync
variable. C++ has strongly typed pointers so a pointer declaration includes the description of what
the pointer points to (called the pointee).

35Unsafe access means that the compiler may not be able to prove or check if a valid memory is accessed
leading to undefined behavior, which Java for example does not allow.

36References behave similarly to pointers when integrating them with local threads and are not specified
separately. The only difference is that pointers can be sync while references cannot, because references
in C++ are immutable (same as const).

Tobias Rieger 20

Example 16: Pointer declaration syntax

1 const int *pci; // p c i i s a p o i n t e r to a c on s t i n t
2 int *const cpi; // cp i i s a c on s t p o i n t e r to an i n t
3 const int * const cpci; // c p c i i s a c on s t p o i n t e r to a c on s t i n t
4 int *const *pcpi; // pcp i i s a p o i n t e r to a c on s t p o i n t e r to an i n t
5 int ** const cppi; // cpp i i s a c on s t p o i n t e r to a p o i n t e r to an i n t

6 sync int *psi; // p s i i s a p o i n t e r to a sync i n t
7 int *sync spi; // s p i i s a sync p o i n t e r to an i n t
8 sync int *sync spsi; // s p s i i s a sync p o i n t e r to a sync i n t
9 int *sync *pspi; // p sp i i s a p o i n t e r to a sync p o i n t e r to an i n t

10 int ** sync sppi; // spp i i s a sync p o i n t e r to a p o i n t e r to an i n t

Example 17: Pointer assignment rules

1 int i;

2 sync int si;

3 int *pi;

4 pi = &i;

5 pi = &si; // e r r o r : sync i n t ∗ cannot be a s s i g n e d to i n t ∗
6 sync int *psi;

7 psi = &i; // e r r o r : i n t ∗ cannot be a s s i g n e d to sync i n t ∗
8 psi = &si;

9 int *sync spi;

10 spi = &i;

11 spi = &si; // e r r o r : sync i n t ∗ cannot be a s s i g n e d to i n t ∗ sync

When accessing a sync variable its implicit mutex will be locked for the duration of the access. When
accessing a sync variable through a pointer the implicit mutex of the sync variable will be locked as
if it was accessed directly without a pointer. If a pointer does not point to a valid variable and is
dereferenced the behavior is undefined as with regular pointers. A sync pointer will automatically
lock its implicit mutex before its address is read. The lock is held until evaluation of the expression
is complete. If a pointer is dereferenced to a sync variable the sync variable is locked after which the
pointer is unlocked, possibly allowing a pointer to unlock before an expression has been evaluated.

Tobias Rieger 21

Example 18: Sync pointer access rules

1 sync vector <int > sv;

2 sync vector <int > *psv = &sv;

3 psv -> push_back (42);

In the above example psv is a thread local pointer pointing to the sync variable sv. In the expression
in line 3 psv is dereferenced, sv is locked, the vector member function push_back is executed and
then the lock of sv is released.

4 sync vector <int > *sync spsv = &sv;

5 spsv -> push_back (43);

In this example spsv is itself a sync variable pointing to the sync variable sv. The expression in line
5 locks the sync pointer spsv, dereferences it, locks the pointee sv, unlocks pointer spsv, executes
the push_back and unlocks pointee sv.

6 vector <int > v;

7 vector <int > *sync spv = &v;

8 spv -> push_back (44);

The sync pointer spv points to the thread local variable v. In the expression in line 8 spv is locked,
the push_back is executed and spv is unlocked. Great care must be taken that v can only be accessed
through spv, otherwise a data race on v can occur. There are different ways to ensure this. One way
is to forbid sync pointers to thread local variables entirely. A C++11-specific way is to make sync

pointers to thread local variables only take rvalues37, making it undefined behavior if the original
value is accessed. Another way is to move the thread local variable to a new global location, which
is difficult to do since pointers may point to the first element of an array.

37An rvalue is a temporary variable. It is used in C++11 to move objects instead of copying them and then
destroying the old one which can be more efficient. A non-temporary can be made a temporary with
std::move. After a variable has moved from one place to another, the old location generally contains
garbage and accessing it results in undefined behavior, though it may be assigned a valid value again.

Tobias Rieger 22

9.2 Legacy code compatibility - unstorables

Legacy code (code that has been written without local threads) should still work when using local
threads to allow backwards compatibility. Specifically code that takes non-sync objects should still
work with sync-objects. In the following example38 a sync char * is used that works with the
unaltered standard library’s strlen-function.

Example 19: Legacy code compatibility strlen

1

2 int main (){

3 const sync char *str = "Hello world !";

4 return strlen (str);

5 }

6 size_t strlen (const char *s){

7 size_t retval = 0;

8 while (*s++)

9 retval ++;

10 return retval ;

11 }

There are different ways to implement strlen, this is only an example. The problem with the example
is that str from the main function is passed to strlen in line 4, which converts a const sync char *

to a const char *, which loses the sync. This is only legal if str is locked before calling strlen,
unlocked after the call and not stored during the call. This leads to the term unstorable pointer39.
When a sync pointer is turned into a thread local pointer the sync pointer is locked for the life time
of the thread local pointer and the thread local pointer becomes unstorable, which means its life
time must not exceed that of the sync pointer it was created from. Copying an unstorable pointer

38The example code has some issues. In C++ the string class should be preferred to C-strings and strlen
returns a size_t-object which may differ in size and differs in signedness from int. This, however, is
not relevant to local threads.

39This applies to references as well.

Tobias Rieger 23

makes the copy unstorable as well. This allows the above example to work correctly.

A different implementation of strlen may look like this:

1 size_t strlen (const char *s){

2 const char *c = s;

3 while (*c++){

4 }

5 return c - s;

6 }

In this example c is initialized with s which is unstorable so c also becomes unstorable.

1 size_t strlen (const char *s){

2 static const char * lastseen ;

3 if (*s == ’H’)

4 lastseen = s;

5 const char *c = s;

6 while (*c++){

7 }

8 lastseen = "hello ";

9 return c - s;

10 }

In the above implementation lastseen is also unstorable because it may be assigned an unstorable
value in line 4. Furthermore overwriting it by a regular thread local storable value in line 8 does not
make it storable to reduce code analysis and compilation time for more complex examples. Since
the unstorable pointer lastseen exceeds the life time of the passed pointer it causes a compilation
error40.

40It is somewhat uncharacteristic in C++ to require such an analysis. C++ does not for example required a
compiler to produce a compilation error when a references to a function local variable is returned, instead
it is just undefined behavior. However, a compilation error on stored unstorable objects is required to
keep up the data race free guarantee and it has no runtime cost.

Tobias Rieger 24

9.3 Arrays

There are different ways sync works with arrays. Either every array element is sync, only the array
itself is sync or both. For multidimensional arrays every dimension should be specifiable with sync.

Example 20: Array declarations

1 sync int asi [10]; // a r r ay with 10 sync i n t s
2 int sai sync [10]; // sync a r r ay with 10 i n t s
3 sync int sasi sync [10]; // sync a r r ay with 10 sync i n t s
4 int asai [10] sync [10]; // a r r ay o f 10 sync a r r a y s o f 10 i n t s
5 int saai sync [10][10]; // sync a r r ay o f 10 a r r a y s o f 10 i n t s
6 int aais [10][10] sync; // syntax e r r o r

When accessing an element of a sync array the whole array is locked while accessing a sync-element
only locks the specific element. This allows the programmer to choose between the overhead of
locking a whole array when only one element is required or having one implicit mutex per element.
Locking both the array as well as the element is possible but not useful. However, when using vectors
of vectors this becomes useful.

9.4 Complex data structures - syncable and early unlocks

It is easy to just put the sync modifier on a C++-container such as vector to fit it into the thread
local model. However, that will lock the whole container for every access. It would be nice if
different threads could instead work on different elements of a container concurrently. To prevent
code duplication another keyword syncable is used. It must be used on a non-static member or
member function of a class41. When syncable is used outside of a class or on a static member
it should result in a compilation error. If the object created from a class is sync, syncable has the
same effect as sync, otherwise it has no effect. The following example uses a singly linked list to
show the general idea of how to work with sync and complex data structures. It intends to show
how sync works with complex data structures and does not aim to be otherwise useful.

41There is no local thread specific difference between class and struct, therefore they are used inter-
changeably here.

Tobias Rieger 25

Example 21: Syncable singly linked list

1 struct Node{

2 int value;

3 syncable Node *next;

4 Node(int v) : next(nullptr), value(v){}

5 void append (int v) syncable {

6 if (! next)

7 next = new syncable Node(v);

8 else

9 next -> append (v);

10 }

11 // Des t ruc to r , copy c on s t r u c t o r , move c to r , . . .
12 };

13 int main (){ // usage
14 Node n(1);

15 n. append (2);

16 sync Node sn (3);

17 sn. append (4);

18 }

First note that the next pointer in line 3 is syncable. For Node n in line 14 the member Node::next

is of type Node * whereas the Node::next for sn in line 16 is of type sync Node *. The member
function append in line 5 first tests if next is empty. If so it will create a new syncable Node that
is assigned the passed value v. If next is not empty the pointee pointed to by next will append the
value v. Note that dereferencing next will produce a sync variable. According to the pointer rules
next will be unlocked after the pointee of next is locked. That way multiple threads can append to
the same Node concurrently.

In C++ non-static member functions have an implicit this-pointer parameter that points to the
object the member function was invoked on. This is necessary for the member function to know which
object’s members to access. Line 9 in the above example can be written as this->next->append(v);

with no semantic difference. Dereferencing the this-pointer to access next happens implicitly. Note

Tobias Rieger 26

that since the Node-object is sync, the type of the this-pointer is sync Node *42. Special rules apply
for unlocking the this-pointer after it has been dereferenced to a sync variable, because the this-
pointer should not be allowed to change while executing a member function on an object. Otherwise
it would be difficult to keep an object in a consistent state. However, in this specific case it is easy
to prove that the this-pointer will not be accessed inside append after line 9, so early unlocking is
possible. Unlocking can only happen after the last access to the this-pointer of a member function to
satisfy the constraint that the object and the this-pointer will not change while a member function
runs on it.

Note the syncable keyword after append. This syncable refers to the pointee of the this-pointer.
The same syntax is used in standard C++ to specify the pointee of the this-pointer as const. Since
it is not harmful to treat a non-const object as a const object it is allowed to call a const member
function on a non-const object. It is, however, potentially harmful to modify a const object, so
calling a non-const member function on a const object will not compile. Similarly when using local
threads calling a non-sync member function on a sync object is correct if the caller locks the object
before passing it to the member function and unlocking it after the member function returns. Inside
the member function the object will be treated as a thread local object with the this-pointer and
the object being unstorable. Passing a non-sync object to a sync member function cannot work
correctly since the member function will attempt to lock mutexes that do not exist. In the above
example the syncable keyword is used to specify that this member function works with either sync

or non-sync objects, but this actually duplicates the function into two different functions, one with
sync and the other without. While the duplicated bodies of the functions are identical (except for
syncable being interpreted either as sync or nothing), the code generated for them will most likely be
different, because the compiler must insert locking instructions for the sync version when accessing
the this-pointer which happens implicitly when accessing any member while it must not do so for
the non-sync version.

42It is also an rvalue so it cannot be modified even though there is no const in the type of the this-pointer.

Tobias Rieger 27

	Local thread definition
	Established memory models
	Strict sequential consistency (S-SC)
	Single threaded sequential consistency (ST-SC)
	Data race free sequential consistency (DRF-SC)

	Optimizations in local threaded sequential consistency
	A model for comparing memory models
	Cache coherency protocols
	Weaknesses and improvement potential
	Future Work
	Conclusion
	References
	Appendix - Implementation specification for C++
	Pointers
	Legacy code compatibility - unstorables
	Arrays
	Complex data structures - syncable and early unlocks

