
Practical Analysis of Gadget

Framework on Android OS

Studienarbeit

im Rahmen des Diplomstudiengangs Informatik

Humboldt-Universität zu Berlin

Mathematisch-Naturwissenschaftliche Fakultät

Institut für Informatik

eingereicht von: Taras Iks
geboren am: 02.02.1986
in: Frunse

Gutachter(innen): Dr. ret. nat. Wolf Müller

eingereicht am:

Contents

1 Introduction 3

2 Analysis of USB Host and Gadget on Android 4

2.1 USB Overview . 4
2.1.1 Topology . 5
2.1.2 Host Functionality . 8

2.2 Gadget Modules . 10
2.2.1 USB Gadget Zero . 11
2.2.2 Serial USB Gadget . 12
2.2.3 USB Network Gadget . 12
2.2.4 Storage USB Gadget . 12
2.2.5 Gadgetfs . 12

2.3 Embedded Android . 14
2.3.1 System on Chip . 15
2.3.2 Samsung Nexus S . 16

3 Practical Approach 18

3.1 Gadgetfs Usage . 18
3.2 Cross Compilation for ARM . 20
3.3 Gadgetfs Debugging . 21
3.4 Host Enumeration . 24

4 Conclusion 26

5 References 28

2

1 Introduction

The usage of electronic devices in daily life increases constantly so that a lot of
people nowadays are owners of smartphones. A smartphone, is a mobile phone
with the functionality of a personal digital assistant. Thus, a smartphone can be
used for electronic identi�cation and authentication. In this context, security of
personal data plays an important role. It can be assumed that a smartphone is
reliable due to the fact that the user takes care of the device and is familiar with
its usage. A touchscreen is one of the important aspects of mobile security of
a smartphone as it provides a visualization of transactions.Thus, the two factor
authentication could be implemented: possession factor in form of a smartcard
and knowledge factor in form of a PIN. Such device could act as a replacement
for card readers. Considering the prevalence of Android smartphones with NFC
modules an assumption was made of its public necessity.

This work has a purpose to set a cornerstone in building up a communication
between the host computer and the Android smartphone over a USB interface.
The host should enumerate an Android smart phone as a smartcard reader.
A noteworthy issue is to prevent a necessity to install any additional drivers
on the host because the integrated standard CCID-driver is present on recent
operating systems. As a result a smartphone can be used immediately as a
smartcard reader on operating systems like Linux or Windows without any
additional con�gurations.

The research will cover analysis of the USB gadget functionality on the
Android operating system and its practical usage. The results of the research
will provide opportunities for a further analysis on this subject as well will yield
recommendations for additional studies.

3

2 Analysis of USB Host and Gadget on Android

The chapter will provide information about USB system architecture which is
divided into USB host and USB gadget. The important characteristics of the
architecture will be systematized and analyzed continuously covering the topics
needed to proceed in this work.

The starting point will be an overview of the USB technology. The physical
and logical characteristics of this technology will be discussed in details. Besides,
the possibility of a device to play a host or gadget role, the so called On-
The-Go technology will be introduced. This technology is needed because on
the one hand the smartphone device should bring card reader interface and on
the other hand it should possess minimalistic host capabilities so that it can
be extended to plug in some other peripheral devices like keyboards or mass
storage devices. The di�erent transfer types of data will be presented to cover
the needs to transport big or small amount of data depending also on timing
requirements. As mentioned above, the goal is to provide the communication
possibilities between the host and the gadget so that exchange of information
becomes possible between them. To sum it up, the gadget framework will be
introduced.

In contrast to the host part the di�erent modules with special features will
be described. An introduction of the use cases for appliance of modules will
provide intuitive understanding of the features of gadget framework. Further-
more, this research will provide information about Gadgetfs, a module which
brings the con�guration of the communication from kernel space into user space.
Therefore, the Gadgetfs was chosen as a module to implement the communica-
tion with Android smartphone. The Gadgetfs module will be discussed further
in a separate chapter.

As a gadget part in the communication model, the phone with Android
embedded operating system was selected. Therefore, the embedded Android
will be the further subject of the discussion. Android operating system brings
a di�erent way of initialization of hardware during the boot process.

The hardware plays crucial role because of the device drivers which each
developer of embedded devices provides for its own hardware. This brings the
discussion to the last point in this chapter where the concept and physical char-
acteristics of System-on-Chip will be discussed and presented. The embedded
device selected for the programming and testing purposes is Samsung Nexus S.

2.1 USB Overview

The starting point in this section is the introduction of the USB technology.
Universal serial bus is one of the most used components to connect user's com-
puter and peripherals. Moors Low is still valid over the years and describes the
phenomena that computation power of computes doubles every year. As a con-
sequence there is a need to move an increasing amount of data between periph-
eral devices and host computer. Historical fact is that the USB was originally
designed to overcome the shortcomings of various input and output interfaces
found on computer architecture. Nowadays it is di�cult to �nd an electronic
device that does not have a USB port. Digital cameras, printers, keyboards and
card readers are typical examples of devices that have USB interfaces.

4

Di�erent devices use di�erent data rates to exchange the information. So
here are some of them:

Low speed was introduced in USB 1.0, the �rst generation of USB technology
and supports data rates of 1.5 Mbit/s. It is used in devices like keyboards
because there is no need to transport big data to or from device.

Full speed was introduced in USB 1.1 generation and brought data rates of
12 Mbit/s. The latency and the bandwidth is guaranteed for full speed devices.
It means that the amount of data that can be transferred during one second
and the amount of time it takes a packet to travel from source to destination is
�xed. This property is used in microphones so that a good sound quality can
be achieved.

The hard drive devices easily become a bottleneck with full speed standard,
whereas with high speed standard it becomes more comfortable and usable.
High speed supports data rates of 480 Mbit/s and is available in the USB 2.0
generation. Over the time the demand for higher performance in connection
between the computer and the miscellaneous peripherals grows constantly. The
super speed USB 3.0 standard was introduced in 2008 and adds an even higher
transfer rate of 5 Gbit/s to match those needs. In 2013 the USB 3.1 technology
was introduced, the super speed plus brings a data transfer rate of 10 Gbit/s.

2.1.1 Topology

The discussion will proceed with the USB topology. This will bring more pre-
cisely understanding of information covered in the following chapters, in partic-
ular the endpoint con�guration. The physical USB topology presents devices
that are physically connected by a tiered star connection model. The hub acts
as an attachment point which is called port. The host communicates with each
physical device as if it was directly connected to a root hub. The host stays al-
ways aware of the physical topology to support connections and disconnections
of devices.

The master-slave communication model de�nes the principle how USB tech-
nology works. The USB host plays a master role and is responsible for initiation
of communication. Device responds to the requests from the host and plays a
slave role. Host is capable to have up to 127 devices connected simultaneously.
Each USB bus can have only one master which is called host controller. The
host controller in association with a root hub is the low level piece of hardware
that operates the USB master-slave bus protocol.

5

Figure 1: USB Physical Topology

As it is shown in Figure 1: USB Physical Topology, the root hub acts as
an interface to the host controller. The host controller controls the devices on
the bus in a polled manner. Only one device at a certain moment can exchange
massages on the bus. The other end of a USB network is the device end also
called gadget. The gadget functionality within Linux kernel simply refers to an
ability to operate as a device in the slave mode.

On the other hand the logical topology describes how USB subsystems like
host, hub and devices which make up the physical topology are interconnected
to each other and communicate controlled by the host software. The informa-
tion about each USB device is described by a number of descriptors which are
data structures with a de�ned format. Every device must have a single device
descriptor because the host starts the enumeration process by polling it. Device
descriptor allows the host to di�erentiate what kind of device is plugged in at a
moment. There also must be at least one con�guration, but if there are many
then the device can play di�erent roles de�ned in each con�guration. When a
device is plugged into the host, the host asks for information from the device and
assigned an address that will be used for further communication. The unique
address is assigned when device is attached and gets power. The enumeration
process is performed automatically and indicates therefore that the operating
system gets speci�c information from a newly connected hardware in form of
descriptors. Descriptors are data blocks of few bytes. A special role in an enu-
meration process plays a device descriptor. Among many speci�cations of a
device, it also contains three IDs which help to �nd an appropriate driver. The
host searches for an appropriate driver with assistance of information retrieved
from the descriptor. Each manufacturer has its own VendorID and Produc-
tID. If a device belongs to a certain class then the device descriptor contains
a special ClassID. When a device cannot be assigned to a particular class then
the driver will be found depending on VendorID and ProductID. If the host
identi�es the class then a proper class driver will be loaded, this functionality
is usually adopted in operating system so that an extra driver installation is

6

not needed. This feature represents the Plug and Play mechanism for the new
connected devices. Many drivers are already in the system and are found au-
tomatically, however, under certain circumstances it may happen that during
the initial connection of a device, it would be required to install an appropri-
ate driver manually. The host driver with the host controller is responsible for
con�guring USB devices when they appear in the topology. Multiple con�g-
urations are sometimes packaged together in what looks like a single physical
device. Such a device con�guration it is called compound device. For example,
an Android smartphone plugged into a host has a con�guration as data storage
and a con�guration which enables the communication over Android Debugging
Bridge.

Figure 2: USB Device Con�guration

This section illustrates in textual form what can be seen on the Figure 2:
USB Device Con�guration. Every con�guration de�ned in the device descriptor
has a con�guration descriptor. A con�guration descriptor contains the number
of interfaces available for each con�guration. There must be at least one inter-
face implemented. Each interface described by a con�guration descriptor has an
interface descriptor. An interface descriptor contains one �eld specifying how
many endpoints are de�ned. To make it more clear, an endpoint de�nes a unique
location of a USB device and provides source or sink points for communication.
There is one endpoint which has always to be de�ned, it's called endpoint 0. An
endpoint is the logical element that software communicates with during USB
device operation. Each endpoint speci�ed by an interface descriptor contains
an endpoint descriptor, endpoint 0 excluded. The endpoint descriptor declares
parameters needed for communication such as endpoint address and also various
attributes describing the features of data transfer for each endpoint.

The endpoint 0 has the address 0 and is a special endpoint that all devices
must implement. The host uses it to initialize and gather information from the
connected device. The endpoint 0 is not included in an interface descriptor.

7

The information about interface class, subclass and protocol is also included
in an interface descriptor. Except of endpoint 0 which is used to control the
transfer, the USB gadget can have up to 31 endpoints, 15 IN endpoints and 15
OUT endpoints. This will be an important issue in the next chapter where the
practical implementation will be discussed.

The endpoints can be con�gured depending of the transfer type. There
are di�erent transfer types used by USB protocol. The USB speci�cation, a
document which describes all levels of the USB software stack, de�nes di�erent
transfer data types. Depending on kind of communication it is possible to use
the type which best meets the requirements. Below di�erent transfer types are
covered, this information is needed while con�guring the endpoints of Gadgetfs
module from the user space program.

Control transfer is intended to support status commands and con�gura-
tion between the host and device, so it is used for non-periodic communication.
Each USB device has at least one control pipe which provides access to the sta-
tus and control information. The control transfer is bidirectional and requests
the con�guration information to and from the device using the bidirectional
endpoint 0. The endpoint 0 is used always in control transfer mode.

Isochronous transfer is used for a time dependent data transfer like video
streams and telephony. This type of transfer allocates a portion of bandwidth
to ensure that the data can be delivered to the receiver at a desired rate. The
isochronous transfer is used by full speed and high speed devices, low speed
devices are not included. The isochronous transfer is periodic and unidirectional.

Interrupt Transfer is used for devices to send and receive non-periodical,
small data packages. An example is a computer mouse, the data transfer rate
is guaranteed but what cannot be guaranteed is that the transfer will occur a
de�ned moment, but rather it will occur within the de�ned period of time. This
transfer type will reattempt the transmission of data in the next period if there
was an error on the bus.

Bulk transfer is typically used transfer type for large, non-time-sensitive
data. It takes up all the bandwidth that is available after the other transfers have
�nished so that if the bus is not available at the moment then the transfer may
be delayed. The bulk transfer is unidirectional, it uses any available bandwidth
and provides error check mechanism with retry of attempts.

2.1.2 Host Functionality

In the preceding sections the general information about USB was covered. Here
the host side of the communication process will be presented.

In the description of computer hardware and mobile devices there is often
a mark that convey that the current hardware supports USB. This is not quite
true. As a matter of fact a USB controller in computers and a USB controller
in mobile devices are di�erent objects. In the �rst case there is a USB host so
that the other peripheral devices can be attached to it. In the second case it's
a USB device which can be attached to a USB host. Additionally, a USB hub
can be attached to the host so that a number of USB ports can be increased
which makes it possible to attach multiple devices.

Linux provides reliable drivers for all host controller standards and drivers
for almost all device classes. The di�erent device classes are shown in the Table
1: Driver Classes, below. For all USB device classes there are drivers already

8

present on the host side and only in the rare cases it is necessary to implement
a device driver himself.

Class Example Host Driver

Audio USB Sound yes
CDC network yes
HID keyboard, mouse yes
Mass Storage USB �ash drive yes
RNDIS network yes
Serial RS-232 to USB yes

Table 1: Driver Classes [29],[24]

Gadget Framework has no built-in CCID class driver. The open source
project libccid provides source code for a generic USB CCID driver which can
be used together with the Gadgetfs to provide CCID interface to the host.

A minimalistic host functionality can also be implemented by device. On-
the-Go(OTG) technology was introduced to enable support of USB devices for
minimalistic USB host capability to allow a point to point communication. Such
function allows embedded devices like digital cameras, mobile phones and print-
ers to be connected to each other directly. So for example, a digital camera
acting as a host can be connected to a printer so that it allows to print images
from the camera. Otherwise if a camera is connected to the host computer the
camera acts as a device so that it is possible to edit, delete and copy pictures.
There is no need of coping pictures from a digital camera to the computer and
then from the computer to the smartphone. With the help of OTG it can be
done without an intermediate step. Another useful case is to connect the USB
�ash drive directly to a smartphone. For that reason two factors needed to be
considered. First, at least one of the gadgets has to support the OTG standard
that is not the case by many commercially available devices, and the second,
there has to be an USB OTG adapter cable so that both gadgets can be con-
nected together. Whether the device supports OTG or not it can be usually
identi�ed by a USB Logo with a green arrow with "OTG" on it. At the begin-
ning the purpose of USB interface was used only to connect peripheral devices
to computers or notebooks, whereas a USB host controlles the whole transport
on the bus. Obviously the described technology has no options to connect two
devices directly via USB interface, consequently, it was not possible to connect,
for example, a digital camera with a printer. So no one will be impressed that
such a technology as OTG was soon developed. This allowed to implement all
the connections described earlier. The OTG speci�cations allows each of the
connected devices to become master on the bus. It is also worth mentioning
that the USB OTG controllers consume less power compared to the USB 2.0
and upper standards. The OTG controller has also a mini USB port for con-
nections, this makes them a perfect solution for usage in embedded devices such
as smartphones. The OTG technology can be considered as a rival product for
technologies like Bluetooth and FireWire. At the moment of connection the
host is called A-Device and the gadget part is called B-Device. Moreover, the
roles can change on the �y. For example, when a printer and a camera are
connected in wrong direction so that the printer acts as a host and the camera

9

as a client then the roles will switch what is done by Host Negotiation Protocol.
The OTG framework is responsible for handling and responding to the OTG
protocol negotiations. The OTG driver consists of both the device driver frame-
work and the host framework so that OTG framework change roles depending
on the situation.

2.2 Gadget Modules

The device side is unfortunately not so accurately standardized in accessing
the controller mechanism as the host side. The gadget framework gives the
device drivers a certain amount of modularity. It should be considered that not
all Linux system are capable to use the device con�guration. Simply because
computers and notebooks have only the USB host hardware chip. On the other
hand many embedded systems include a USB device controller besides a USB
host controller, an example of such system is a development board BeagleBone
Black. It makes it possible to use BeagleBone Black as a host with a keyboard
connected to its USB host port and at the same time to use it as a gadget
connected to the host computer. A lot of peripherals like smartphones and
printers include a USB device controller hardware by default. Some of such
devices provide its own power supply other rely on the host.

The USB gadget framework is used to implement the peripherals and can
be divided into three layers:

1. USB device controller (UDC) driver is a layer that talks directly to the
hardware. The implication of this statement is that di�erent developers
of device controllers need to provide their own device controller drivers.
The UDC driver communicates directly with the USB controller chip on
the device. Depending on the type of the controller many tasks are done
directly in hardware. In the case of Samsung Nexus S which is used in this
research, it is Exynos device controller with s3c_udc_otg device controller
driver. The UDC driver provides a certain number of endpoints which are
associated with a queue to send and receive data.

2. Gadget drivers implement USB functions and are hardware independent
because they rely on UDC driver. This research will introduce gadget
drivers in details in a separate chapter below.

3. Layers, such as �le systems and network. Those systems work with data
provided by gadget drivers which is received or sent to the host via UDC
driver. In most situations there are several layers which are intercon-
nected.

The control of communication is spread between the USB device controller
driver and gadget driver. The UDC driver is responsible for those functions
which are frequently used by the hardware. The purpose of a device controller
driver is to transfer the data between the gadget driver and the controller hard-
ware, to manage the input and the output queues of various endpoints. The
main part of the functionality is implemented in a gadget driver. It covers the
management of device con�gurations, changes of device states and the con�gu-
ration of device descriptors.

10

The Table 2: Device Controller Types, shows the di�erent types of full speed
USB device controllers supported at the moment by gadget framework:

Module Vendor

S3C2410 ARM Samsung
OMAP USB Device Controller Texas Instruments
net2280 NetChip
at32ap7000 Atmel
TC86C001 "Goku-S" Toshiba

Table 2: Device Controller Types

The gadget driver is logically arranged above the UDC driver and picks up
on its API. This work uses the gadget driver Gadgetfs with the source code
�le inode.c. The Gadgetfs module uses the API of the lower level UDC driver
s3c_udc_otg.c. There are gadget drivers for almost any device classes which
are de�ned by the USB standard. If the gadget driver for USB mass storage
is loaded then the device can be used as a storage device such as a �ash drive.
If the network gadget driver is loaded then it is possible to establish a network
connection via a USB protocol. The described gadget drivers are mutually ex-
clusive therefore only one gadget driver may be loaded at a moment. However,
it is readily possible to remove the driver and then to load another. The mod-
ularity of the kernel allows the replacement of the device drivers. Depending
on kind of loaded gadget driver further layers on top of it are used. For a mass
storage it is a �le system, for a network gadget driver there is a network stack
and for a serial gadget driver there is a serial subsystem.

The gadget drivers which are described below implement a single USB func-
tionality.

2.2.1 USB Gadget Zero

With the help of this module the functions of the USB subsystem on both the
client and host sides can be fully tested. Therefore, primarily the gadget driver
g_zero is used with its counterpart the usbtest driver on the host side. The
Linux machine is required as a host which contains the USB driver usbtest.ko.
Once the system is connected to the host nothing happens at �rst yet. For as
long as no unique USB function is determined by the gadget driver the USB
device must be invisible to the host. This is achieved by switching o� the pull up
resistor. When a gadget driver, for example, g_zero is loaded then the pull up
resistor is set by the UDC driver to 3.3V. So the host can start the enumeration.
During the enumeration process �rst the device descriptor is picked up by the
host. The host then performs a reset. Immediately after a reset the USB address
is assigned to the device. Only now all descriptors are polled from the device.
Among other things the device descriptor is transmitted one more time. The
g_zero de�nes a device descriptor whose IDs make usbtest module to be loaded
on the host side automatically.

11

2.2.2 Serial USB Gadget

Another way of communication via USB o�ers the gadget driver g_serial. Serial
gadget brings tty interface so that a serial communication between the host and
the gadget becomes possible. After enumeration and loading of an appropriate
driver on the host, the virtual serial ports are set up on the host and client.
This functionality becomes very useful when a developer has software which
runs on top of serial interface with serial protocol. The serial gadget provides
the solution to use USB protocol with serial interface. With the help of this
module the software stack which is build up depending on serial interface will
function further.

2.2.3 USB Network Gadget

A USB device with the network gadget module g_ether loaded will be con�gured
as an ethernet device. A network connection between the USB host and device
becomes enabled. Since g_ether contains a device descriptor with appropriate
ClassID the host loads the usbnet driver on its part. On both devices additional
network interfaces have been created. When TCP/IP properties are set up on
both sides the data can be exchanged between them. This driver can operate
as a counterpart with Linux and Windows operating systems.

2.2.4 Storage USB Gadget

The storage gadget module g_�le_storage uses a �le to store the information.
The mass storage class is generally not designed for multiple and simultaneous
accesses. It has no coherence protocol to inform the communication partners
about the changed �les. The USB host can therefore have a very di�erent picture
of the contents of the memory on the client. It should be avoided to access
the data from the host and the client simultaneously. The host mass storage
driver can be found on both Windows and Linux via the provided ClassID. An
extra driver installation on the host is just not necessary as it is usual with a
USB �ash drive. Once the enumeration is complete, the host usually binds the
content in its directory hierarchy, on Windows it appears as an additional drive
and on Linux as a directory in /media directory. Now, any data can be added
or deleted.

2.2.5 Gadgetfs

The gadget driver framework extends the control over the virtual �le system
into the user space. It becomes possible to access the gadget from it. The
Gadgetfs is not available by default and must be con�gured during the kernel
con�guration.

12

Figure 3: Gadgetfs read/write

The Figure 3: Gadgetfs read/write, shows schematically the ability of the
program to use bulk sink-source functionality by reading the data from the
endpoint 1(ep1) and by writing the data to the host using endpoint 2(ep2). The
ep* �les are created for each endpoint during the driver binding. If an endpoint
is con�gured with an OUT transfer direction, so it possible only to read it. If
an endpoint is con�gured with an IN transfer direction, so it is possible only to
write into it.

The s3c-udc �le serves to access the endpoint 0 where the device con�gu-
rations are written. This enables the the binding of module with USB con-
troller. In particular, by writing the descriptors on Samsung Nexus S in the �le
/dev/gadget/s3c-udc the device gets con�gured. The device stays active and
ready for enumeration until �le descriptor is closed. It is possible to obtain the
events by polling endpoint 0, see the Table 3, Gadgetfs Events. The Gadgetfs
provide a �le system based access to the device controller driver which in its
turn controls the device controller hardware.

Event Description

GADGETFS_CONNECT The event is generated when the device setup
is successful.

GADGETFS_DISCONNECT The event indicates disconnection of the de-
vice from the gadget driver.

GADGETFS_SETUP The event is generated when the gadget driver
requests a device setup.

GADGETFS_SUSPEND The event is generated when the gadget driver
requests a device suspend.

Table 3: Gadgetfs Events

The Table 3: Gadgetfs Events, shows the events which the user space pro-
gram polls to obtain the driver status. These events are used in the user space
program to check the current state and enable the right control �ow of Gad-
getfs. It becomes possible to handle di�erent situation like errors or unexpected
states. They are very useful by debugging Gadgetfs, it became possible to see

13

in the log �les the states of the Gadgetfs module.

2.3 Embedded Android

The chosen platform for this work is Samsung smartphone with Android oper-
ating system. Android presents a operating system for mobile devices based on
Linux. Given OS was developed by Android Inc. which was bought by Google
afterwards. Although this OS is based on Linux, it is not possible to use all
Linux applications because of the absence of various standard libraries and also
because some libraries were developed entirely by Google.

In 2013 estimated Android platform market share claimed nearly 79 percent.
Today it can be seen that Android has quickly reached the top of the smarphone
selling, but there are signs that the growth is cooling o�. In embedded world it
became a de facto standard for a vast majority of embedded devices. There are
signs that it might displace the classic embedded Linux. An entire ecosystem
therefore rapidly grows around Android. System-on-Chip (SoC) manufacturers
such as Qualcomm, Freescale, Nvidia and ARM have added Android support
for their products. On the other hand, phone and tablet manufacturers such as
Samsung, HTC, Sony, LG are constantly increasing number of Android devices.
Many of those projects are done by forking the o�cial Android source code
release with the purpose to create an own Android distribution with custom
features. CyanogenMod and Linaro are typical examples of Android projects
enhancements which provide own Android custom images.

Android was made in fact to run on all architectures supported by Linux like
ARM, MIPS, PowerPC and x86 that means on any hardware that runs Linux.
But beyond being able to run Linux, there are few other hardware requirements
for running Android. Apart from the logical requirements of having some kind of
interaction mechanism to allow users to use the input interface and some kind of
display, there are also needs to provide enough memory to store Android image
�le and a su�ciently powerful CPU to give the user a decent experience with
the device. By implementing the Gadgetfs module on the phone there has to
be a possibility to bring back the standard con�guration and to allow the user
to make use of the prede�ned settings.

Hardware support in Android is signi�cantly di�erent from the approach
found in Linux kernel. The usual way in Linux to provide support for new
hardware is to create a device driver. The driver can be built as a module and
be loaded at a runtime or as an built-in kernel module so that the corresponding
hardware is generally accessible in the user space through �les in /dev. In Linux
there are three types of devices: character devices also known as stream devices,
block devices and the network devices. This allows various software stacks to
be built on top of �les in /dev to interact with the hardware. Android approach
is very di�erent. Android software stack relies on shared libraries provided by
manufacturers to interact with hardware, instead of standard /dev entries. An-
droid uses on what is called a Hardware Abstraction Layer. Generally speaking,
a Hardware Abstraction Layer can be considered as the hardware library loader
along with the header �les de�ning the various hardware types. Android does
not specify how the shared library and the driver should interact. The Hard-
ware Abstraction Layer de�nes only the API provided by the shared library to
the upper layers. Android has no libc library it uses reduced version named
bionic. The USB controller driver acts as a hardware abstraction layer for the

14

USB device controller. It exports the hardware to the layers above. The Linux
USB controller driver implements hardware speci�c routines that allows access
to the memory space and registers.

2.3.1 System on Chip

To be able to compile the right kernel con�guration it was necessary to identify
the special features of the hardware of the given smartphone. In order to proceed
in the research it was important to analyze Samsung Nexus S hardware, its
speci�cation and con�guration. This chapter will cover the common features of
a System-on-Chip so that it will be possible afterwards to turn to the special
Exynos platform designed by Samsung.

A System-on-Chip (SoC) is an integrated circuit that includes various parts.
Single monolithic systems include a processor, a bus and other elements. Inte-
grated circuits are used in a wide range of electronic equipment like portable
handheld devices. In general, System-on-Chip technology is the ability to place
multiple subsystems on a single semiconductor chip. It typically uses a pow-
erful processor and is capable of running software such as the desktop versions
of operating systems. The SoC design usually consumes less power, has lower
costs and higher reliability then the multichip systems that they replace. The
SoC typically consists of a 32-bit CPU cores with a separate core for USB. The
SoC are optimized for e�cient power consumption because in the most cases
SoC has separate power supply. The typical components are microcontrollers
or microprozessors, memory blocks which include ROM, RAM, EEPROM and
�ash memory. Another elements of SoC are peripherals like real timer controller
and external interfaces including industry standard such as USB, FireWire or
Ethernet.

Figure 4: SoC Structure

The Figure 4: SoC Structure, shows that SoC is much more then only CPU
cores. A SoC is to some extent a circuit board with a bus interconnecting a
variety of di�erent components. Because there is no standard, the manufac-

15

turer decides over the number and complexity of the components. Although
most SoCs include a similar set of basic components, the SoCs are produced
by di�erent manufacturers. It is to mention that not all components within a
SoC operate at the same clock speed, so CPU may work in gigahertz frequency
and GPU with several hundred megahertz only. The GPU is responsible for
accelerating the rendering of graphics to the device display.

A big advantage of SoC is its tiny and universal structure. A tiny structure of
the system is due to placing the components on the same circuit. The universal
feature is based on the possibility of SoC to be used on various devices with the
minimalistic changes.

2.3.2 Samsung Nexus S

One of the overriding aims of this work was to analyze the USB controller on
SoC. Samsung Crespo, also known as Google Nexus S is one model out of the
production line of Nexus devices. The full line is shown below:

Version Type

Google Nexus One smartphone
Google Nexus S smartphone
Google Galaxy Nexus smartphone
Google Nexus 7 tablet
Google Nexus 4 smartphone
Google Nexus 10 tablet
Google Nexus 5 smartphone

Table 4: Nexus Production Line

The table shows generations of Nexus devices. It is a well-known fact that
this line was developed by Google developers therefore the devices have no prede-
�ned mobile network operator and no additional software packages preinstalled.
Maybe the most advanced issue in this production line is that the updates are
coming very fast. In other devices the vendor includes custom changes so that
an update to a newer Android version takes much longer.

As an example, Android 4.1 Jelly Bean was introduced in June 2012 and
the very same day the Galaxy Nexus users could update to a newer version.
Samsung Nexus S got an update to Jelly Bean one month later in the July
2012. Another positive aspect of Nexus S is its medium size which allows good
control of the whole display surface with one hand. A noteworthy issue is a
good price performance ratio in the mid-range price category. The display of
the phone is bright, it o�ers comfortable usage experience also outdoors. The
negative sides of the phone are 16GB of internal storage without a possibility to
extend it by using SD card. The battery usage leaves something to be desired
so that about 6 hours of hearing podcasts or music can be achieved. Nexus S
uses a Exynos 3 platform. Exynos is a series of ARM based System-on-Chip
developed and manufactured by Samsung Electronics and is a continuation of
Samsung's earlier S3C and S5P production line.

In the following table there is a listing of Nexus S hardware features with
more technical details.

16

Samsung Nexus S

Model Exynos 3 (previously S5PC110, Hummingbird)
Platform Samsung S5PC110
Release Date 2010 December
Vendor Google
Manufacturer Samsung
Codename crespo
Semiconductor technology 45 nm
RAM 512 MB
Internal Storage 16 GB
CPU instruction set ARMv7
CPU 1.0 GHz, single-core ARM, Cortex-A8 based CPU

Subsystem with NEON
GPU IT PowerVR SGX540 @ 200 MHz; 3.2 GFLOPS
Memory Technology 32-bit dual-channel 200 MHz LPDDR, LPDDR2, or

DDR2
Camera 8 M pixel for scaled and 16 M pixel for unscaled

resolution
USB On-chip USB 2.0 OTG supporting high speed

(480Mbps, on-chip transceiver)
On-chip USB 1.1 Host supporting full speed
(12Mbps, on-chip transceiver)

Table 5: Hardware Speci�cation

The Table 5: Hardware Speci�cation, shows the hardware details of Nexus
S device. The most important features which are needed for the con�guration
of the Android kernel are the following: at �rst, to be able to compile kernel
the device platform should be known; secondly, it is also signi�cant to know the
USB hardware characteristics of the device. The Nexus S has OTG capabilities
that allow to set up device as a host or a gadget. The platform used by Nexus
S is Samsung S5PC110. Knowing this fact and also knowing that the codename
of the device is crespo, allows to choose the right kernel con�guration �le auto-
matically which includes a working kernel con�guration. It is also necessary to
know that the model name changed during the time so that Exynos 3, S5PC110
and Hummingbird are names of the same platform.

17

3 Practical Approach

This chapter will build upon the knowledge discussed in the Chapter 2, provid-
ing practical implementation and evaluation of USB functionality with Gadgetfs
module. The introductory part will provide a con�guration of Gadgetfs module
from the user space using program usb.c. Depending on the device controller
some changes are needed in con�guration of Gadgetfs module to make it work
with various SoCs. The con�guration will provide the settings for di�erent de-
scriptors. Next step will handle the execution of Gadgetfs on Linux system to
test its functionality. In almost the same manner the research will proceed in
the analysis of communication on Android, tested directly on the host computer
by using an Android emulator. The problems which arise by using an emulator
for testing the gadget functionality will be presented. In addition the OTG
con�guration of di�erent modes on Samsung Nexus S will be introduced. A
sequence of measures is required to set up the Gadgetfs as a loadable kernel
module on Nexus S device, to enable the right kernel con�guration. In other
case the device just won't boot. Also the ways to deal with the bricked device
will be mentioned. It is necessary to compile kernel and user space programs
for ARM architecture with a cross compiler. Additionally, the results of �ash-
ing di�erent kernel versions, tested for the purpose of this inspection will be
presented. The examination shows the problems and achieved solutions using
Gadgetfs on Exynos SoC. The work will proceed with the evaluation of debug-
ging information resulted in di�erent approaches tried out during an embedded
kernel debugging process. The short overview about the same functionality of
Gadgetfs module will be investigated with the help of BeagleBone Black devel-
opment kit.

3.1 Gadgetfs Usage

The right point to start to unfold the accomplished work is the usb.c program
which is the o�cial user space test program for Gadgetfs module. This program
decides dynamically which device controller is present on current hardware.
Depending on this information it con�gures the device by writing the correct
con�guration descriptors and device descriptor to the endpoint 0. When the
endpoints for IN and OUT transfer are con�gured then the two threads are
provided to read and write the data to or from the endpoints. One extra thread
controls the endpoint 0. Some gadget framework structures became initialized
in the user space and therefore allow a dynamic con�guration. It requires the
cross compilation of the user space program and its execution on the device. In
contrast to the preceding methods, a modi�cation of the kernel module would
bring the disadvantage of the kind that it would need to be recompiled against
the kernel source tree. The possible bugs in kernel module could bring the
system to a crash.

The �rst step was to change the user space program and to test its func-
tionality. Following options were in assortment. The �st one, to set up the
dummy_hcd module which simulates the USB gadget functionality on Linux.
The second approach was to get it working on the Android emulator. The last
alternative was to work directly with the Nexus S hardware. It is obvious that
the �rst two alternatives were favored because of the possibility to work directly
on the host computer.

18

The dummy_hcd allowed to test module on already approved to work sys-
tem like Linux to be able to understand the functionality and to test the con-
�guration and communication. The module dummy_hcd exposes a device side
of USB gadget API and simulates requests to a Linux host controller driver.
Thus, it allows testing of the gadget modules directly on the host by loading
the dummy_hcd and the gadget driver. To provide the gadget modules along
with dummy_hcd module on Linux, it was necessary to recompile Linux ker-
nel and to enable them during the kernel con�guration. This was successfully
managed therefore it was possible to load Gadgetfs module and simulate the
communication via dummy_hcd. The data could be exchanged by writing into
the endpoints on one side and by reading the data on the other side. To be able
to access the USB interface on the host side the approach was chosen with the
usage of usb-skeleton host module. This module is a part of the kernel source
tree so that by modifying this module a device �le on the host side could be cre-
ated. The device �le allowed reading and writing into it to exchange the data.
It was possible to test successfully all gadget modules described in Chapter 2.2.

This approach turned out to be successful and next step was to test it on
Android. In order not to forget the main goal to enable communication between
the host and Android, the second step was to try it out on the Android Emulator
which is provided with Android SDK. The special kernel for an emulator with the
codename "gold�sh" was compiled with enabled gadget drivers support. The
procedure of testing gadget modules on emulator was proved to fail because
Android emulator is build on the basis of out-dated version of Qemu emulator
and has no support for USB device controller. Accordingly, it was not possible to
test gadget module on host via an Android emulator. This brought this research
to the necessity to start to work with the real hardware based on Exynos SoC,
see Chapter 2.3.3.

At that time the research had to deal with real hardware. The following
changes were done to the user space program to make it run with an Exynos
SoC. The code is part of the program where the initial con�guration of gadget
is speci�ed. There are data structures to be set to con�gure the device. One
of the �elds is device name which depends on UDC driver. The s3c_udc_otg.c
is the source code �le for the USB device driver for Nexus S. Correspondingly,
the created device �le in directory /dev/gadget has a name s3c-udc. Depending
on device controller there are various aspects to set up. It has to be known in
advance whether the device controller supports the high speed and what are the
data transfer types of the endpoints. The con�gurations of endpoints which are
de�ned in user space have to be equal to prede�ned endpoints in UDC driver.

19

The changes which are needed in usb.c user space program to work on Exynos
SoC are shown below:

} e l s e i f
(s t a t (DEVNAME = " s3c - udc " , & statb) == 0) {
HIGHSPEED = 1;
device_desc . bcdDevice = __constant_cpu_to_le16 (0 x0100) ;
fs_source_desc . bEndpointAddress
= hs_source_desc . bEndpointAddress
= USB_DIR_IN | 2 ;
EP_IN_NAME = "ep2 - bulk " ;
fs_sink_desc . bEndpointAddress
= hs_sink_desc . bEndpointAddress
= USB_DIR_OUT | 1 ;
EP_OUT_NAME = "ep1 - bulk " ;

source_s ink_int f . bNumEndpoints = 3 ;
fs_status_desc . bEndpointAddress
= hs_status_desc . bEndpointAddress
= USB_DIR_IN | 3 ;
EP_STATUS_NAME = "ep3 - i n t " ;
}

The listing shows that Exynos SoC needs high speed to be activated. In addition
three endpoints are created. Two of them the bulk endpoints for IN and OUT
communication and the third is the control endpoint.

3.2 Cross Compilation for ARM

After the con�guration of the user space program has been accomplished, the
next step was to test the functionality on the Samsung Nexus S smartphone.
It was needed to set up the cross compiler environment to be able to compile
on host x86 architecture for an ARM architecture. There is still a possibility
to compile its own cross compiler, but a precompiled one was su�cient for the
purpose of this work. It was necessary to cross compile the Android kernel
and the also user space program for ARM architecture. This part of the work
was already handled during the IT Security Workshop 2012. The unsolved
problem in the workshop was that it was not possible to compile the user space
program for an ARM architecture because of non-present header �les. The right
solution was to use a di�erent cross compiler for ARM architecture and static or
dynamic linking. Noteworthy issue was the option to link program dynamically
against Android system libraries by setting the right paths. Another option was
to use static �ag during the compilation process. The static option links the
program statically so that it does not require dependencies on dynamic libraries
at runtime in order to run.

After a successful cross compilation of the user space program and the kernel
it was necessary to �ash the kernel image to the smartphone to be able to test
it. The important issue is to use the right version of kernel and ROM which
is a �rmware for Android. They need to match because otherwise the smart-
phone just decline to boot properly. When the ROM is �ashed to incompatible
device type the smartphone gets bricked. It is possible to recover the bricked

20

smartphone to its original stated by doing factory reset using ClockworkMode
recovery image or by re�ashing the stock or custom ROM.

As already discussed it is advisable to start the usage of the gadget frame-
work by testing it with g_zero module. This module supports only basic func-
tionality so that the standard test cases can be automatically tested. When
device is con�gured with g_zero module the host enumerates the gadget and it
is possible to read and write to it. The module g_zero writes back automati-
cally every data which host wrote to the device. The tests with this module on
Nexus S phone ended successfully.

It was also possible to load and positively test the following kernel modules
on Nexus S: serial gadget, network gadget and mass storage gadget.

3.3 Gadgetfs Debugging

The execution of user space program on Nexus S in connection with Gadgetfs
resulted in a system crash so that smartphone rebooted. Further explanation
will describe the steps which led to a bug �x.

The UDC driver for Exynos SoC de�nes endpoints which di�er in direction
and transfer mode. The endpoints which are de�ned and con�gured in user space
have to correlate with those endpoints. If the certain endpoint in UDC driver
is de�ned as an IN endpoint with bulk transfer mode then this endpoint cannot
be rede�ned in user space as an OUT endpoint or an endpoint with di�erent
transfer mode such as interrupt or isochronous. The various con�guration of
endpoints in user space were tried out but without any success to prevent the
system crash. The usual way to con�gure Gadgetfs module is to mount Gadgetfs
in /dev/gadget and then to execute the user space program which con�gures the
USB interface. As it is shown in the listing below, after mounting the Gadgetfs
in kernel log �les, the message appears: "s3c-udc: bind to driver nop -> error
-120". After the execution of user space program the Android phone got kernel
panic and rebooted. The �rst idea was that the preceding error message is
the cause of the trouble because as the massage says the USB device controller
driver could not be bound to device controller.

mkdir /dev/gadget

insmod gadgetfs.ko

mount -t gadgetfs gadgetfs /dev/gadget

ls /dev/gadget

s3c-udc

dmesg

[299.539226] Gadgetfs: USB Gadget filesystem, version 24 Aug 2004

[353.895836] s3c-udc: bind to driver nop -> error -120

After debugging it became clear that the driver was developed in such a way
that it started binding process only after execution of user space program. The
error message -120 is just a reminding that the Gadgetfs needs the execution of
the user space program to start the binding process. That was obviously not
the root of the problem with kernel crash and the rebooting was still unsolved.

To be able to work with gadget modules the device needs to be con�gured
in the device mode. The con�gured kernel used OTG functionality. It was
important to be able to switch between the host and the device functionality

21

on Android. By con�guring the kernel with support for OTG functionality it
was possible to switch the modes. When OTG functionality is con�gured on
Samsung Nexus S then the directory

/ sys /bus/ plat form/ d r i v e r s

should contain the following entry: dwc_otg. The dwc_otg is a sign that OTG
support on the Android is enabled. To change modes it is necessary to use root
privileges. The description of con�guration of host, gadget and OTG modes on
Nexus S device are listed below.

Host mode:

wr i t e 0 > / sys / dev i c e s / plat form/dwc_otg/setmode

Device mode:

wr i t e 2 > / sys / dev i c e s / plat form/dwc_otg/setmode

OTG mode:

wr i t e 1 > / sys / dev i c e s / plat form/dwc_otg/setmode

The modi�cation is also possible by installation of a Google Market Appli-
cation which controls the di�erent modes.

Due to the fact that the device with Gadgetfs module loaded has no addi-
tional interfaces to debug it remotely, so it requires to work with the terminal
directly on Samsung Nexus S touchscreen. It was soon clear that the set of
commands o�ered by the ToolBox is insu�cient. The decision was made to
cross compile BusyBox for ARM architecture to supplement the command set
and to use it instead of ToolBox.

As already mentioned, the consequence of user space program execution was
the restart of the smartphone with a kernel panic error message. The analysis of
the kernel dump was the starting point in the necessity of debugging the kernel
panic on embedded device. Additional obstacle in the debugging was the issue
that by loading the Gadgetfs module it was not more possible to use ADB or
serial connection to be able to access the smartphone. The way to examine the
kernel log messages was the option to do it only on the smartphone display or
to reload the phone without Gadgetfs module to be able to copy the debug �les
to the host computer over ADB interface.

The decision was made �rst to try out another Android kernel version be-
cause of the bug �xes which are included in the newer versions. The following
kernel versions were tested on a stock ROM which is a �rmware for Android
and on a custom CyanogenMod ROM:

\bullet Android Gingerbread 2.3 with the kernel version 2.6 was tested.

\bullet Android Ice Cream Sandwich 4.0 with kernel version 3.0 was tested.

\bullet Android Jelly Bean 4.2.2 with kernel version 3.0.50 was tested.

Unfortunately the usage of another kernel version did not brought better results
because the device controller driver for Exynos SoC did not changed from version
to version and was not a�ected by a bug �x. The Exynos SoC can be considered
as already pretty old. It is over �ve years on the market so that the bug �xes
on the linux-usb mailing list concern more recent systems.

22

To be able to proceed with this research it was necessary to �nd the cause
of the buggy behavior. The most useful technique to debug the kernel on an
embedded device turned out to use printk() commands. This command allows to
log the kernel function messages with parameters to a log �le. The log �le can be
analyzed after the kernel crash with the aim of �nding the last called function.
As described in previous chapters the gadget framework consists of 3 layers.
The starting point for debugging was the user space program usb.c. It could be
simply modi�ed by debug information and executed on embedded device. The
program uses the API of Gadgetfs and it turned out that the function which
caused the the bug was placed in the lower level. It was necessary to include
debug information to the inode.c �le which represents the Gadgetfs module. As
already discussed the Gadgetfs uses the API from USB device controller driver
so that it was also necessary to add the debug information the device controller
driver which is represented by the �le s3c_udc_otg.c. To be able to analyze the
kernel modules and its interdependence, it was necessary to become acquainted
with data structures used by gadget framework in special in the gadget and in
the UDC driver. At the end, it was possible to allocate the function. But in
order to proceed further, it is worth to remember that the S5PC110 chip which is
used in Nexus S is a subsequent model after S3C2410 chip. The device controller
driver which is used for S5PC110 is s3c_udc_otg and has to be compatible with
it. So it happened that that the number of declared endpoints in header �le
and the number of initialized endpoints in USB device controller driver was
di�erent. The consequence was that some endpoints were not initialized. An
attempt to dereference the uninitialized pointer led to kernel panic. The patch
of the misbehavior was to reduce the number of available endpoints in the header
�le from 15 to 14 or to add the non-present endpoint 15 into the device controller
driver.

Here comes the kernel patch for USB device controller driver s3c_udc_otg.c.
It brings the initialization of endpoint 15 which has to be de�ned.

1201,1216d1179

< .ep[15] = {

< .ep = {

< .name = "ep15-bulk",

< .ops = &s3c_ep_ops,

< .maxpacket = EP_FIFO_SIZE,

< },

< .dev = &memory,

<

< .bEndpointAddress = USB_DIR_OUT | 0xf,

< .bmAttributes = USB_ENDPOINT_XFER_BULK,

<

< .ep_type = ep_bulk_out,

< .fifo = (unsigned int) S3C_UDC_OTG_EP15_FIFO,

< }

The user space program uses only the �rst three endpoints to exchange
data. The endpoint 15 is never used by the user space program. The endpoint
15 de�nes a bulk endpoint with the OUT direction from the host's point of view.

23

After applying the patch it was possible to execute the user space program. The
user space program created 15 endpoints excluded endpoint 0 in /dev/gadget
directory without causing the kernel panic. The following step was to plug the
device into the host so that the host can start enumeration process. The result
was another bug. This bug disrupts the enumeration so that the device is not
recognized by the host.

3.4 Host Enumeration

Starting the user space program on Samsung Nexus S with verbose output
resulted in the following message.

#> ./usb

/dev/gadget/s3c-udc ep0 configured

** Wed Feb 26 10:02:02 2014

SUSPEND

CONNECT high speed

DISCONNECT

CONNECT high speed

DISCONNECT

CONNECT high speed

DISCONNECT

CONNECT high speed

The host kernel log �le below shows the attempts of enumeration. The
enumeration report error messages in endless loop without any success.

[5453.889566] usb 2-1.5: device descriptor read/64, error 18

[5454.065627] usb 2-1.5: device descriptor read/64, error 18

[5454.241502] usb 2-1.5: new high-speed USB device number 4 using ehci-pci

[5454.313667] usb 2-1.5: device descriptor read/64, error 18

[5454.489593] usb 2-1.5: device descriptor read/64, error 18

[5454.665655] usb 2-1.5: new high-speed USB device number 5 using ehci-pci

[5454.686276] usb 2-1.5: device descriptor read/8, error -61

[5454.806488] usb 2-1.5: device descriptor read/8, error -61

[5454.981641] usb 2-1.5: new high-speed USB device number 6 using ehci-pci

[5455.014346] usb 2-1.5: device descriptor read/8, error -71

[5455.146450] usb 2-1.5: device descriptor read/8, error -71

The log �le messages show that the host proceeds with the enumeration
process by reading the device descriptor from the gadget. The device side reports
the connected status, see Table 3: Gadgetfs Events. The next message on the
device shows the disconnect status and the host reports an error.

By analyzing the USB transfer it was possible to verify the data transfer via
Wireshark USB sni�er tool. It requires the loading of the usbmon module on
the Linux host. The usbmon module allows to monitor the USB transfer. The
usbmon extends kernel details to the user space through �le system. An analysis
of the captured packages revealed that the cause of an error message were the
malformed USB packages. The error code 71 in the listing above means protocol
error and the error code 61 signi�es that no data is available. The result is that

24

the host gets an error while reading and parsing endpoints so that the host tries
again and again to enumerate the device. The possible cause of this behavior
is the corrupt transfer of the device descriptor. It is also possible that the host
parses the device descriptor in a wrong way.

To be able to use another USB device controller to test Gadgetfs module on
embedded device this research used an embedded system with a di�erent device
controller chip. The suitable device was BeagleBone Black with OMAP3530
USB device controller so that in this case the special UDC driver for OMAP
chip was provided in kernel. The BeagleBone Black brings an additional host
USB port so that the board could be accessed and con�gured directly from
the host computer. The usage of BeagleBone Black with Gadgetfs module was
successfully tested. It was possible to exchange data between the host and
gadget. This issue strengthens the assumption of the buggy UDC driver of
Nexus S device.

An interesting fact is that Galaxy Nexus the next generation of Nexus pro-
duction line uses OMAP chip instead of Exynos. As already mentioned, the
OMAP SoC is also used on the BeagleBone Black which was positively tested.
It could be useful to work with Galaxy Nexus device for testing the Gadgetfs
functionality and if it proves to work then to port the realization to Samsung
Nexus S.

25

4 Conclusion

The purpose of the research was to analyze the concept of the gadget framework
on Android and to provide a practical approach for host-device communication
via Gadgetfs module. The Gadgetfs allows to con�gure the USB interface from
the user space. In particular it is possible to de�ne VendorID and ProductID
so that the host enumerates the smartphone as a card reader without any addi-
tional software needed to be installed on the host. As a conclusion a smartphone
can be used as a smartcard reader on operating systems like Linux or Windows.
For that purpose the device descriptor, con�guration descriptor, interface de-
scriptor and the endpoint descriptors are to be con�gured. This allows the host
to identify the device and to create endpoints which are logical elements for
communication. The way how to exchange the data with the help of device
�les on the host side was also mentioned. It can be done only after successful
enumeration of the device. In order to do so, the device should be capable to
switch between gadget and host modes using On-The-Go technology. The host
mode allows plugging of various peripheral devices into smartphone. The gadget
mode makes it possible to use the smartphone with card reader functionality.

The research is based on Exynos 3 an ARM based System-on-Chip developed
by Samsung. The Google Nexus S is one model out of production line of Nexus
devices with Android operating system. To proceed with the task of con�gur-
ing and debugging, the gadget framework was discussed which contains three
layers: the user space program, gadget driver and USB device controller driver.
Thus, the right con�guration of USB device controller for Samsung Nexus S is
necessary.

The research has to deal with ARM target architecture therefore the cross
compiler environment was necessary to be able to compile Android kernel and
user space program on the x86 host. To be able to use Gadgetfs on Samsung
Nexus S the USB device controller driver for that platform needs to work prop-
erly. The assumption at the beginning of this work was that the gadget driver
was functioning and that con�guration in the user space has to be modi�ed.
This assumption was false. This research covered the problem of buggy driver
and successful attempts which have been made to �x the bug. The user space
con�guration of Gadgetfs on Samsung Nexus S with Exynos System-on-Chip
led to a system crash. The kernel panic was successfully debugged and patched.
The endpoints on the device side were created. This issue led to next bug where
the host could not enumerate the device because some packages were malformed.
The cause could be that the device descriptor it transmitted incorrectly to host
or the host parses the descriptors in the wrong way due to the change in the
USB speci�cation. The detailed analysis of this issue would exceed the scope of
this work but can be investigated in a further research.

Moreover, the following gadget modules were introduced: gadget zero, serial
gadget, network gadget and storage gadget.

Another embedded system the BeagleBoard Black which is based on OMAP
System-on-Chip was presented. The OMAP platform uses a di�erent USB de-
vice controller driver so that Gadgetfs and also other gadget modules could be
tested with positive results.

Thus, this research suspects the buggy implementation of UDC driver for
Nexus S as a root cause of the malfunctioning. The possible solution is to use
Galaxy Nexus as it uses OMAP SoC made by Texas Instruments.

26

Similar research and implementation was done by Frank Morgner with Open-
Moko phone. The OpenMoko is based on Samsung S3C2410 System-on-Chip,
the Nexus S uses S5PC110 System-on-Chip which is the subsequent model.

The research analyzed the USB gadget framework on Android, showed pos-
sible shortcomings of driver implementation and introduced the bug �xes in
respect to the device con�guration.

27

5 References

[1] Bootstrap Yourself with Linux-USB Stack, Rajaram Regupathy (2012)

[2] Building Embedded Linux Systems, Karim Yaghmour, Jon Masters, Gilad
Ben,Yossef, Philippe Gerum (2008)

[3] Embedded Linux Primer: A Practical Real Word Approach, Christopher
Hallinan

[4] Embedded Android Porting, Extending and Customizing, Karim Yaghmour
(2013)

[5] Essential Linux Device Drivers, Sreekrishnan Venkateswaran (2008)

[6] Linux Kernel Development, Robert Love (2003)

[7] Linux-Treiber entwickeln, Jürgen Quade, Eva-KatharinaKunst (2012)

[8] Linux Device Drivers, Jonathan Corbet, Greg Kroah-Hartman, Alessandro
Rubini, Third Edition (2005)

[9] Linux Device Drivers, Jonathan Corbet, 3rd Edition (2005)

[10] Mobile smart card reader using NFC-enabled smartphones, Frank Morgner,
Dominik Oepen, Wolf Müller, Jens-Peter Redlich (2012)

[11] Mobiler Chipkartenleser für den neuen Personalausweis, Diplomarbeit,
Frank Morgner (2012)

[12] Pro Linux Embedded Systems, Gene Sally (2009)

[13] The Linux Kernel Module Programming Guide, Peter Jay Salzman, Michael
Burian, Ori Pomerantz

[14] USB complete: everything you need to develop custom USB peripherals,
Jan Axelson (2005)

[15] USB Complete The Developer's Guide, Jan Axelson (2009)

[16] Talking to Device Files, available at 7.5.2013
http://tldp.org/LDP/lkmpg/2.6/html/x892.html

[17] Linux-USB Gadget API Framework, available at 4.2.2014
http://www.linux-usb.org/gadget/

[18] USB-Interface, available at 4.2.2014
http://www.sprut.de/electronic/interfaces/usb/usb.htm

[19] Building a Kernel from source, available at 23.03.2013
http://xda-university.com/as-a-developer/

getting-started-building-a-kernel-from-source.

[20] Building for devices, available at 23.03.2013
http://source.android.com/source/building-devices.html

28

http://tldp.org/LDP/lkmpg/2.6/html/x892.html
http://www.linux-usb.org/gadget/
http://www.sprut.de/electronic/interfaces/usb/usb.htm
http://xda-university.com/as-a-developer/getting-started-building-a-kernel-from-source
http://xda-university.com/as-a-developer/getting-started-building-a-kernel-from-source
http://source.android.com/source/building-devices.html

[21] CCID free software driver, available at 12.6.2014
http://pcsclite.alioth.debian.org/ccid.html

[22] Connect USB peripherals to your Nexus One, available at 28.9.2013
http://sven.killig.de/android/N1/2.2/usb_host/

[23] Data Transfer to and from USB Devices, available at 7.6.2013
http://www.opensourceforu.com/2011/12/

data-transfers-to-from-usb-devices/

[24] Device Driver Support, available at 12.6 2014
http://www.linux-usb.org/devices.html

[25] HOW-TO Compile ICS AOSP, availible at 2.4.2013
http://forums.androidcentral.com/general-help-how/

144804-how-compile-ics-aosp-4-0-3-xoom-gnex-nexus-s.html

[26] Programming Guide for Linux USB Device Drivers, available at 3.4.2013
http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/usbdoc.html

[27] Samsung Nexus S, available at 13.04.2014
http://de.wikipedia.org/wiki/Nexus_S

[28] USB Gadget, available at 8.6.2013
http://www.armadeus.com/wiki/index.php?title=USB_Gadget

[29] USB Gadget, available at 12.06.2014
www.emlix.com/fileadmin/emlix/dokumente/FA_USB.pdf

[30] USB Gadgetfs, available at 2.5.2013
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:

usb-gadget:fs

29

http://pcsclite.alioth.debian.org/ccid.html
http://sven.killig.de/android/N1/2.2/usb_host/
http://www.opensourceforu.com/2011/12/data-transfers-to-from-usb-devices/
http://www.opensourceforu.com/2011/12/data-transfers-to-from-usb-devices/
http://www.linux-usb.org/devices.html
http://forums.androidcentral.com/general-help-how/144804-how-compile-ics-aosp-4-0-3-xoom-gnex-nexus-s.html
http://forums.androidcentral.com/general-help-how/144804-how-compile-ics-aosp-4-0-3-xoom-gnex-nexus-s.html
http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/usbdoc.html
http://de.wikipedia.org/wiki/Nexus_S
http://www.armadeus.com/wiki/index.php?title=USB_Gadget
www.emlix.com/fileadmin/emlix/dokumente/FA_USB.pdf
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:usb-gadget:fs
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:usb-gadget:fs

	Introduction
	Analysis of USB Host and Gadget on Android
	USB Overview
	Topology
	Host Functionality

	Gadget Modules
	USB Gadget Zero
	Serial USB Gadget
	USB Network Gadget
	Storage USB Gadget
	Gadgetfs

	Embedded Android
	System on Chip
	Samsung Nexus S

	 Practical Approach
	Gadgetfs Usage
	Cross Compilation for ARM
	Gadgetfs Debugging
	Host Enumeration

	Conclusion
	References

