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1 Introduction
Cloud storage applications are wide-spread in these days. They provide availability
and reliability for their users’ data.
In the status quo, most users do not use client-side encrypting cloud storage appli-

cations. That means that their files are transferred to the cloud storage as plaintext.
Because of that, cloud storage providers are able to read those files. The privacy of
the cloud storage users cannot be guaranteed.
At the same time, we witness extensive surveillance of digital communication by

secret services (see, for example, [1]). Even if the cloud storage providers respect their
users’ privacy, secret services can make them release their users’ data.

This is why we have to do client-side encryption to protect our privacy. That means
that the users’ files are encrypted before they are transferred to the cloud storage. We
discuss what has to be considered when designing a client-side encrypted cloud storage
system.
While doing this, we also focus on usability. This includes integrating our solution

transparently. That means that users can still use the cloud storage application they
are familiar with. They do not have to get used to another application. Many users
use proprietary software to access their cloud storage. We show how it can be confined
in order to prevent it from harming the users’ privacy.

Lastly, we add a token to our system. A token is a small device, e.g. a smartcard or
a smartphone. It contains a secret needed for the decryption of the user’s files. The
user can use the token to decrypt the cloud storage files on any PC system.
A token can increase availability of the data and add security and usability to the

system. We point out what has to be considered to provide a significant gain in security
when integrating the token into the system. At the same time, we describe ways to
provide usability in our solution.

Ultimately, we describe measures to help people to enjoy the comfort of cloud storages
while preserving their privacy.

1.1 Motivation
As we already described, client-side encryption is a requirement to provide privacy for
cloud storage users. We based this statement on spying cloud storage providers and
secret services. But even if the cloud storage providers were trustworthy and secret
services respected their citizens’ privacy, client-side encryption still is a requirement,
as we show in this chapter.
We give an overview of the security issues of Dropbox1 presented in [2].
To simplify describing attacks, we use “Alice”, “Bob” and “Mallet” as placeholder

names. Alice and Bob play the role of valid users. Mallet plays the role of an attacker.
Dropbox used a mechanism for data deduplication which used hash values. Whenever

Alice added a file to her Dropbox, the client software split the file in chunks of 4MB.
1https://www.dropbox.com/, all hyperlinks have been accessed on May 25, 2016.
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It then calculated the hash values of all the chunks and sent the hash values to the
server. The server checked, for which of the hash values it already had the chunks. It
then requested to upload only those chunks, which it did not have yet.

This mechanism can be used to download files from other users without having the
permission to do so. The requirement to get Alice’s file is to have the hash values of
the chunks. Once Mallet has them, he pretends to upload Alice’s file by sending the
hash values to the Dropbox server. Afterwards, he requests “his” file from the server.
The server will then send him Alice’s file. See figure 1 for a graphical presentation of
the attack.

For this attack, Mallet needs the hash values of the chunks of the files. It is unlikely
for him to have these. He would have to somehow steal them before. Anyway, this
attack could easily have been prevented by the Dropbox server.

Mulazzani et al.[2] also show how this and other weaknesses in the Dropbox protocol
were exploited for illegal, hardly traceable file sharing. This was a real problem
for Dropbox and not an accepted security weakness. Meanwhile, Dropbox fixed the
problems described here. This shows that Dropbox made a mistake implementing
their software. People should not rely on their cloud storage providers to implement a
system without security problems. They should be able to control their privacy. This
work is about helping people to do so.

Victim Attacker

Internet

Dropbox server

1. U
ploa

ds f
ile 2. Pretends to upload file

3. Downloads file

Figure 1: Getting another user’s file without permission.

1.2 Problems addressed
There are three security levels at which a cloud-storage protocol might work: not
encrypted, connection-encrypted or client-side encrypted. Figure 2 shows where Alice’s
data is visible in each method.
Methods one and two cannot provide privacy for the users. As the cloud storage

provider receives the users’ files in plaintext, the provider has access to them.
From an abstract point of view, client-side encrypted cloud storage systems can be

represented as in figure 3.
In the first step, we concentrate on the “Certificate Management” part of cloud

storage systems. We show security weaknesses in the design of current cloud storage
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Figure 2: Idea for image from https://www.wuala.com/img/how-it-works4.png on
https://www.wuala.com/en/learn/technology. As Wuala is out of ser-
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Figure 3: Abstract representation of client-side encrypted cloud storage systems.

7

https://www.wuala.com/img/how-it-works4.png
https://www.wuala.com/en/learn/technology


applications. They require the user to trust in the cloud storage provider. We show
security problems that need to be solved when designing a cloud storage system. The
trade-off between comfort and security is discussed. We also provide an implementation
of a system without the need of trust in the provider.
In the second step, we concentrate on the “Private Key Management/Decryption

Management” part of cloud storage systems. We enable the user to control the
decryption process. To do so, the private key resides on a token and the decryption is
done in transactions, which need to be authorized by the user. We show requirements
in the “File encryption/decryption system” needed for this approach (i.e. what we
have to consider in step one). We then show how the file’s meta data can be displayed
on the display of a trusted device before the decryption of that file. The meta data is
bound to the data which is decrypted, i.e. Alice sees authentically which one of her
files will be decrypted.

1.3 Contribution
There is a lot of academic work about encrypted cloud storages. Anyhow, these
publications mostly are about finding an efficient way to encrypt the files while still
being able to share them.
In this work, we see this only as one module of the whole system (which we called

“File encryption/decryption system” in figure 3). So the contribution in the first step is
to discuss security problems on a more abstract level than it has been done until now.
We analyze how public key verification can be done comfortably. We show scenarios that
only make use of comfortable public key verification, i.e using smartphones and Quick
Response (QR) codes. We also provide a protocol to verify public keys comfortably
when only one device has a camera. We additionally analyze how a secure solution can
also be transparent and show general limitations. Our proof of concept implements
the described transparency and security measures.

In the second step, a token is added to the system. We analyze in what way security
can be gained in this setup depending on the properties of the token. We describe a
system that provides control over the decryption operations for the user. This is done
by binding meta data to decryption keys. We also show general security limitations in
this setup. Our contributions are the analysis of the possible security gains depending
on the token, the procedure of binding meta data to decryption keys and our open
source implementation of the described procedures.
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2 Cloud storage without trusted third parties
2.1 Introduction
Motivation

As we have seen in section 1, only client-side encrypted cloud storages can be able to
preserve their users’ privacy. But even in client-side encrypted cloud storages, there
are problems left to be solved.

When Alice wants to share files with Bob, she needs Bob’s public key. The key may
just be transmitted via the internet. But how does Alice know that it is really the
public key of Bob, i.e. only Bob has the corresponding private key? If only Bob has
the corresponding private key, we call the public key authentic.
The provider might solve the problem of authenticity of public keys by acting as a

Certificate Authority. This means that the provider signs the public keys. Getting
Bob’s public key in an authentic way then works as shown in figure 4. After receiving
the key, Alice checks if it (respectively its certificate) is signed with the provider’s
private key. If it is, Alice encrypts the secret she wants to share with Bob using Bob’s
public key. She then shares her secret with Bob as shown in figure 5. Bob can then
download the encrypted secret as shown in figure 6 and decrypt it with his private key.

In this scenario, the cloud storage provider is able to perform a man-in-the-middle-
attack. In the first step, the provider might not provide Bob’s public key, but any other
public key to which the provider knows the corresponding private key (as shown in
figure 7). We denote Bob’s public key (Kp

B) and the provider’s public key (Kp
P ). Alice

checks if the certificate containing Kp
P contains a correct signature of the cloud storage

provider. And it does, of course, as the cloud storage provider signed it (claiming it
belongs to Bob). In the second step, Alice encrypts the secret she wants to share with
Bob using Kp

P , as shown in figure 8. The provider decrypts the secret. The provider
now knows the secret, which means that Alice’s privacy is lost. But the provider may
even play the man-in-the-middle-attack to the end, so nobody notices. It encrypts the
decrypted secret using Kp

B. When Bob wants to download the encrypted secret, the
provider provides the secret encrypted using Kp

B, as shown in figure 9. Bob decrypts it
using his private key. The attack can be uncovered if Alice gets Bob’s public key in
a second, effectively authentic way and compares it to the version she got from the
provider. But this is not likely to happen, if the software does not make clear that this
is necessary in order to ensure privacy or does not provide a comfortable way to do
this.
So this system only provides privacy for its users as long as the provider can be

trusted. Even if the cloud storage providers are not interested in harming their users’
privacy, secret services may be interested in the users’ data. So they might make the
providers reveal the users’ data. That is why it is not a good idea to have the privacy
depend on the provider. For this reason, eliminating the role of the provider as a
trusted third party is crucial.
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Problems addressed in this part

We show existing solutions for the “File encryption/decryption system” and the “Cer-
tificate Management” component (from figure 3). We explain in what way they have to
work together to form a client-side encrypted cloud storage. We also analyze how cur-
rent implementations handle certificate management. Afterwards, we propose another
solution in which users do not need to trust their providers.
In this solution, users do the public key verification instead of the providers. We

show how this can be done in a comfortable way. Our solution is also transparent. This
means that users can still use their original cloud storage application. We demonstrate
how we can integrate the security measures transparently in the existing system.

The attacker in this part (i.e. section 2) has the ability to intercept and manipulate
the data we use in our cloud storage. We assume that no attacker can manipulate
our operating system or our hardware. This means, that our operating system and
hardware can be trusted. What we can do in case this assumption is not warranted is
described in the second part of this work, see section 3.
As this is an academic work, the system we present here is not supposed to be the

most practical solution concerning cloud storages. It is supposed to depict in what way
a system without a trusted third party can be built, and what limitations concerning
usability exist. We do not expect cloud storage providers to adapt this system, as
its usability is limited. Anyhow, we explain the limitations and suggest measures to
improve usability in systems without trusted third parties.

Contribution

This work analyzes the security of client-side encrypted cloud storages not only on the
level of the encryption, but in a more abstract way. This means that we show how the
components of the system have to be combined in order to achieve security. While
doing this, we also consider usability. We show how usability can be improved and at
what points trade-offs between usability and security exist.

When doing public key verification, usability can be increased using smartphones and
QR codes. We contribute the description of specific scenarios. In these scenarios, all
required public key verifications for usual cloud storage use cases are done comfortably.
Doing a public key verification with exactly one device that does not include a

camera does at first glance not seem to be possible in a comfortable way. This is
because the public key verification on the device without camera cannot be done by
scanning the QR code of the other device’s public key. We contribute a protocol, which
makes comfortable public key verification possible, anyhow.

When securing an existing cloud storage system, we can create a new program. Alice
would then be supposed to use the new program instead of the original program. This
approach is not the most comfortable one, as Alice has to get used to a new program.
We contribute a system which integrates transparently. That means that Alice gains
security, but can still use the original program.

Our implementation proves that the system as described in this part works in practice.
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We do not include efficiency/scalability problems, as these are not important in our
use case. We do not discuss consistency problems like in network file systems for the
same reason.

2.2 Related work
In chapter 2.1, we demonstrated, why it is necessary to enable cloud storage users to
client-side encrypt their files. Of course, academic work and practical implementations
already exist in the field of client-side encrypted cloud storages. In this chapter, we
integrate our work with existing publications.

To do so, we first have a look at articles about examinations of cloud storage providers.
We will see that existing publications concluded that existing client-side encrypting
cloud storages are prone to the man-in-the-middle attack we described in chapter 2.1.

We then examine existing programs for encrypting cloud storages. These programs
use existing cloud storage providers and client-side encrypt the files for the user. We will
see that these programs do not work transparently. They also do not meet important
security requirements and are prone to the man-in-the-middle attack we described in
chapter 2.1.

After that, we examine articles providing ideas for the “File encryption/decryption
system”(see figure 3). We will see, that none of the examined publications includes
a reusable open source implementation. Our work does not focus on the “File en-
cryption/decryption system”. This is why we just adopt ideas from the examined
publications and create a simple “File encryption/decryption system” for our proof of
concept implementation.
A lot of work is done in the field of homomorphic cryptography with the focus on

client-side encrypted cloud storages. The idea is to encrypt the data, but still enable
the cloud storage server to perform operations on the encrypted data (without harming
the user’s privacy). The examined publications are not directly important for our work.
We just show, in what way this field is connected to our work.

From an abstract point of view, this part of the work is about securing an existing
communication procedure. That is why we examine existing publications that already
have treated this subject. We will find out that securing existing communication
procedures is already done for communication via the Transmission Control Protocol
(TCP)/Internet Protocol (IP) stack.

Articles about examinations of cloud storage providers

Duane C. Wilson and Giuseppe Ateniese [3] examined the cloud storage providers
Wuala, Tresorit and Spider Oak in regard security issues. All of these services provide
client-side encryption in their applications. Duane C. Wilson and Giuseppe Ateniese
concluded that all three providers work as Certificate Authorities (CAs). That means
that the confidentiality of Alice’s data does not only depend on the confidentiality of
Alice’s private key. She needs to trust her provider. In chapter 2.1 we have shown

12



that this is not an acceptable trust model (as it enables the provider to perform a
man-in-the-middle-attack).

Virvilis et al. [4] examined and compared existing architectures and infrastructures
of secure cloud storages. This article gives a great overview of existing cloud storage
providers and existing solutions for the “File encryption/decryption system” part. It
shows that the examined cloud storage providers do not provide an acceptable security
level. Virvilis et al. also define a set of criteria which can be used to compare solutions.
Anyhow, this work does not add any criteria to ours (which we define in the segment
“Programs for encrypting cloud storages”), as they are not important for our use case.
The criteria do not concern public key management.

Besides the described attacks, there are still other ways to get a cloud storage user’s
data. Another possibility to attack a client-side encrypted storage is to attack the
browser, given that a web interface for accessing the cloud is used [5, 6]. Whether that
attack is possible in a client-side encrypted cloud storage depends on Alice’s view while
using the web interface. If she sees her files in plaintext, the attack is possible. If she
sees only the encrypted files, the attack is not possible.

Programs for encrypting cloud storages

A client software should, in our opinion, meet the following requirements to be able to
ensure privacy and usability:

• Simple file sharing

• Easy file versioning

• Portability

• User acceptance

• Open source code

• Secure encryption/providing authenticity

• Security only relying on the private key of the client

It is obvious that not satisfying one of these requirements leads to insecurity or bad
usability.
CryptoHeaven2 is a provider which ensures privacy by providing an open source,

client-side encrypted cloud storage service. However, users have to pay to use this
service and would have to change their cloud storage provider. There also is no
statement about the possibility of sharing files. Hence, user acceptance is probably not
given for this provider in the use case we assume in this part of the work.
A promising approach is to use a software that does a client-side encryption like

Cryptree, while still using an untrusted provider. Like this, users can still use the
2http://www.cryptoheaven.com/offsite-backup/offsite-backup.htm
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software they are used to. There exist several implementations who took this approach.
This approach cannot satisfy our requirement of open source code, of course, if the
provider’s client software is not open source. We could achieve an acceptable level of
security by executing the client software in a sandbox environment. This way, we could
make sure that the client software can only access files in the cloud folder.
One implementation, which works on top of existing cloud storage providers, is

Boxcryptor3. Boxcryptor claims to provide secure cloud storage for all major cloud
providers. For the following reasons, Boxcryptor does not meet our requirements:

• The software is not open source.

• When sharing data with Bob, we get Bob’s public key from the Boxcryptor key
server4, see figure 10. There is no user-side checking of the authenticity of Bob’s
public key involved, so trusting the public key means trusting the Boxcryptor
key server. Our attacker Mallet, who controls the Boxcryptor key server, could
easily insert a public key from which he knows the private key. So the cloud
provider and Mallet could work together to perform a man-in-the-middle-attack
as described in chapter 2.1. Mallet could be member of the Boxcryptor company
or someone who gained control over the Boxcryptor key server (secret services,
crackers).

• Alice’s private key is stored on the Boxcryptor server. It is encrypted with her
password5. Like this, it is easy for her to get access to the encrypted files from
another device. Alice logs in to the Boxcryptor server. To do so, she provides the
user name and the (salted) hash value of the password (we denote this hash value
h(pw, salt)). The Boxcryptor server sends the private key (which is encrypted
using a key derived from the password) to the user. We denote this ciphertext
Epw(Ks

A). It can then be decrypted on Alice’s device using Alice’s password. For
a graphical presentation of the process, see figure 11.
Storing private keys on devices not controlled by the user is generally a bad idea,
even if the private keys are encrypted, because the security of the whole system
relies on them. Most users choose a weak password to encrypt their private key,
as strong passwords are hard to create and remember. Making users choose really
secure passwords cuts down usability. Encrypted private keys can be decrypted
using Brute-Force-Attacks. These attacks usually use password lists to get the
password. Once Mallet has the encrypted private key, he can try to break the
password in parallel and with unlimited tries. That is why the duration of the
password breaking process is mostly dependent on the amount of money Mallet
can spend for his (highly) parallel password breaking system. An attacker with a
lot of money could for example be a secret service.

3https://www.boxcryptor.com/en
4https://www.boxcryptor.com/en/technical-overview#anc03
5https://www.boxcryptor.com/en/technical-overview#anc09
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Figure 10: Alice shares a file with Bob. After step 5, Bob is able to decrypt the
downloaded file f . This picture does not show how Alice grants Bob access
to the file on the cloud storage server. This is probably done by the
Boxcryptor client software.

Other providers, like Sookasa6, do not even reveal how their systems work.
Another approach of providing confidentiality of data stored on a cloud storage is to

add a trusted device that is responsible for the privacy of the users of the attached
devices [7, 8]. This device is placed at the gateway of the network. It works similar to
a proxy.

6https://www.sookasa.com/how-it-works/
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Figure 11: Alice adds a second device to her Boxcryptor account. After step 2, she
can decrypt her private key. With the private key, she can decrypt the files
in her cloud storage.

Articles providing ideas for the “File encryption/decryption system”

The “File encryption/decryption system” (first mentioned in figure 3) is a part of a
client-side encrypting cloud storage system. It describes in what way Alice’s files are
encrypted. While providing encryption, it must also enable Alice to still share her files
with Bob. Other criteria could be simplicity, usability, or efficiency.

There exist several papers on the issue of creating a good “File encryption/decryption
system”, e.g. Cryptree [9], Key to Cloud [10] (K2C), CloudSeal [11], Cloudasec
[12]. In this work, we do not want to focus on developing new ideas for the “File
encryption/decryption system”. We would like to use an open source implementation of
some previous work. The only paper we could find with an open source implementation
is K2C.

Zarandioon et al. [10] propose a client-side encryption scheme called K2C, based on
Attribute-Based Encryption (ABE) [10, page 3, first paragraph of section 2]. ABE [13]
is a public-key encryption scheme. In this scheme, the ciphertext and the public and
private key have attributes. Only private keys with the matching attributes can decrypt
ciphertexts with specific attributes. The private keys are created and distributed by a
trusted third party (Private Key Generator (PKG)). An advantage of this scheme is
the possibility to add persons that should be able to decrypt after the encryption.

More concrete, the K2C scheme is based on Key-Policy Attribute-Based Encryption
(KP-ABE) [14] [10, page 6, first paragraph of section 2.3]. To explain KP-ABE, we first
explain Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [15]. In CP-ABE,
the ciphertext includes a boolean formula of attributes. To decrypt it, the attributes
of the private key must evaluate the boolean formula to true. KP-ABE is just the
other way around. The ciphertext has a set of attributes and the private key includes
a boolean formula, which must evaluate to true for a successful decryption.

Part of the K2C publication is a library for Hierarchical Identity-Based Encryption
(HIBE) [16] [10, page 3, last point in the itemization of chapter 1]. To understand,
what HIBE is, we first explain Identity-Based Encryption (IBE). IBE [17] allows users
to derive public keys from trivial information. This information could for example be
a name or an e-mail address. As in ABE, a PKG is used to create and distribute the
private keys. Actually, ABE is based on IBE and just regards a set of attributes as
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an identity [13, page 1, in the abstract]. HIBE is an IBE with more than one PKG.
There is one root PKG and sub-PKGs, which distribute private keys in their domain.

So again we need a trusted third party (as PKG). But we could make the owner of
the files the PKG. Then, having the PKG would not contradict eliminating the trust in
third parties. Alice would be the (root) PKG distributing private keys for decrypting
her files. Distributing the private keys could be done via a confident and authentic
channel. We could establish such a channel by doing a proper certificate management.
K2C provides three Java programs:

1. K2C Framework7

2. KP-ABE Library8

3. HIBE Library9

The K2C framework uses the cloud storage provider’s Application Programming
Interface (API). That is why the storage provider has to meet certain requirements.
We have to write provider specific code. The quality of this software (i.e. all three
Java programs) does not make a good impression. There is a lot of commented out
code and no documentation. Also, there is just this one version on sourceforge. There
is no visible development. That is why we decided not to use the K2C implementation
for the “File encryption/decryption system” part of our client-side encrypted cloud
storage application.

Grolimund et al. [9] proposed a file structure for a client-side encrypted cloud storage
called Cryptree. The main goals of the system design was simplicity and usability.
Cryptree has been implemented by Wuala10 (a cloud storage provider). There is no
open source implementation available. Anyhow, this paper provides some simple ideas
for designing the “File encryption/decryption system” part.

Cryptree relies on folder structures. A folder contains information about itself (name,
date of creation, etc.), about the files and folders it includes, and about the parent
folder. The idea of the Cryptree is to encrypt all of this information and to use different
keys for different information. The keys for the different decryptions are linked in a
way that allows deriving all needed keys from only one key.

The links between keys are called cryptographic links. There are symmetric links
and asymmetric ones. Symmetric links are created using symmetric encryption, for
example AES, to encrypt a key. So to create a symmetric link from KA to KB, we
encrypt KB with the AES procedure using KA as the secret key. The result is the
ciphertext EKA

(KB), as shown in figure 12. Everyone who knows KA and EKA
(KB)

can derive KB, as shown in figure 13. The advantage of symmetric links is performance.
The disadvantage is that we have to create a shared secret between two communicating

7https://sourceforge.net/projects/key2cloud/
8https://sourceforge.net/projects/kpabe/
9https://sourceforge.net/projects/hibe/

10https://www.wuala.com/en/learn/technology, Wuala is out of service since November 15, 2015.
That is why this reference does not work anymore.
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parties prior to the encryption. Asymmetric links use asymmetric cryptography, for
example RSA. Let KA be an asymmetric key consisting of Ks

A as the private key and
Kp

A as the public key. Let KB be the key we want to establish a link to from KA.
We then encrypt KB with the RSA procedure using Kp

A as the key. The result is the
ciphertext EKp

A
(KB), as shown in figure 14. Everyone who knows Ks

A and EKp
A
(KB) can

derive KB, as shown in figure 15. The advantage of asymmetric links is the possibility
of creating them without having to create a shared secret over an insecure channel
before (assuming we received the public keys in an authentic way). The disadvantage
is the bad performance.

AESKA

KB

EKA
(KB)

Figure 12: Creation of a symmetric link.

AESKA

EKA
(KB)

KB

Figure 13: Deriving KB using a symmetric link.

RSAKp
A

KB

EKp
A
(KB)

Figure 14: Creation of an asymmetric link.

A folder consists of the following data:

Representative data =
Name, creation date...

Parent folders Subfolders Files

Cryptree’s idea is to encrypt every kind of data with its own key. So to decrypt all
the data associated with the folder, we need the following keys:

Data Key Backlink Key Subfolder Key Files Key
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RSAKs
A

EKp
A
(KB)

KB

Figure 15: Deriving KB using an asymmetric link.

With the data and backlink key, we can find out information about the folder and its
parent folder. With the subfolder key and the files key, we can decrypt the subfolders
and files.
We also make it possible to derive all keys for one folder from the subfolder key.

Additionally, the backlink key from the parent folder can be derived from the backlink
key of the current folder. So if we know the subfolder key of the folder user in the path
/home/user/documents, we get the structure as shown in figure 16.

To be able to share a folder with other users, we add one key. This key is called the
clearance key. All other keys can be derived from the clearance key. It is enough to
make it possible to derive the subfolder key, because we can derive all other keys from
the subfolder key, see figure 17.

So to share a folder (that means the folder itself, all the files and subfolders included
in the folder, and the information about parent folders) with Bob, we enable Bob to
derive the clearance key from his private key and the encrypted clearance key. That
means, we add an asymmetric link from his private key to the clearance key.

Data Key Backlink Key Subfolder Key Files Keyfolder “home”

Data Key Backlink Key Subfolder Key Files Keyfolder “user”

Data Key Backlink Key Subfolder Key Files Keyfolder “documents”

Figure 16: Derivable keys when knowing the subfolder key of the folder “user”. Keep
in mind that all keys of the folder “user” can be derived from the subfolder
key of the folder “user”.

Cryptree uses symmetric links whenever possible because they are more efficient.
Asymmetric links are only used to derive the clearance keys from private keys. This
enables us to share data with Bob without having to exchange a secret with him.

We do not explain Cryptree any further at this point. Of course, the Cryptree paper
contains more ideas and more details than we presented here. But as already stated, we
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Data Key Backlink Key Subfolder Key Files Key

Clearance Key

Figure 17: Deriving all keys from the clearance key.

do not concentrate on the “File encryption/decryption system” part. That is why we
just adopt some of the Cryptree ideas to create a simple “File encryption/decryption
system” part. We adopt the folder structure, i.e. all files in a folder are encrypted with
one key. We also adopt the idea of being able to decrypt all subfolders of a folder (if
we can decrypt the folder). We do so by creating a symmetric link from the parent
folder key to the subfolder key. By following these ideas, our client-side encrypted
cloud storage can be used in an intuitive way.
The project zkcrypto11 claims to implement Cryptree. It does not have any public

documentation. There has been no progress since October 2011. The Cryptree interface
requires a login and a password, which does not match our understanding of the system.
Our understanding is that the interface requires files and a public key. Cryptree/the
“File encryption/decryption system” then encrypts those files and provides access for
the owner of the corresponding private key. For these reasons, we did not use the
zkcrypto implementation.

Cloudseal is another publication providing a “File encryption/decryption system”. It
also does not provide an open source implementation. It aims at high efficiency and
scalability [11, page 9, chapter 5]. Of course, these are important goals when designing
a “File encryption/decryption system”. On the other hand, Cloudseal did not focus on
simplicity and usability. But these goals are more important in our use case. We do
not care that much about efficiency and scalability, as it is not that important in our
use case. The number of persons we share our data with is usually smaller than 10.
Also, in Cloudseal, the cloud service provider is required to be “semi-honest; that is, it
follows the protocol and operations defined in CloudSeal, but it may actively attempt
to gain knowledge of cleartext of the content” ([11, page 3, first paragraph of chapter
2]). That means, the provider has to behave in a certain way. That is not what we
want, as we do not want to trust in the provider to be honest at all. For these reasons,
we do not adopt the ideas from Cloudseal.

Another publication providing a “File encryption/decryption system” is Cloudasec.
Cloudasec also does not provide an open source implementation. As K2C and Cloudseal,
Cloudasec also does not state simplicity as a main requirement. Again, efficiency and
flexible access control are important goals [12, page 2, chapter 2]. So just like Cloudseal,
Cloudasec does not provide enough simplicity and usability for our use case. We decided
not to include ideas from Cloudasec for that reason.
11https://code.google.com/archive/p/zkcrypto/
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Articles about homomorphic cryptography

There are also other subjects of research in the area of client-side encrypted cloud
storages. Performing operations on encrypted data, like search queries, without getting
to know anything about the data (homomorphic encryption) is discussed in many
publications, for example [18–21]. This is an important subject of research at the
moment. Anyhow, it is not very important for our work, as it is only a detail of the
“File encryption/decryption system”. As already stated, we do not focus on the “File
encryption/decryption system”.

Securing existing communication procedures

An example for securing existing communication procedures is stunnel12. Stunnel can
be used to secure communication done by programs which do not support confidentiality
or authenticity on the Transport Layer Security (TLS) layer. From an abstract point
of view, this is what Boxcryptor and others are trying to do. They also want to bring
in security after the system design. We also take this approach, but consider our
requirements (see the segment “Programs for encrypting cloud storages”) while doing
so.

Conclusions

As we have seen, existing client-side encrypting cloud storages are prone to the man-in-
the-middle attack described in chapter 2.1. Programs for encrypting cloud storages also
cannot prevent this attack. Additionally, they do not meet other security requirements,
e.g. being open source.
These results motivate to create a system without the described disadvantages. In

the following chapters, we analyze how our requirements can be fulfilled. We then
present a system which has been designed considering our requirements.

As we have observed, no proper open source implementation is available for the “File
encryption/decryption system”. Anyhow, we can use existing ideas from Cryptree to
implement a simple “File encryption/decryption system”.

We do not address problems like consistency etc., like they are discussed in network
file systems. We only treat the cloud storage use case in which users share photos,
videos, documents etc. The network file system problems are not a big issue in that
setting.

2.3 Design goals and abstract view
In this chapter, we abstractly describe our system design. The first two segments cover
the establishment of secure channels in a comfortable way using smartphones and QR
codes. We describe how devices are added and files are shared in our system. We show
how all required public key verifications for these use cases can be done comfortably.
12https://www.stunnel.org/index.html
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After that, we present a protocol to do a comfortable two-way public key verification,
when only one device has a camera.

The latter segments are about transparently securing existing communication systems.
First, we analyze why and how it is possible to secure a cloud storage transparently. To
do so, we show how other communication procedures have been secured belatedly and
compare these systems to a cloud storage. We then explain how transparent client-side
encryption works and present an abstract concept for the implementation process.
After that, we present general limitations of transparent client-side encryption.

Checking the authenticity of public keys

From Alice’s point of view, there are two major problems to be solved in a client-side
encrypted cloud storage system:

1. Making decryption of the cloud storage possible on each of Alice’s devices without
extracting the private key from the first device.

2. When granting Bob access to files, Alice needs to get Bob’s public key authentically
without trusting the provider.

These problems can also be seen as a single one. We can create a new key pair on
every device we add. We regard Alice’s additional devices like other cloud storage users.
Thus, we only have to face the second problem. When Bob was granted access for one
device, he still has to grant access to his other devices. At the end of this chapter, we
describe how he can do this.

This problem also had to be faced by established cloud storage providers. Duane C.
Wilson and Giuseppe Ateniese [3] examined three such providers (Wuala, Tresorit and
Spider Oak). They found out that all three providers worked as Certificate Authorities
(CAs), which were used to generate trust in the public keys of the users. This is just
the same approach we saw when examining Boxcryptor (see chapter 2.2). With this
approach, man-in-the-middle attacks are easy to perform for the cloud storage provider,
as described in chapter 2.1.
There are two famous ways of authentically providing a public key:

1. Hierarchical Public-Key Infrastructure: Trust is created by Certificate Authorities
(CAs), which check the ownership of the private/public key following policies.
This approach is expensive, time-consuming and not wide-spread (concerning
private end users).

2. Web of Trust: Trust is created by users verifying the ownership of other users’
public/private keys. Trust can also be transitive, if A trusts B and B trusts C,
then A might also trust C. The web of trust approach is, for example, used in
GNU Privacy Guard (GnuPG)13.

13https://www.gnupg.org/
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We assume, that users do not have much knowledge about cryptography and do not
want to invest much effort. That is why the second approach is the better one for our
use case.
Verifying public keys can be simplified by the use of smartphones. An example is

the messenger Signal14, which allows users to verify public keys by using a QR scanner.
Another example of using QR codes to verify public keys is the procedure described in
the GNUnet tutorial15. Also OpenKeyChain16 uses this procedure.

As the maximum capacity of a QR code is 2953 Bytes17, not every public key can be
encoded (for example, my 4096 Bit RSA public key18 has a size of 7199 Bytes). That
is why the public key is not transferred directly via the QR code. The public key is
transferred using web of trust key servers. Of course, any other channel (e-mail, cloud,
etc.) could be used for the transfer, as well.

After the download, the authenticity is verified by checking the key’s fingerprint via
QR code. The choice of the hash function used to create the fingerprint depends on
the version of the key. For version 3 keys, it is MD5, for version 4 keys, it is SHA1 [22,
pages 70 - 71]. As there has already been found a freestart collision for SHA1 [23], it
would be better to switch to for example SHA256 in the future (according to [24, page
38]).

Of course, it is also possible to first scan the QR code and download the key afterwards.
This way, getting and verifying the public key can be done in one step for the user.
The first procedure is represented in figure 18, the second one in 19.

To give an example, it is possible to scan the QR code of my public key fingerprint
from figure 20 using for example OpenKeyChain. Of course, the QR code in this
document does not mean that you actually got my public key’s fingerprint authentically.
It depends on how you got this document. The QR code is authentic only if you got
this document in an authentic way.
We combine the idea of one private key per device with the web of trust idea. By

also adding the QR code public key verification, creating trustworthy public keys is
possible in an easy way.

When Alice adds her first device to her client-side encrypted cloud storage, her client
software creates a key pair. A good choice for the first device is a mobile device, like a
smartphone. A mobile device has a camera, and a QR code scanner can be used to
easily verify public keys. By using a mobile device as the first device, no keys have to
be compared byte by byte when adding more devices.
On the other hand, a smartphone can easily be lost or stolen. That is why we

should think about key revocation at this point. When creating a private key, we can
also create a key revocation certificate. This should be stored in a safe place, and of
course not on the smartphone, because then we cannot use it when we do not have
14https://whispersystems.org/
15https://gnunet.org/first-steps-using-gnu-name-system, paragraphs “Creating a Business

Card” and “Be Social”
16https://www.openkeychain.org
17https://archive.is/20120915040049/http://www.qrcode.com/en/aboutqr.html#selection-497.11-497.15
18https://pgp.mit.edu/pks/lookup?op=get&search=0x0F72F672A6506F46
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Figure 18: Alice downloads Bob’s public key and verifies it afterwards.
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Figure 19: Alice scans Bob’s public key’s QR code, and performs downloading and
verification in one step (from the user perspective). On her smartphone, of
course, the verification is done after the download.

the smartphone anymore. A good idea is to burn it on a CD. As smartphones do not
have a CD burner, we cannot do this directly. But we will establish a confidential and
authentic channel to our notebook/desktop PC anyhow later in this procedure. Once
we have it, we can transfer the revocation certificate and burn it on CD using the CD
burner of the notebook/desktop PC.
It would also be possible to use a master key and subkeys. The master key could

be stored on a smartcard. Then, the smartphone’s key can still be revoked after the
loosing the smartphone. To do so, we use the master key stored on the smartcard.
We denote the public key on Alice’s first device Kp

1 . Alice encrypts her files using
the “File encryption/decryption system”. The Clearance Key (CK) of the cloud storage
folder is encrypted using Kp

1 , we denote this EKp
1
(CK). A sketch of the procedure is

shown in figure 21.
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Figure 20: The QR code encoding my public key’s fingerprint. The actual encoded
data is openpgp4fpr:4D891F4E173674D5CCD2BF9D0F72F672A6506F46.

When Alice adds a second device, another key pair is created by the client software
on it. We denote the public key of this key pair Kp

2 . Alice transfers Kp
2 authentically to

her first device by using QR codes. The client software sends Kp
2 to the web of trust key

server. Alice downloads Kp
2 to her first device. She then checks the authenticity of Kp

2
using QR codes. This procedure is shown in figure 22. In the key verification software,
the second device can be marked in red in case the key has not yet been verified. When
the key has been verified, the device can be marked in green. It would also be possible
to mark the device in yellow, when the same key/fingerprint was received via multiple
untrusted channels (e.g. web of trust key servers, e-mail and SMS). Of course, this
does not provide real authenticity. But on the other hand, an attacker has to put more
effort into controlling multiple channels than into controlling only one channel. That
is why it is still better than not verifying the key at all.

Alice can now be sure that Kp
2 has authentically been transmitted to her first device.

She then encrypts CK with Kp
2 , denoted EKp

2
(CK), and uploads this ciphertext to

the cloud storage. The second device authenticates to the cloud storage provider and
downloads the ciphertext as shown in figure 23. By decrypting the ciphertext with the
private key, the second device also sees the plaintext of the files.
For this scenario, a one-way authentic channel is sufficient. Anyway, Alice might

lose her smartphone and buy a new one. If so, we have to check the new smartphone’s
public key from the second device (which might not have a camera). How we can do
that using only QR codes is described in the segment “Establishing secure channels
with only one QR code authenticity check”.
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Figure 21: Alice adds her first device to
her client-side encrypted cloud
storage.
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Figure 22: Alice adds a second device and
checks the authenticity of the
public key.
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Figure 23: Alice’s 2nd device receives all
data needed for the decryp-
tion.
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Figure 24: First steps of Alice sharing en-
crypted files with Bob.
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When Alice wants to share a folder with Bob, she first grants Bob access to the
folder on the cloud storage server. Then Alice and Bob meet and use their smartphones
to transfer Bob’s public key to Alice’s smartphone in an authentic way (QR codes),
as shown in figure 24. In the key verification software, we once more use the red and
green coloring mentioned when Alice added her second device.

Afterwards, Alice proceeds just like adding a new own device, i.e. by uploading the
encrypted clearance key of the shared folder. Bob’s mobile device could then get the
encrypted clearance key and decrypt it.
To also add Bob’s other devices, the software on Bob’s mobile device encrypts the

clearance key with the public keys of the other devices. It then uploads the encrypted
keys to the cloud storage, where they are downloaded by Bob’s other devices. This can
be done even if Bob has read-only access. The encrypted keys would then be stored in
another place inside Bob’s cloud storage folder, where Bob has write access.

For this approach, it is required that Bob got the public keys of his other devices in
an authentic way on his mobile device. He can do that by displaying a QR code on his
PC/notebook/tablet and scanning it with his mobile device. This way, he never has
to read a public key fingerprint byte by byte. The verification of the public keys is
done by the software on his mobile device. It is comfortable and not prone to human
reading errors.

Establishing secure channels with only one QR code authenticity check

As already mentioned, we need to verify the transferred public keys when using
asymmetric cryptography to establish a secure channel between two devices. We
assume that the public keys have already been transferred, e.g. via a web of trust key
server. If both devices have a monitor and a camera, e.g. are smartphones, verifying is
easy. We display the QR code of the public key’s fingerprint on one device and read it
via the camera of the second device. We then proceed vice versa.

If none of the devices has a camera, we cannot use this approach. We can then
compare the fingerprints byte by byte. Another approach is to create colored pictures
of the public keys, which can easier be compared by humans19.
If one of the devices has a camera, we can still establish the secure channel in an

easy way. We could, of course, verify one public key via QR code and the other one by
comparing the fingerprint byte by byte, but that would not be comfortable.

Let us assume that we want to establish a secure channel between a smartphone and
a desktop PC. We display the QR code of the public key’s fingerprint on the desktop
PC’s monitor and verify it by using the smartphone’s camera.
Next, we verify the smartphone’s public key on the desktop PC. We could do that

by comparing the fingerprint byte by byte. But that is not a comfortable way.
On the desktop PC’s monitor, we display a QR code containing the smartphone’s

public key fingerprint and a random number (e.g. 4 digits). We then scan the QR
code with the smartphone’s camera and verify the smartphone’s public key on the
19https://telegram.org/faq#q-whats-this-encryption-key-39-thing, example picture avail-

able on https://telegram.org/img/key_image.jpg
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smartphone. If it is correct, we are done and could terminate the procedure. But then
we would not make sure that the user really checked the smartphone’s public key. To
ensure that the public key was verified on the smartphone, we ask for the random
number on the PC. When the public key verification on the smartphone was successful,
the random number is displayed. If the user does not enter the correct number, the
procedure is aborted. This way, we can be sure that the user really did verify the
public key on the smartphone.
The length of the number is not relevant for cryptographic purposes. The number

makes it harder for the user to misbehave. The procedure is represented in figure 25.

Alice Alice’s smartphone Bob’s desktop PC Bob

QR Code(o
wn public

key)

QR Code(s
martphon

e’s public

key, random
number r)

Enter r

Public key correct?
Public key correct, r

r

OK

r

r correct?

Figure 25: Alice and Bob establish a secure channel with only one QR code verification.
Alice uses her smartphone, Bob uses his desktop PC.

If we try to perform a man-in-the-middle attack on the protocol, we need to substitute
at least one of the two public keys. Let us assume that we substituted the desktop PC’s
public key. Then the smartphone will not verify it when it scans the corresponding
QR code from the desktop PC’s monitor. So let us assume that we substituted the
smartphone’s public key. But then, the smartphone will not verify it when it scans
the corresponding QR code from the desktop PC’s monitor. The procedure will be
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aborted on the smartphone. It will also be aborted on the desktop PC, as the user
does not type in the random number. Hence, we cannot perform a man-in-the-middle
attack on this protocol as described here.
For the verification of the smartphone’s public key, the users only need to transfer

the (short, e.g. 4 digits) random number from the smartphone to the desktop PC.
This is easier than comparing the smartphone’s public key fingerprint byte by byte.
Besides, Alice does not need to know that she must compare fingerprints. She can just
follow the interactive protocol which tells her what to do next.
In the last two segments, we have seen how public key verification can be done

comfortably by the users. We described how users can conduct every needed public key
verification using QR codes and a camera. We also presented a protocol, that works
with QR codes, even when one of the devices does not have a camera. If users follow
these approaches, the man-in-the-middle attack described in chapter 2.1 cannot be
performed anymore.

Securing cloud storages (non-)transparently

In the following segments, we treat the transparency part. That means, we show how
we can integrate our security measures into the existing cloud storage system without
the user noticing.

In this segment, we present non-transparent and transparent encryption. We discuss
the pros and cons and name the requirements for transparent encryption. We decide
to elaborate a system with transparent encryption, as it is more comfortable for the
user and its requirements are satisfied on many systems.

When securing a cloud storage service, we can use an additional folder or do it in a
transparent way. Transparently means that the user still uses the same folder as before
and is (in the first place) not aware of any changes.

The approach of adding a folder is shown in figure 26. An advantage of this solution
is, that it is compatible with every operating system. There are no special requirements
the operating system has to satisfy. A disadvantage is, that we have to hide the cloud
storage directory from our user Alice, because she could accidentally move her files into
that folder. That can also mean that we have to hide the cloud storage program from
her, because it could open the cloud storage directory. This can mean a lot of effort.
We could also use the cloud storage provider’s API. Anyhow, this adds a requirement.
The provider would have to provide that API. Additionally, our solution would then
be specific for the provider.

The second possibility (the transparent way) is shown in figure 27. An advantage of
this solution is that the user can directly use the cloud storage directory. We do not
have to hide it or the cloud storage program. A disadvantage is that the operating
system has to meet a requirement. It must allow us to gain control over the cloud
storage directory.
We take the second approach, i.e. we encrypt the cloud storage in a transparent

way. We take this decision because of the stated advantage. The disadvantage is not
a decisive factor, because this requirement is often satisfied. Linux allows us to gain
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Figure 26: Non-transparent encryption of a cloud storage. The dotted line represents a
communication via various routers in the internet. The decryption process
on Bob’s side is not shown.
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Figure 27: Transparent encryption of a cloud storage. The dotted line represents a
communication via various routers in the internet. The decryption process
on Bob’s side is not shown.

control over the cloud storage directory via Filesystem in Userspace (FUSE)20. On
Mac OS X, there has been the MacFUSE21 project which is no longer maintained.
On Windows, Dokany22 is available. As creating file systems in userspace is a feature
desired by application developers, it is likely to be developed for other operating systems,
too.
We presented transparent and non-transparent encryption of cloud storages. As

we have seen, transparent encryption provides better usability than non-transparent
encryption. As a requirement, the operating system needs to let us gain control over
the cloud storage folder. This requirement is satisfied on many systems. That is why
we decided to elaborate a transparently client-side encrypting system.

Securing existing communication procedures

In this segment, we analyze if it is possible to elaborate a transparently client-side
encrypting system. We will conclude that it is possible indeed. We compare cloud
storages to other types of digital communication (namely stunnel and e-mail). By doing
this, we show general approaches to the problem of securing existing communication
20https://github.com/libfuse/libfuse
21https://code.google.com/archive/p/macfuse/
22https://github.com/dokan-dev/dokany
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procedures. We also show general limitations and what requirements have to be fulfilled
to secure a communication transparently.

We distinguish direct communication from indirect communication. Indirect commu-
nication means that the data is stored on a server and can be accessed at a later date.
Direct communication means that the data is not stored on any server. The two parties
are communicating directly with each other, receiving happens just after sending.
Stunnel is a multi-platform program, that encrypts TCP/IP communication. The

two communication parties have a direct connection to each other. Stunnel provides
the SSL/TLS support if one or both parties do not natively support it, see figure 28.
Stunnel works as a proxy. That means, the sending program just sends its messages
as usual on a specific port. Stunnel captures the packages on the port, encrypts and
authenticates them and then relays the messages. This is possible, because stunnel
does an SSL/TLS handshake with the receiving side (and the other side expects an
SSL/TLS handshake). The advantage of this approach is transparency. For the sending
program and the user everything works as usual. Also, the original program was not
changed or extended.

Stunnel is an example, in which transparency works perfectly. The reason for that is
the multitier architecture of the TCP/IP communication. The program, which creates
the messages, uses the TCP/IP implementation to send them. The program on the
other side of the communication channel uses the TCP/IP implementation to receive
the messages. Both sides do not notice if the transfer happens in an encrypted way.
The transparency is possible, because we can intervene on every involved device before
the messages are sent or received.

In the e-mail case, no truly transparent solution exists to the best of our knowledge.
When sending an e-mail, we communicate indirectly. Alice does not send her e-mail
directly to Bob, but via at least one mail server.
We could try to encrypt e-mails like the stunnel communication via a proxy. But

e-mail programs usually encrypt the connection to the e-mail server (maybe even
via stunnel). For security reasons, it is a good idea to do so. If we encrypt the
communication again, the server will not be able to decrypt it and cannot process it.

The encryption has to be done the other way around. Before we send the e-mail, it
has to be encrypted. So if we regard the e-mail program as a black box, it does only
start to communicate when it is already too late for us to intervene. The problem is
that the creation and the transport of the mail is done by the same program.
That is why we have to change/extend the e-mail program to provide an end-to-

end-encryption, see figure 29. This has been done for the famous open source e-mail
program Thunderbird23. It has been extended by the add-on Enigmail24.

E-mail communication is a case in which transparent encryption does not work. The
reason for this lies in the fact that we can only intervene in the communication after
the sending device has already established an encrypted connection to another device.
There is no point at which we can get the e-mail in plaintext and encrypt it for further

23https://www.mozilla.org/en-US/thunderbird/
24https://addons.mozilla.org/en-US/thunderbird/addon/enigmail/
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usage. That is why we have to change the original program via an add-on.
In the cloud storage case, we have an indirect communication like in the e-mail

case. Anyhow, creation and transport of the messages are not being done by the same
program. The creation of the message (file) can be done by any program, the transport
is done by the cloud storage program. The interface between these two parts is a folder.
All files that are created in some specific folder are uploaded to the cloud. This is our
point of intervention. We gain control over the folder. We encrypt all files before they
are moved to the specific folder, see figure 30. On the other side of the communication,
we also gain control over the cloud storage folder. When the user accesses the folder,
we decrypt the files and present the decrypted data.

Cloud storages can transparently be secured, because we can intervene after creation
and before sending/receiving of the messages. We can do so by gaining control over
the cloud storage folder.
As we have shown, not every existing communication procedure can be secured

transparently. In the case of e-mail, it was not possible. In this case, security can be
established by providing an add-on. In the cloud storage case, securing the communi-
cation transparently is possible. In the following segments, we abstractly describe how
this can be implemented.

Alice
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support

stunnel

Program
with

SSL/TLS
support

Bob

creates
data in

transports
data

provides and
transports cipher-
texts

transports
data

Figure 28: Outline of a communication secured via stunnel. If Bob’s program also
does not support SSL/TLS, Bob can use stunnel as well. The dotted line
represents a communication via various routers in the internet.
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Figure 29: Outline of an encrypted e-mail communication. The dotted line represents a
communication via various routers in the internet. The decryption process
on Bob’s side is not shown.
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Figure 30: Outline of an encrypted cloud storage communication. The dotted line rep-
resents a communication via various routers in the internet. The decryption
process on Bob’s side is not shown.

Concept for the transparent way

In the last segment, we have seen that securing cloud storages transparently is possible.
To implement it, we gain control over the cloud storage folder. In this segment, we show
from an abstract point of view how we can do the transparent client-side encryption.
Our concept is based on different views for different viewers. When the cloud storage
program accesses the cloud storage folder, it is supposed to see the encrypted files.
When Alice accesses the cloud storage folder, she is supposed to see the decrypted files.

We now describe the setup on Alice’s PC. The cloud storage program is installed and
used in the usual way. The cloud storage directory is also used as without encryption.
We just add some software and two folders to the existing system. We call the added
folders the “encrypted folder” and the “decrypted folder”. These two folders can be
placed anywhere. They should be hidden from the user, as they are not intended for
direct use. Our user Alice does not need to know about them, as she still uses the cloud
storage directory. Hiding them is easy, as Alice is not aware of them and the cloud
storage program does not reference them. The encrypted folder contains the encrypted
files and folders, while the decrypted folder contains the decrypted files and folders.
As already described, we gain control over the cloud storage directory. Our goal is
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to present a different view of that folder depending on the viewer. If the cloud storage
program accesses the cloud storage directory, we redirect the access to the encrypted
folder. The program then sees the encrypted files and folders as shown in figures 31
and 32. Even the file/folder names may be encrypted. The following accesses will then
concern encrypted file/folder names, which will work transparently. The write accesses
are done without encryption. This is because the cloud storage program might write
its configuration to the folder, which is not synced.
If our user Alice accesses the cloud storage directory, we redirect her access to the

decrypted folder. Alice then sees the decrypted files and folders as shown in figures
33 and 34. So Alice’s following accesses will concern decrypted files (and possibly
decrypted filenames). By these different views, only the encrypted files are uploaded
to the cloud storage server, while the folder behaves just as without encryption from
Alice’s point of view.

To be able to differentiate between the cloud storage program and the user, we can
use the operating system’s user concept. We create a user “cloud storage program”,
which is used to run the cloud storage program. When an access to the cloud storage
directory is done, we check which user demands access. If it is cloud storage program,
we show the encrypted folder, else we show the decrypted folder. That means that
the confidentiality of the files depends on the user concept of the operating system. If
the cloud storage program is able to switch to another user, it can read the decrypted
files. Anyhow, if our operating system has weaknesses, there might as well be other
possibilities to get inside and read the files. In that case, we can still limit the damage
by the approach presented in the second part, see section 3.

Of course, we need to confine the cloud storage program, as it is potentially proprietary
software. For example, we need to prevent access to the decrypted folder. We describe
measures to confine the program in chapter 2.4.

In this segment, we explained from an abstract point of view how transparent client-
side encryption can be implemented. We used an encrypted and a decrypted folder to
store the encrypted respectively decrypted files. When an access is made to the cloud
storage folder, we redirect it to the encrypted or decrypted folder depending on the
user who made the access. This way, the cloud storage program only sees encrypted
files, while the user still sees the files as plaintext.
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Figure 32: Transparent cloud storage pro-
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Figure 33: Transparent user read access.
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Figure 34: Transparent user write access.
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Transparency limitations concerning shared folders

In the last segment, we presented our concept for transparent client-side encryption.
This concept works perfectly for the daily usage of the cloud storage. Daily usage
means dropping files in the cloud storage folder and accessing them from multiple
devices. However, when we use functionality beyond that use case, there are limitations
in transparency.
In this segment, we show that there is a general limitation to transparency when

sharing folders and receiving shared folders. The reason for this is that we did not
define an interface to do so. Defining the interface, however, would add a requirement
to the behavior of the cloud storage application. We instead show how we can combine
security and usability within the described limitations.

When receiving a shared folder, we should check if this folder really comes from the
user we expect it to come from. Otherwise, the cloud storage provider would be able
to plant faked documents or viruses on us. We can use signatures to do the check.

When checking if a message is authentic, there are two entities involved. One is the
claimed sender, the other one is the signer. Only if claimed sender and signer match,
the signature should be accepted. We explain the signature verification process by
taking e-mail as an example.

An e-mail has a sender, which is contained in the e-mail header. This sender is easily
interchangeable for the e-mail client and every server delivering the e-mail, as it is
not bound to any kind of signature. We called this entity the claimed sender. If the
e-mail is signed, it also contains a signature. The entity bound to the public key (by a
certificate) is the signer. We give an example in figure 35.

Figure 35: Example for a signed e-mail. The claimed sender is marked in blue, the
signer is marked in red.

An e-mail client can check if claimed sender and signer match. If it does not do that,
it is easily possible to fake authentic messages. We leave the claimed sender as it is and
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sign our faked e-mail with any private key to which the receiver has a trusted certificate.
The receiver’s e-mail client then checks the signature and accepts it. It does that
because the signature is correct. The signer just does not match the claimed sender.
Only if Alice compares claimed sender and signer with her own eyes, she can notice
the forgery. Preventing this kind of attack is possible in e-mail programs, because
both claimed sender and signer are available. As we can see in figure 36, Enigmail
(1.9.2, Thunderbird 38.7.0, GnuPG 2.0.26) does not do that. The described attack
is possible25. We additionally tested evolution26 3.12.11, the attack was also possible
with this software.

Figure 36: Example for a signed e-mail with different signer and claimed sender. The
claimed sender is marked in blue, the signer is marked in red. As we can see,
Mallet changed the content of the message. It claims, that the meeting is on
saturday instead of friday. Only if we compare claimed sender and signer,
we see that something is wrong. Enigmail could do this automatically and
warn us, but this is obviously not implemented.

In the cloud storage use case, we also would like to check if claimed sender and signer
match, because we also want to prevent the described attack. Getting the signer is
easy. When sharing a folder, we place a signed file in the folder which contains the
folder name. We also place a signed and encrypted file in the folder containing the
password for decrypting the folder. When accessing the shared folder, we check the
signatures and know the signer.
In the cloud storage use case, we did not mention the claimed sender yet. When

sharing a folder, we have to do two steps. Step one is to enable decryption for the other
person (by placing the encrypted password file in the folder). Step two is to enable
access for the other person at the cloud storage provider. We already described this
25Request for enhancement: https://sourceforge.net/p/enigmail/bugs/612/
26https://wiki.gnome.org/Apps/Evolution
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procedure in the segment “Checking the authenticity of public keys”, see also figures
22, 23 and 24. When accessing a shared folder, the steps are done in reversed order.
We first accept the shared folder. In that step, the claimed sender comes into play.
The cloud storage provider presents a sender, of course not authentically. In the second
step, we verify the signature and obtain the signer. If we want to check signatures like
in the e-mail use case, we need to check if the claimed sender and the signer match.

Sharing the folders in two steps already breaks transparency. Alice knows about our
program, because she now has to do two steps instead of one when sharing a folder.
We could of course try to intervene in the cloud storage provider’s user interface and do
both steps in one user operation. But still then, Alice would have to use our program
instead of the original cloud storage program. We could hack the original program to
do what we want. But this would mean a lot of effort and would make our solution
very specific.

It is also very hard to check claimed sender and signer transparently. It is not
clear in what way the cloud storage software allows us to share folders/accept shared
folders. For example, Dropbox does this via a website27. But there are a lot of other
ways possible (e.g. e-mail). We can, of course, try to intervene in the cloud storage
provider’s user interface and get the claimed sender from there. But this would add
a requirement to the cloud storage provider, namely to have a special kind of user
interface. Additionally, our solution would then be specific for a provider.
A possible way to still prevent the described attack is to let the user accept the

shared folder in whatever way the cloud storage application does it. Afterwards, we
present the signer (via a Graphical User Interface (GUI)) and ask our user Alice, if she
accepts the folder from that signer.

In this segment, we showed that it is not a good idea to keep transparency in the file
sharing use case. Implementing a truly transparent approach would be very complex
and would make our solution specific for one provider. Adding more providers would
again mean great effort. That is why we decided to let our user do two steps when
sharing a folder and check the signer when receiving a folder. This way, our software is
not truly transparent in this use case, but is a general, not provider specific solution.

Transparency limitations depending on the “File encryption/decryption system”

In this segment, we show additional limitations concerning transparency. We exam-
ine, what effects the design of the “File encryption/decryption system” has on the
transparency of the resulting client-side encryption. The main statement is that the
cloud storage folder might be accessed by interfaces not manipulable by the “File
encryption/decryption system”. That is why the user might see the encrypted file
structure. The use cases we examine are sharing files and restoring old file versions.

The “File encryption/decryption system” might do strange things like dividing files
into blocks etc. This is not a problem as long as the “File encryption/decryption
system” is the only way the cloud storage is accessed. This is the case for the simple
27https://www.dropbox.com/help/19
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usage. Whenever Alice tries to access her files, we present the decrypted view via the
“File encryption/decryption system”.

Anyhow, Alice might access the cloud storage in other ways (like a web interface).
This might happen to share files or to restore older file versions. Then, Alice sees the
encrypted version of her files. Filenames might be encrypted or the files may be divided
into multiple blocks, maybe not even a folder structure exists.
Just like in the segment “Transparency limitations concerning shared folders”, we

once again could try to change the interface. For the same reasons as in that segment
(less effort, more general solution), we do not do that. Instead, we now describe
measures to help the user deal with the encrypted folder structure. A program which
shows decrypted folder structures in the browser instead of encrypted ones actually
exists. It is called EncFSAnywhere28. It works for file structures encrypted with
Encrypted Filesystem (EncFS). As we will see in chapter 2.4, this is the program we
will use for encryption.

When Alice wants to share a folder, in the first step she has to enable decryption for
the other user(s). This is done via a program provided by us. This program can access
the files via the “File encryption/decryption system”. If the cloud storage application
provides interfaces, it can also share the folder at the cloud storage provider. In every
case, our application can tell the user what files/folder have to be shared at the cloud
storage provider. This can for example be required if the file names are encrypted.
When accepting a shared folder, the user has to accept the encrypted folder name in
the first step. In the second step, we can present both the encrypted and the decrypted
folder name.

When Alice wants to restore an old file version, she also might have to use something
like a web interface. She then would have to identify the old file name by looking at
the encrypted file structure. We can help her by providing a program which gets a
decrypted path as input and provides the encrypted path as output. It is also possible
to implement a program which works in the browser and provides the decrypted file
structure for the user. Anyhow, this program would have to make assumptions about
the provider’s web interface. So such a program is not a general solution.

In some way, the “File encryption/decryption system” has to match the cloud storage
provider for use cases like sharing files and restoring old file versions. If, for example,
the “File encryption/decryption system” saves all files in only one container, the cloud
storage provider should support sharing only parts of the container. Else, the user
would have to share the whole container when only wanting to share one file. The
receiving user would then have to download the whole container. If the user wants
to restore old file versions, restoring only parts of the container should be supported.
So to enable use cases like sharing folders or restoring old file versions, a simple “File
encryption/decryption system” working with files and folders like e.g. Cryptree, is a
good choice.
We showed that the “File encryption/decryption system” influences the degree of

transparency. Just like in the last segment, implementing a truly transparent approach
28https://bitbucket.org/marcoschulte/encfsanywhere
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would be very complex and would make our solution specific for one provider. Instead
we showed, how the user can be helped when sharing files or restoring old file versions.
This way, we have less implementation effort and provide a more general solution.

Revoking access to a shared folder

In this segment, we face the problem of revoking access to a shared folder. That means
that we shared a folder with Bob, but now do not want Bob to have access to that
folder anymore. We integrate this problem into our work and conclude that it is not
part of our focus. We provide references, which show in detail how the problem can be
solved efficiently.

Revoking access to a shared folder also has to be done in two steps. Let us assume
that we want to revoke the access for the user Bob. In the first step, we revoke the
access at the cloud storage provider. That means that Bob cannot access the contents
of the folder anymore, but only if the cloud storage provider really behaves like we
want it to. Besides, Bob and the cloud storage provider could work together to get
access to the plain files in the folder. The cloud storage provider would contribute the
access to the encrypted files and Bob would contribute the decryption keys.

That is why we need to do the second step as well. In the second step, we revoke the
access cryptographically. That means that we have to use another key to encrypt the
files in the folder. Using new keys only for changes or new files is called lazy revocation.
Reencrypting everything with a new key is a secure, but not very efficient solution.
This problem is discussed intensely in already cited papers concerning the “File

encryption/decryption system”, see chapter 2.2. As we do not focus on that part of
the system, we do not discuss it any further.

Conclusions

In this chapter, we presented our system design. In the first two segments, we showed,
how public key verification can be done securely and comfortably. We mentioned
the required public key verifications in cloud storage use cases. We then described,
how users can do all of them by scanning QR codes with their smartphones. We also
provided a protocol, which uses QR code scanning even if one device does not have a
camera.

In the latter segments, we discussed the pros and cons of transparent client-side en-
cryption. We decided to encrypt transparently. We discussed if transparent encryption
was possible and described abstractly how it can be implemented. Lastly, we discussed
the general limitations of this approach.

2.4 Implementation
We implemented the system described in chapter 2.3 to allow transparent client-side
encryption with user-done public key verification when using Dropbox. Instead of
the cloud storage provider, users verify each other’s public keys using QR codes and
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smartphones. This way, the man-in-the-middle attack as described in chapter 2.1
is not possible anymore. At the same time, the public key verification can be done
comfortably. The encryption of the cloud storage is done transparently. That means
that users still use their cloud storage folder just like in the non-encrypted setting. The
implementation can be found on github[25] (a tutorial on how to use the software can
be found in the Readme in the appendix of this work).
The implementation is not specific for Dropbox. We can easily use other cloud

storage applications. As shown in chapter 2.3, we solved the problem of transparent
client-side encryption with user-done public key verification independent of the cloud
storage application. That means that even open source cloud storage applications
which do their best to preserve the user’s privacy do not need to implement a client-side
encryption (in the limitations described in chapter 2.3). An example for such an
application is Cloudfusion29. Cloudfusion is an open source application allowing to
access well-known cloud providers.

Checking the authenticity of public keys

We now analyze how the public key verifications as described in chapter 2.3 can be done
in practice. We will conclude that the required software already exists and does not
need to be implemented. It can be modified to support two-way public key verification
with only one camera we described in chapter 2.3.

Public key verification is a general problem. It is not specific for the cloud storage
encryption use case. That is why there are programs, which solve this problem in
general. GnuPG30 is such a program. It is an open source implementation of the
Open Pretty Good Privacy (OpenPGP)[22] standard. The OpenPGP standard defines
formats for encrypted data, signed data and certificates.
GnuPG has features, which are not included in OpenPGP:

• GnuPG supports main keys which are only used to sign certificates. They are
not used to decrypt or sign data. They sign certificates for subkeys which are
used for decryption and signing. As the main keys are not often used, they can
be stored more secure (with more effort to use them) than the subkeys.

• GnuPG supports certificate validation via a web of trust. The authenticity of
public keys is verified and signed by the members of the web of trust. Besides,
transitive trust is possible. That means that if B signed the certificate of C, and
A trusts B, A might also trust the certificate of C.

GnuPG does not support displaying QR codes of public key fingerprints. But we
can easily create QR codes from fingerprints by using qrencode31. We can then use an
image viewer to display the picture of the QR code. We gave an example in figure 20.
29https://github.com/joe42/CloudFusion, no progress since January 2015
30See footnote 13.
31https://fukuchi.org/works/qrencode/
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The GnuPG equivalent program for Android is OpenKeyChain32. OpenKeyChain
allows importing public keys via QR codes. To do so, it gets the fingerprint via the
QR code. Then it searches the OpenPGP key servers for keys matching the fingerprint.
The calculation of the fingerprint depends on the key version [22, pages 70 - 71]. For
version 3 keys, MD5[26] was used, which is deprecated now. But even for version 4
keys, only SHA-1[27] is used. SHA-1 should not be used anymore according to [24,
page 38]. Of course, it would also be possible to execute the procedure described here
with a currently safe hash function like SHA-256[27].

From an abstract point of view, it would of course also be possible to transfer the
whole public key by scanning multiple QR codes. This would imply more effort for the
user. On the other side, the public key does not need to be uploaded. This way, the
web of trust cannot harm the user’s privacy (by showing connections to other users).

Using OpenKeyChain, we can also download the key first and verify it via QR
code afterwards. Figure 37 shows the involved software components in a public key
verification.

So the software for the public key verification as described in chapter 2.3 already
exists and does not need to be implemented.
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Figure 37: Involved software when verifying a public key.

32See footnote 16.

42



Transparent client-side encryption

We implemented the concept described in chapter 2.3. In this concept, two folders
were added to the existing system. They were called the “encrypted folder” and the
“decrypted folder”. When accessing the cloud storage folder, Alice is redirected to the
decrypted folder, while the cloud storage application is redirected to the encrypted
folder. Our implementation was tested with the cloud storage provider Dropbox.
We used FUSE33 to implement a virtual file system. This way, we gained control

over the cloud storage folder. We started Dropbox as user “dropbox”. When a process
accesses the cloud storage folder, FUSE calls the functions defined in our program.
We can then find out, which user requested the access34. Depending on the user, we
redirect the access to the encrypted or decrypted directory.
When we start Dropbox as user “dropbox”, we cannot access the normal user’s

display. We have to allow the access as the normal user. A “quick and dirty” (and
insecure) way to do this is to use “xhost +”3536.
As stated in chapter 2.2, we used some of the ideas from Cryptree to implement

a simple “File encryption/decryption system”. An important element of our “File
encryption/decryption system” is EncFS37. EncFS is a virtual file system which encrypts
files stored in a conventional file system. It uses FUSE to present the decrypted files in
a transparent way.
There has been a security audit38 showing weaknesses in EncFS. Solving these

security problems is not a concern of this work. We see EncFS only as one element
to create a simple “File encryption/decryption system”. And as already stated, even
the “File encryption/decryption system” is not our main concern. Our main concern
is providing secure and simple public key verification and transparent client-side
encryption.
We now describe how our program works. We use EncFS to encrypt folders. We

start with the top folder. First, we create a password using the makepasswd39 program.
We then start EncFS for the top folder using the password we just created. EncFS
will encrypt all files, which we save to the decrypted folder and save the result in the
encrypted folder. That means that we do not have to do step 4 from figure 34, EncFS
does it automatically for us when we perform step 3.

We encrypt the password using our public key using GnuPG and save the result in
the encrypted folder. When we terminate our program, we can decrypt the password
file from the encrypted folder using our private key.

33See footnote 20.
34https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201001/homework/fuse/fuse_doc.html, paragraph “Getting

FUSE Context”
35http://linux.die.net/man/1/xhost
36For a discussion on cleaner and safer solutions, see http://serverfault.com/questions/51005/

how-to-use-xauth-to-run-graphical-application-via-other-user-on-linux
37https://vgough.github.io/encfs/
38https://defuse.ca/audits/encfs.htm
39https://packages.debian.org/en/jessie/makepasswd
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To do so, we use GnuPG Made Easy (GPGME)40. GPGME is a library providing
an API to perform encryption/decryption operations using GnuPG. We can then start
EncFS with the password. It will decrypt the files we access in the decrypted folder.

We start EncFS as a process. We do so, because EncFS does not provide an interface
to be used as a library. Starting EncFS as a process means that the Dropbox process
might be able to gain information about the parameters the process was started
with. That could be the password or an encrypted folder name/decrypted folder name
mapping. That is why it is a good idea to limit the Dropbox user’s access on process
information, e.g. by using setfacl41 on /proc .
When a folder is created within an existing folder, we proceed as we did with the

top folder with one exception. We do not encrypt the password with our public key.
Instead, we just store the password file in the decrypted folder. EncFS will encrypt it
and store the result in the encrypted folder. That way we implement the idea from
Cryptree with intuitively shareable folders. If we can decrypt a folder, we can also
decrypt all of its subfolders.
When we want to share a folder with Bob, we just encrypt its password with

Bob’s public key and sign it with our private key. We created a program (called
share_a_folder) which takes a folder and a public key fingerprint as input and
performs the stated operations. Bob can then decrypt the folder and all its subfolders
and verify the signature. Of course, we also need to grant Bob access via the cloud
storage provider.

Lastly, we need to confine the cloud storage application, because it might be propri-
etary software. To prevent access to certain folders, we can use setfacl. We can also
chroot42 to set a new root directory for the Dropbox user. This way, we can easily
confine the access to many folders. Of course, all other Linux sandboxing tools are
available for us. We could also use additional sandboxing tools, e.g. MBOX[28].

In this chapter, we showed how we implemented the system we abstractly described.
We tried using existing software whenever possible. An overview of the used software
is given in figure 38. Our proof of concept implementation shows that the system we
described works in practice.

40https://www.gnupg.org/related_software/gpgme/index.html
41http://linux.die.net/man/1/setfacl
42http://linux.die.net/man/1/chroot

44

https://www.gnupg.org/related_software/gpgme/index.html
http://linux.die.net/man/1/setfacl
http://linux.die.net/man/1/chroot


Alice’s PC

fuseecs

GPGME

FUSE

EncFS
Crypto operations/results

triggers
Cr
yp
to
op
era

tio
ns/

res
ult
s

Figure 38: Involved software when transparently encrypting the cloud storage folder.

2.5 Remaining problems
After presenting our solution, we discuss remaining problems. These problems should
be subject to further research. We explain how the cloud storage provider can still
derive information from meta data. Anyhow, this problem exists in many types of
encrypted digital communication (e.g. e-mail, instant messaging).
Even if we encrypt our files in the cloud storage, the cloud storage provider can

derive a lot of information from meta data. This problem is not specific for the cloud
storage use case. The same problem exists when sending encrypted e-mails or instant
messages. The size of the message reveals, what kind of message (text, picture, video,
audio) it is and how long it is approximately. But we do not have this problem when
encrypting a local disk. All the encrypted data on the local disk appears as one single
block if it cannot be decrypted (if we fill the disk with random data before using it,
the block has the size of the disk capacity). As the cloud storage use case might be
regarded as a special case of the local disk use case, there might be possibilities to
make it harder to derive information from meta data.

The following information is visible to the cloud storage provider (depending on the
“File encryption/decryption system”):

• Folder structures

• File sizes (up to the block size of the encryption algorithm, if it uses padding)

The provider can derive further information. We give some examples:
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• File type: A lot of files of approximately the same size (about 2MB) in the same
folder will probably be photos. A lot of files which vary more in size and have
a size between 2 and 6MB will probably be MP3s. Files with a size of about
700MB, 4.7 GB or 25 GB will be disk images, probably of movies. A lot of small
files could be source code.

• File collections: An attacker can create “fingerprints” of file collections to identify
them in client-side encrypted cloud storages. File collections could for example
be articles criticizing an oppressive government. To create the fingerprints, the
attacker Mallet needs to have the file collection. He then encrypts it and saves the
folder structure and the file sizes. Afterwards, he scans client-side encrypted cloud
storages for users whose storages include file collections matching the fingerprint.
He can then take measures to prosecute these users.

In other words, the privacy of users with a visible file structure is threatened. To
protect privacy, the client-software could try to obscure the file structures by splitting
files in blocks or merging files into big blocks.

Big blocks could be a problem when syncing the files. Depending on the encryption
algorithm, much of the file could change when we change just a little amount of data.
We would then have to upload way more data than would be needed. Many little
files (“blocks”) do not have that much uploading overhead. On the other hand, Mallet
can see which blocks have been changed at what point in time and he can derive
information from that. Big blocks do not prevent this attack if changes in files are
logged, too. The attack is not implausible, as logging changes in files is often a feature
in cloud storages. This legally collected data could be abused by an attacker. Deriving
information from the behavior of the client could be complicated if the client would
always write the blocks in an ascending order.

This could be done by using a virtual file system which behaves like a log-structured
file system [29] or like a write-anywhere file layout [30]. We would save the encrypted
files from the “File encryption/decryption system” in a virtual file system. Anyway,
without additional encryption of that virtual file system, all of the information about
file size and folder structure would again be visible to an attacker. If we encrypt the
virtual file system, however, we cannot share files with other users without giving them
the key to decrypt the virtual file system.

If we do it the other way around, i.e. first save the files in a virtual file system and
then use the “File encryption/decryption system”, the “File encryption/decryption
system” will not work correctly because there are no folders anymore (assuming the
“File encryption/decryption system” uses folders). A solution only seems possible when
we combine encrypting files and obscuring the file structure in one system. Anyway, it
is not clear whether the approaches presented here significantly increase the difficulty
for an attacker to identify file structures.
Another idea is to not store all blocks on one provider, but to distribute them

between several providers. This would make it more difficult for an attacker to attack
the privacy of the user. However, it also increases the difficulty of sharing files with
other users. That is because all users must then have a storage at each provider.
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Anyway, connecting the encrypting program to multiple providers could be a good
idea in the context of usability. We could do this in a way that is transparent to the
user. Our user Alice would then have the experience of using only one program for all
of her storages.

To this time, there is no system known to us which can prevent the described attacks.
In all of the mentioned encrypted digital communication techniques (cloud storages,
e-mail, instant messaging), attackers are able to derive information from meta data.
This problem stays unsolved here and should be subject to further research.

2.6 Conclusions
In this part, we showed weaknesses in existing cloud storage systems and proposed a
solution. We now present our conclusions, to show clearly, what can be learned from
the work we have done.
First, we explained why it is necessary to create a cloud storage without trusted

third parties. To do so, we showed in what way a cloud storage provider can perform a
man-in-the-middle attack on cloud storage users. This attack results in the loss of the
users’ privacy.

We then analyzed existing cloud storage providers and existing research concerning
client-side encrypted cloud storages. All examined cloud storage providers did not
enable their users to use their system without the possibility of a man-in-the-middle
attack. We also showed that the examined programs, that encrypt user data and use
existing cloud storage providers, do not work transparently. The analysis of existing
(theoretical) solutions for the “File encryption/decryption system” of the cloud storage
system provided ideas for creating our own simple “File encryption/decryption system”
(but we did not focus on that).

We described our solution in an abstract way. We addressed two main concerns:

1. Public key verification

2. Transparent client-side encryption

In the public key verification part, we described how smartphones simplify the
process by scanning QR codes. This way, people do not have to compare public key
fingerprints byte by byte. We also described a protocol to verify both public keys,
when only one communication partner has a camera.

Transparent client-side encryption means that the user can use the cloud storage
application in the same way as without encryption. In the transparent client-side
encryption part, we examined what kind of applications can be secured afterwards
without having to change the program. We concluded that cloud storage applications
have this property. That means that cloud storage applications may be designed
without client-side encryption (with the limitations mentioned). Even open source
applications respecting privacy do not have to implement a client-side encryption. The
client-side encryption can be implemented in another application without changing the
cloud storage application.
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We also showed that it is possible to do the client-side encryption in a transparent
way, as long as the operating system lets us gain control over the cloud storage folder.
Many systems satisfy this requirement by providing a functionality equal to FUSE.
When sharing files, the user has to do one extra step (share the file in a cryptographic
and in the cloud storage way). When accessing the files via another interface, e.g. a
webinterface, the user sees an encrypted file structure. We referenced a program which
claims to solve this problem.

We then presented our open source implementation of the described system. For the
public key verification part, nearly all functionality needed is already implemented in
OpenKeyChain. For the transparent client-side encryption part, we implemented our
system on Linux using FUSE, EncFS, GnuPG and GPGME.

Lastly, we stated still existing problems which should be subject to further research.
Attackers are able to derive information from meta data. Anyway, this problem also
exists in the e-mail and instant messaging use case and is not specific to our system.
The contribution in this part of the work was to present a system preventing the

man-in-the-middle attack described in chapter 2.1 while providing a high level of
usability.
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3 User-controlled decryption operations

3.1 Introduction
In the first part, we examined the status quo of cloud storage usage. We concluded
that many users do not use client-side encryption. That means that their files are
visible to their cloud storage provider. Privacy is lost for these users.

After showing weaknesses in existing client-side encryption solutions, we presented
our system, which overcomes these weaknesses. Our system uses client-side encryption.
That means that the users’ files are encrypted before they are transferred to the cloud
storage provider. That is why the cloud storage provider cannot see the file content.
Client-side encryption is a requirement to use a cloud storage provider while preserving
privacy.

When Alice uses our program and downloads the files from her cloud storage provider,
the files are of course received in encrypted form. That is the only form in which
the cloud storage provider has Alice’s files. Anyway, we do not want to present Alice
encrypted files, but files in plaintext. That is why our program has to decrypt her files
before we present them to her.
For the decryption of Alice’s files, a private key is needed. Only Alice is supposed

to have that key. In the first part, we assumed that Alice’s PC is trustworthy. That
means that we expect her PC only to do things we want it to. We do not expect it to
contain software or hardware which exposes the private key or plaintext files. That
is why we could store the private key on Alice’s hard disk drive, for example. Our
program can then access the private key from Alice’s hard disk drive and decrypt her
files before presenting them to her.
We can also store the private key on a token. A token is a small device, e.g. a

smartcard, that performs cryptographic operations. Tokens can increase usability and
security of our system.
In this part, we add a token to the system described in section 2. We show, how

a token should be integrated into the system to provide security and usability. Our
assumption concerning the attacker Mallet is that he controls Alice’s PC, but not her
token. We conclude that letting the user confirm decryption operations on a trusted
display increases the security gain achieved by adding the token. After that, we analyze
what requirements a token should satisfy in our use case. We describe abstractly how
displaying a file’s meta data before decryption can be implemented. Our main idea is
to bind a file’s meta data to a decryption key by encrypting both in one blob. We also
provide an open source implementation of the described system that uses a smartphone
as a token.

Motivation

In the first part, we presented a system whose security only relies on the nondisclosure
of the users’ private key, assuming their hardware and software are trustworthy.

As the private key is critical for the security of the system, it can be protected against
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misuse. Usually, a password is used to do that. When a password is used, accessing
the hard disk drive or stealing the computer is not enough to misuse the private key.
Anyhow, to provide this protection, the password must be strong. Strong passwords
cut down usability.
Additionally, if Alice’s hardware or software lose their trustworthiness, security is

obviously not given for this system. If our attacker Mallet controls Alice’s system, he
simply gets her private key and decrypts the files or gets the decrypted files directly
from Alice’s system. Even a password cannot prevent this attack, as the password is
entered on Alice’s system and can be recorded by Mallet.
The first attack, i.e. Mallet stealing Alice’s PC or accessing her hard disk drive,

can be prevented by using a token. The private key is then generated and stored on
the token. Alice’s system can access the token only in a defined way. It can request
operations to be done on the token. Figure 39 shows the general setup of this scenario.

Alice’s PC/hard disk drive then no longer contain the private key. Mallet has to steal
the token now. Anyhow, tokens can be protected against misuse by e.g. a Personal
Identification Number (PIN) or biometric identification. As the token is protected
against brute-force attacks, the PIN does not need to be as long and complicated as a
secure password. This increases usability.
It is also a good idea not to have the private key in the PC’s memory. Attacks

reading the private key from the PC’s memory (see e.g. [31]) can be prevented this
way.

By accessing the token from each of her devices, Alice only needs one private key.
She does not have to transfer her private key to each of the devices. She also does not
have to do public key verifications for each device as described in chapter 2.3. This
increases usability even more.
Anyway, only using a token just delays the attack in the second scenario (Mallet

controlling Alice’s PC). Mallet, who controls Alice’s system, can just wait until Alice
uses the token for the next time. This is likely to happen soon, as Alice needs the
token to access her files. Once the token is present (and possibly unlocked by using a
PIN or something similar), Mallet requests to decrypt the files he wants to see in plain.
If Alice does not have an additional control about the operations done on the token,
she does not notice this attack.
That is why only adding a token to the system does not provide a great gain in

security. If Alice can control the operations done on her token, the security gain can
be increased. Mallet getting the plaintext of a specific file f can then be delayed
until Alice accesses f for the next time. That is why we describe and analyze ways of
providing control over these operations for the user in this part of the work.
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Alice’s PC Reader (optional) Token

Figure 39: General setup. Devices with a high trust level are framed in green. Devices
with a lower trust level are framed in red.

Problems addressed

The goals in our use case are usability and security. First, we define a set of requirements
a token has to satisfy in our use case. We present existing types of tokens and analyze
whether they meet our requirements. This way, we try to find a token which suits the
needs in our use case.

Afterwards, we face the problem of secure meta data displaying. As already described,
we show a file’s f meta data to the user before the decryption is done on the token.
We face the problem of making sure that the displayed meta data really leads to only
decrypting f . We must make sure that we do not transfer decryption keys to the PC
which can be used to decrypt other files. We somehow have to bind the decryption key
to the meta data. In our solution, we establish that binding by encrypting meta data
and decryption key in one blob.

While solving these problems, we also face the task of integrating our solution in the
system described in section 2. That means that we want to preserve the property of
simple file sharing. We also analyze what limitations concerning the authenticity of
files exist in the cloud storage use case.

Contribution

We provide a broad analysis of token properties concerning security and usability. We
compare available tokens and show to what extent they provide security and usability.

Afterwards, we provide a protocol in which the user controls the decryption operations
on the token. The meta data of the files do be decrypted is shown to Alice before
decryption. She can then confirm or abort the decryption.

We also show a general limitation in the setup including a token. When Alice’s PC
is not trustworthy, files cannot be shown authentically on it anymore. We can just
prevent the attacker from adding new files, but this cuts down usability. We present
and discuss this trade-off.
Our proof of concept implementation proves, that our system works in practice.
The results achieved here are independent of the cloud storage case. They might

also be relevant for normal file system encryption.
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3.2 Related work
As we have seen in chapter 3.1, giving the user control over the decryption operations
increases security in the setup with a token. There are existing publications in the
field of controlling transactions on a token, of course. In this chapter, we integrate our
work with existing publications.

First, we describe how transactions are controlled on the new German ID, called
neuer Personalausweis (nPA). We will conclude that the existing system’s software
might be changed to satisfy our purposes. Anyhow, changing this system is not easy, as
there are no interfaces defined for our use case. We would have to misuse the existing
system.

We then describe how transactions are controlled on a bank card. In this procedure,
a Transaction Authentication Number (TAN) is generated to authenticate transactions
on the bank account. Anyhow, this procedure is not used for decryption. It is used for
authentication of the user at the bank.

Controlling transactions on the new German ID

Controlling transactions to be done one a smartcard is also a subject in the context of the
nPA. In [32, pages 24 - 25], respectively [33, pages 26 - 27], controlling a transaction
on the nPA is described. In the transaction (which is part of the “elektronischer
Identitätsnachweis (eID)” procedure), personal data from the nPA shall be read. Our
user Alice can control the transaction by choosing what kind of data may be extracted.
She is able to abort the transaction in case it is not an expected one. In the references
([32] and [33]) is described that the information is shown to the user by the local
software.
Anyhow, the information can also be shown on the trustworthy smartcard reader.

Having a trusted display is a requirement for this approach43. The approach is described
in [34, page 9, “Security of display module” and pages 17 - 19]. The key advantage is
that the information about the transaction is shown on a device independent of the
operating system of the PC. That means we can be sure that the information displayed
is correct, even if we do not trust the operating system of the PC. Correct information
means that what is shown actually happens on the smartcard.
If the information would be shown by the local software, our attacker Mallet, who

controls the software, could manipulate the displayed information. He could show a
transaction with very little data extraction and in reality extract all possible data (or,
to give another example, fake the service provider).

As we can see in this example, displaying meta data about a transaction and getting
user confirmation before doing the transaction has already been realized in the context
of the nPA.
The meta data must be transferred from Alice’s PC to her smartcard reader. This

43For example, cyberJack RFID komfort, see https://www.reiner-sct.com/produkte/
chipkartenleser/cyberJack_RFID_komfort.html and cyberJack wave, see https:
//www.reiner-sct.com/produkte/chipkartenleser/cyberjack_wave.html
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can be done in two ways. The first way is to use the reader’s driver. Most drivers
are closed source, but provide some kind of interface to transfer the information. The
second way is to use pseudo-Application Protocol Data Units (APDUs) (see [34, pages
33 - 34]). We could try to encode our meta data as transaction information for the
eID procedure and display it on the reader. This way, it might be possible to encode
our encrypted file meta data as an input to a transaction on an nPA. Following this
approach, we could use the already existing nPA system to realize our goals.
Anyhow, the existing system does not define any interfaces for our use case. We

would have to misuse the existing interfaces. This is probably an overly complicated
way to implement our idea.

Controlling transactions on a bank card

Another example of displaying meta data before performing a cryptographic operation
with a private key is described in [35, pages 37 - 38]. This procedure is about generating
TANs, e.g. to authenticate bank account transactions. In the bank account transactions
use case, our user Alice has a smartcard, a smartcard reader with key pad and display
and a PC. To generate a TAN, the website of Alice’s bank displays a bar code containing
the transaction’s data on the computer’s display. Alice then scans the bar code with
the smartcard reader. The smartcard reader shows the transaction’s data on its display
and lets Alice confirm the transaction. It also lets her enter the PIN to unlock the
smartcard. The TAN then is generated via the smartcard and displayed on the reader’s
display. Alice can enter it on the computer to do the transaction on her bank account.
So in the procedure described here, transaction data is also confirmed on a trusted
device.

This is very similar to what we want to do. We could also encode the meta data and
the ciphertext as a bar code and use a reader with a bar code scanner. Anyhow, if the
user always has to scan a bar code before decrypting a file, this cuts down usability.
So in our use case, the approach taken here is not a solution.

Displaying meta data on the token

Another approach is to show the meta data directly on the token. We discuss the
pros and cons of various tokens in chapter 3.3. One type of tokens discussed are
smartphones. These provide great usability but also have a lot of channels available
for attacks. A security analysis of using smartphones as tokens can be found in [36].
Using a smartphone as a token when decrypting or signing e-mails has been realized in
[37]44. This also includes showing information about decryption/signature operations
and getting the user confirmation [37, pages 20 - 21, 23].

44Software available on https://github.com/eriknellessen/Virtual-Keycard
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Conclusions

We showed that getting the user confirmation before performing a transaction is already
implemented in existing systems. As a first example, we presented the eID functionality
of the nPA. We showed that this existing system could be changed to implement our
idea. On the other hand, due to the fact that no interfaces are provided for changing
the system in the way we want, we would have to misuse the system. As this means
much effort, we decided not to take this approach.
After that, we presented how bank transactions are controlled when using a bank

card and the ChipTAN procedure. We concluded that in this procedure, transaction
meta data is also confirmed before doing the transaction. On the other hand, this
procedure is used for authentication, not for decryption. We did not see a possibility
to change it to our needs.

Lastly, we described the possibility to display meta data directly on the token. Such
a token can e.g. be a smartphone. We showed that displaying data of a cryptographic
operation on a smartphone before doing the operation has in general already been
implemented. We still need to make sure that the displayed meta data is bound to the
decryption key, which shall be decrypted.

3.3 Design goals and abstract view

As we have seen in chapter 3.1, adding a token to our system can increase security
and usability. By giving the user control over the cryptographic operations on the
token, we can increase the security gain. We want to do that by showing meta data of
the cryptographic operation on a trusted display. In chapter 3.2, we concluded that a
smartphone can be used to do that. In this chapter, we propose a system which solves
the stated problems. We describe it in an abstract way. In chapter 3.4, we also provide
an implementation.
There are a lot of tokens available at the moment. In the first segment of this

chapter, we define requirements a token should satisfy in our use case. In the following
segment, we analyze to what extend existing tokens satisfy these requirements. No
token satisfied all of our requirements.
We integrate the token into the existing system described in section 2. To give the

user control over the decryption operations of single files, it must be possible to decrypt
single files in this system. This is one requirement the cloud storage system has to
satisfy in order to work with our idea in this part of the work. In the third segment,
we analyze in detail, what requirements the system has to satisfy.

When the meta data is shown on the trusted display, we must guarantee that only a
file with the displayed meta data is decrypted if the user confirms the transaction. In
the fourth segment of this chapter, we solve this problem. We describe a protocol to
bind a decryption key to meta data.
Lastly, we analyze whether sharing files/folders is still possible in the system we

designed. We conclude that it can still be done in a simple way.
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Requirements concerning token and reader

In this segment, we define requirements a token has to satisfy in our use case. We then
examine to what extend available tokens satisfy these requirements.
First of all, security is an important requirement. A secure token should make it

really hard to extract the secrets stored on it. That means that they should be stored
in a place that is inaccessible by software and very hard to access via physical means.

Another important requirement is usability. Only if the token is inexpensive, easy to
set up and easy to use, users will accept it.

To show meta data about the decryption operation, we need a trusted display. The
display must not be modifiable directly from Alice’s PC system. The PC can just send
the data which shall be displayed. “Trusted” means that exactly the displayed data is
also transferred to the token. That means that even when Mallet controls Alice’s PC,
the information shown on the display can be trusted. Figure 40 shows the necessary
trust when showing meta data on a trusted display. Figure 41 shows it for the case
that the meta data is shown on the PC.

To empower the user to confirm or abort transactions, we need some way of trusted
input. The user should have some kind of button which can be used to confirm and
abort transactions. This button must be independent of the rest of the PC, i.e. cannot
be triggered by the PC. Even when Mallet controls Alice’s PC, the button still works
reliably.
A token should also provide a way of direct public key verification. That means

that other people can verify the public key directly from the token. This way, the
public key can still be verified correctly in case the user’s PC system is controlled
by Mallet. A graphical representation of direct verification is given in figure 42, for
indirect verification see figure 43. When we compare indirect verification to direct
verification, we can see that Alice’s computer now also has to be trusted. So now Bob
also has to trust in a device with a lower trust level (also comparing to figure 39).

If we verify the public key from the user’s PC, the following attack is possible: Let
us assume that Alice wants to share a folder with Bob. Let us also assume that Alice
tries to get Kp

B from a server in the internet controlled by Mallet and that Mallet
controls Bob’s system (without the token). Mallet creates a key pair, of which we
denote the attacker’s public key (Kp

M). When Alice asks for Kp
B, Mallet provides Kp

M .
After getting Kp

M , Alice verifies it using Bob’s system. As Mallet controls Bob’s system,
it shows information about Kp

M when asked for information about Kp
B. The files are

then encrypted with Kp
M on Alice’s system. Mallet has access to the shared encrypted

files on Bob’s system.
So when Alice shares the folder, Mallet can read the files in plain, without having

Bob confirm a transaction concerning that folder on the token. As Bob’s system is
under Mallet’s control, it is no problem to re-encrypt the folder with the correct public
key from the token, and present the resulting ciphertext to the token when Bob wants
to decrypt the folder. So neither Alice nor Bob are able to detect this attack without
direct public key verification.
Anyhow, direct public key verification is usually possible on every kind of token.

55



Some tokens can communicate with a trusted display and can display the fingerprint
of the public key/a QR code encoding it. In any case, direct public key verification
can be done by handing the token over to the person who wants to verify the public
key. But this can create new problems concerning security. There are tokens without
an additional barrier for performing operations on them. To perform operations, only
having the token is already enough (without knowing an additional secret like a PIN or
having the correct fingerprint etc., e.g. Universal Second Factor (U2F) on a Yubikey45).
These tokens do not provide a good level of security, as stealing them means being
able to use the secrets residing on them. Tokens protected with an additional secret
should receive that secret in a trusted environment. This could for example be a
trusted keyboard. Otherwise, we need to trust the user’s software and hardware when
unlocking the token.
To show why trusting the user’s software and hardware when unlocking the token

is a problem, we describe an attack assuming this approach. Let us assume Alice
takes this approach with her token and Mallet controls her system (without the token).
When Alice enters her PIN in the system controlled by Mallet, Mallet knows the PIN.
Stealing Alice’s token is now enough to decrypt every file Mallet wants to. But stealing
is maybe not even required. As Alice wants other people to verify her public key, she
might give her token to other people (this does not directly imply a security risk, as it
is protected by a PIN). Anyhow, if Mallet already knows the PIN and then gets the
token for public key verification, he is able to decrypt anything he wants.

So to summarize the last two ideas, we present two secure scenarios to directly verify
public keys. In the first scenario, the token is able to display the public key fingerprint
in a trusted environment. The token does not need to be handed over to the verifier.
To give an example, a smartphone can show a QR code of the public key’s fingerprint
on its display. In the second scenario, we have to hand the token over. Then, the token
needs to be sufficiently protected against misuse. That means that we need a trusted
keyboard. Having the trusted keyboard is a good idea anyhow, as it prevents Mallet
from getting to know our PIN, even when he controls our PC. That means that only
stealing the token is not enough for him to perform a successful attack.
Summarized, our requirements (concerning the whole trusted token and reader

system) are:

• High level of security

• Good usability

• Trusted display

• Secure confirm/abort button

• Secured by a secret (e.g. a PIN)

• Secure input method for the secret (e.g. PIN keyboard)

45See https://www.yubico.com/products/yubikey-hardware/
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Alices’s computer Reader (optional) Token
Alice

Meta data

Figure 40: Meta data shown on token or reader, trusted devices are framed in blue. To-
ken and reader are framed in black to show that the meta data/confirmation
request can come from each of them.

Alice Alice’s computer Reader (optional) Token

Meta data

Figure 41: Meta data shown on computer, trusted devices are framed in blue.

Alice’s computer Reader (optional) Token Bob’s verifying
device

Fingerprint
(e.g. QR code)

Figure 42: Direct verification, trusted devices are framed in blue. Token and reader
are framed in black to show that the verification information can come
from each of them. The reader can also be part of Bob’s verifying device or
system.

Bob’s verifying
device Alice’s computer Reader (optional) Token

Fingerprint
(e.g. QR code)

Figure 43: Indirect verification, trusted devices are framed in blue.
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Comparison of available tokens

There are a lot of devices that can be used as a token. We discuss the pros and cons of
smartphones, smartcards and YubiKeys in our use case. Our results are summarized
in figure 44.
A smartphone has a lot of possibilities to communicate with other devices, e.g.

network, bluetooth, infrared or Near Field Communication (NFC). That means that
there are a lot of channels that can be used by attackers. To at least store private keys
securely, Trusted Platform Modules (TPMs) could be used (but are usually not used
at the moment). So our security requirement for the private keys is not satisfied.

On the other hand, the various possibilities of communication mean that smartphones
are capable of being integrated into a lot of systems (and that additional hardware,
like a smartcard reader, is not always needed). Smartphones are widely spread and
very easy to use. That means that supporting smartphones as tokens enables a lot of
users to use the system. The usability requirement is satisfied.

We can use the smartphone’s display to show the meta data independent of the PC
system. The requirement of a trusted display is satisfied. The user confirmation is also
done directly on the display. So the requirement of a secure confirm/abort button is
satisfied.

Of course, the smartphone can be secured by e.g. a PIN. The PIN can be typed in
on a trusted keyboard of a trusted reader or directly on the smartphone’s display.
A smartphone having a trusted display and secure input might seem irritating at

first sight, because a smartphone does not provide a good level of security (as already
stated). Anyhow, our attacker model assumes that the attacker controls Alice’s PC,
but not her token (see chapter 3.1). As long as the smartphone is not controlled,
its display/input is trustworthy. Of course, a smartphone does not provide a good
security level and can be infected much easier (e.g. when connected to the infected
PC via Universal Serial Bus (USB)) than e.g. a smartcard. We do not recommend
using smartphones as tokens in production environments. Anyhow, disregarding the
security properties, a smartphone has all the other advantages we need in our use case.
Additionally, it provides an NFC interface. That is why it can easily be integrated as a
token and provides a comfortable way to implement a proof of concept. This proof of
concept could be enhanced in security by providing a more secure token, which also
satisfies all other requirements, in the future.

Smartcards46 have been developed specifically as secure storages for private keys. By
making the private keys inaccessible by software and very hard to access via physical
means, they satisfy our security requirement (for the private keys).
Smartcards usually offer an interface using contacts and/or a contactless interface.

They are also available with a bluetooth interface. In the first two cases, a smartcard
reader is needed to communicate with a smartcard. A smartcard reader can be included
in smartphones. Anyhow, if users want to use a reader directly from their PC, they
have to buy additional hardware. Besides, the setup is more complicated than using a
token without an additional reader. It is hard to set up and use for the user. Anywhere
46See e.g. https://g10code.com/p-card.html
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the smartcard shall be used, a smartcard reader must be available. For these reasons,
the usability requirement is not satisfied.

There are smartcard readers with a trusted display available. If we use one of these,
our trusted display requirement is satisfied. These readers usually also provide a trusted
confirm/abort button and a trusted PIN keyboard. A smartcard is usually protected
by a PIN. So all of the remaining requirements are satisfied, too.

A display card satisfies just the same requirements as a smartcard. It just provides
more security, if no appropriate smartcard reader is available. This is because it has a
trusted display already included.

A Yubikey includes a smartcard. That is why it is very hard to extract private keys.
The security requirement for the private keys is satisfied.

A Yubikey can be used via USB. As no additional reader is used, user acceptance is
given in our use case. The usability requirement is satisfied. The better Yubikeys also
provide NFC.

A Yubikey can be regarded as a smartcard including a reader. Anyhow, the “included
reader” does not satisfy our requirements. It does not include a trusted display.
Nevertheless, the Yubikeys supporting NFC might be accessible via readers with a
trusted display (which then would mean low usability). Summarized, our trusted
display requirement is not satisfied if we assume good usability.
Most Yubikeys include a button to confirm transactions. This button is used to

authorize U2F transactions. It is not used to authorize decryption operations on the
included OpenPGP applet. That is why our secure button requirement is not satisfied.

The OpenPGP applet on a Yubikey is protected by a PIN. Anyhow, there are other
functions on the token, that are not protected by a PIN, e.g. the U2F function. To
perform an attack on U2F, also the user password is required. Anyhow, if the attacker
Mallet controls the victim’s PC, he already has it. It is not safe to give the Yubikey to
someone else to verify the public key. So our PIN requirement is not satisfied.
Yubikeys do not provide a method to enter the PIN on a trusted keyboard. The

Yubikeys supporting NFC might be accessed by a reader with a trusted keyboard, but
this would again cut down usability. So assuming good usability, our secure PIN input
requirement is not satisfied.
Nitrokey47 sells products similar to Yubikeys. They do not own a secure button at

all. The other properties are very similar to those of the Yubikeys.
The comparison of tokens is summarized in figure 44. We can see that none of the

tokens satisfies all of our requirements. A token satisfying all requirements could be a
smartcard containing a trusted display and keyboard48. Our analysis motivates the
development of such cards.

47https://www.nitrokey.com/
48E.g., http://www.maestrocard.com/de/privatkunden/innovationen_technik/displaycards.

html
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Figure 44: Comparison of available tokens.

Requirements concerning the “File encryption/decryption system”

In the last two segments, we analyzed, what requirements a token has to satisfy in
our use case and to what extend these requirements are satisfied by available tokens.
But not only tokens have to satisfy requirements. We integrate the token into the
existing system from section 2. To make this possible, the system has to meet certain
requirements. In this segment, we show these requirements. As we will see, the system
implemented in section 2 satisfies them.

Tokens usually do not provide much computation power. That means that they are
not able to perform large cryptographic operations. That is why hybrid encryption
should be used to encrypt files. Hybrid encryption means that symmetric encryption
is used (on the PC) to encrypt the file and only the symmetric key is encrypted via
the asymmetric cryptographic system. When decrypting, only the symmetric key has
to be decrypted in the asymmetric cryptographic system. Afterwards, the symmetric
cryptographic procedure can be used. As this is much better for performance, it is
usually done like this, also when not using a token. In the implementation of our
system, this is also the case.
To increase security, we want to show meta data before decryption on a trusted

display. To do so, the cloud storage system must support single file decryption. That
means that it is possible to enable on the token the decryption of single files on the PC
without enabling the PC to decrypt other files. As we discuss in the following segment,
there is a trade-off between usability and security here. If we want to implement
a reasonable trade-off, we can enable the decryption folder-wise. The system from
section 2 can easily be changed to support this. We just have to remove the property
of possible recursive decryption.

In this segment we showed the requirements the system from section 2 has to satisfy,
so our token can be integrated. We concluded that hybrid decryption and folder-wise
decryption are required. Hybrid decryption is already provided, while folder-wise
decryption can easily be implemented by changing the existing system.
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Binding meta data to a ciphertext

As we have already seen, giving the user control over the decryption operations on the
token increases security. To do so, we show the meta data on a trusted display and ask
for user confirmation. But we still need to make sure that the decryption operation
only enables the PC to decrypt the file with the displayed meta data. We have to bind
the meta data to the decryption key of the file with the shown meta data. This is the
problem we solve in this segment. We do so by encrypting meta data and decryption
key in one blob.

If our user Alice has to confirm every file decryption, she has to do a lot of work. It
would be more comfortable if she would not have to do any confirmation at all. But
then, there also is no gain in security. We could also confirm only one decryption and
make everything decipherable from one key as in section 2. But then again, we would
not gain security. Confirming one decryption is just another way of unlocking the token
(like a PIN). We could also decrypt folders instead of files. Assuming our user Alice
uses folders to structure her data, this already means a gain in security. On the other
hand, only confirming the decryption of every folder can be a big relief for the user (e.g.
when viewing a folder full of photos). So assuming the files are structured in folders,
this is a good trade-off between security and comfort. Confirming the decryption of
every single file is the securest and the least comfortable solution.

Before decrypting the symmetric key, we present meta data to the user. So the PC
has to transfer the encrypted symmetric key and the meta data to the token. We need
to verify the meta data’s binding to the key. If we would not do this, the following
attack would be possible. Let us assume that the attacker Mallet controls Alice’s system
and wants to decrypt file f . At some point, Alice wants to access her file f ′, so she
unlocks the token. Mallet then transfers the encrypted symmetric key for decrypting
f and the meta data for f ′ to the token. From Alice’s point of view, everything is
working as expected, so she confirms the decryption. Mallet is then able to decrypt f .

One way to bind the meta data to the key is to encrypt meta data and plain
encryption key as one blob, or to encrypt the meta data’s hash value and the plain
encryption key as one blob. Encrypting the hash value has the advantage that the
decryption operation on the token has to be done on data of a fixed and small length
(which is small enough, so that only one decryption operation is needed). Another
advantage is that the meta can already be shown before decryption/PIN input, but
still has to be transferred to the token only once. A disadvantage is that the meta data
is visible to the provider, as it has to be saved as plaintext.

If we follow this approach, our attacker Mallet is able to create (meta data, decryption
key) pairs. But this is not important to us, as he is not able to combine another meta
data with a specific encrypted key. To do this, Mallet would have to solve the following
problem. We presume that we use RSA as asymmetric cryptographic system. Let
us assume that Mallet wants to decrypt a file f ′ with the meta data m′ and the
decryption key d′ (d′ is not known to Mallet, while (m′|d′)e mod n is, e and n being
the exponent/modulus from the RSA procedure). We also assume that Alice wants to
decrypt the file f with the meta data m and the decryption key d. To perform the attack,
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Mallet has to find the ciphertext (m|d′)e mod n knowing m′, m, e and n (and maybe
also d from a previous decryption procedure). There is no way known to us to efficiently
solve this problem without knowing the private key. In asymmetric cryptographic
systems, the attacker Mallet is always able to create (plaintext, ciphertext) pairs as
desired. In a secure cryptographic system, this should not let him gain any knowledge.
This might be a first hint that the presented problem might also be hard to solve.
In practice, RSA is usually done with a randomized padding. This could make the
problem even more difficult.
So if the attacker Mallet is not able to solve the described problem efficiently, our

system is secure. But even if that assumption is not valid, we can make our system
secure. By signing meta data (and letting the user confirm the signature operations),
Mallet cannot create the new (meta data, decryption key) pair (m|d′)e authentically.
In the following paragraph, we describe this procedure. We also explain that the
procedure prevents another attack.
If we sign the meta data, we are able to only accept meta data which has been

signed by a trusted key. So the attacker Mallet can only transfer meta data to the
token, which has been signed by a key which we trust in. It is not possible for him to
transfer any kind of desired meta data. Anyhow, this means that we have to ask Alice
for permission when creating a signature on the token. We also have to show the meta
data to be signed. If we would not do that, Mallet could just create a signature for the
desired meta data.

So at this point, we have a trade-off in security and usability. If we do not sign the
meta data, the following attack is possible. Let us assume that the attacker Mallet
controls Alice’s PC. He creates a new encrypted file f and a corresponding meta data
and encryption key. For example, the file f could state that it comes from Bob (e.g. it
is a letter ending with “Yours sincerely, Bob”), but contains misleading information
(like “Meeting Saturday, 13:37.”, when in reality, the meeting is on Friday). If we do
not sign the meta data, Alice is not able to detect, that f does not come from Bob.
Anyhow, if we sign the meta data, the attacker could still use meta data of any of

Bob’s existing files. On the token, nothing unusual would be detectable. On the PC,
the attacker could show a modified version of the file, again containing the misleading
information.

So confirming every signature on the token, which is a cutback of comfort, leads to
a slightly more secure system. Slightly more secure means, that Mallet can only use
existing meta data and is not able to create new authentic meta data. Of course, we
should still sign the meta data and verify signatures on the PC. If we would not do
this, we would enable the cloud storage provider to forge files very easily, as we do not
verify their authenticity in any way.

The procedure of encrypting (and optionally signing) an encryption key for a
file/folder is shown in figures 45 (using a smartcard as token) and 46 (using a smartphone
as token).
When decrypting an encryption key, the decrypted meta data is shown on the

token/reader. If we use the hash value instead, the decrypted hash value is compared
to the (shown and confirmed) meta data’s hash value. If it is the same, the decryption
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key is transferred to the PC, else the operation is aborted.
The procedure of decrypting (and optionally verifying a signature of) an encryption

key for a file/folder (using the hash value method) is shown in figures 47 (using a
smartcard as token) and 48 (using a smartphone as token).
In this segment, we presented a solution to the problem of binding meta data to a

decryption key. The problem arose when we described that we wanted to show meta
data before the decryption operations on a trusted display. We needed to make sure
that no existing files with a meta data different to the shown one could be decrypted
on the PC. We solved this problem by encrypting meta data (respectively its hash
value) and the decryption key in one blob. We also explained limitations concerning
authenticity when the PC is in the control of the attacker.

Alice Alice’s smartcard Alice’s smartcard reader Alices’s desktop PC

Generate key k, meta data m, hash value of m = h

Encrypt h and k as one blob

(Sign m)

(m)

(Sign m?) (OK)

(OK)(PIN ?)

(PIN p)

(p)

(p correct?) (Signature(m))

(Signature(m))

Save m, (signature(m)), and the h, k-blob in file

Figure 45: Alice encrypts a file/folder locally and optionally establishes authenticity
using her smartcard.
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Alice Alice’s smartphone Alices’s desktop PC

Generate key k, meta data m, hash value of m = h

Encrypt h and k as one blob

(m)

(m)

(Sign m?) (OK)

(OK)

(PIN ?)

(PIN p)

(p)

(p correct?) (Signature(m))

Save m, (signature(m)), and the h, k-blob in file

Figure 46: Alice encrypts a file/folder locally and optionally establishes authenticity
using her smartphone. It would also be possible to integrate the smartphone
as a smartcard using NFC and a reader. Another possibility would be to
let the user enter the PIN directly on the smartphone to increase security.
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Alice Alice’s smartcard Alice’s smartcard reader Alices’s desktop PC

(Signed) m
eta data

(Signed) meta data

(Signature correct?) OK

Meta data (+ signer)

Meta data (+ signer) legit? OK

OK/Compute hash value

h = hash value of meta data

OK

OK

Encrypted
hash value h

′ and key k

PIN ?

PIN p

p

p correct? OK

Encrypted hash value h
′ and key k

Decrypt h′ and k

h′ = h ? k

k

Figure 47: Alice decrypts a file/folder using her smartcard. The signature verification
and the hash value comparison could also be done on the reader.
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Alice Alice’s smartphone Alices’s desktop PC

(Signed) meta data

(Signature correct?)Meta data (+ signer)

Meta data (+ signer) legit? OK

h = hash value of meta data

OK

PIN ?

PIN p

p

p correct? OK

Encrypted hash value h
′ and key k

Decrypt h′ and k

h′ = h ? k

Figure 48: Alice decrypts a file/folder using her smartphone. It would also be possible to
integrate the smartphone as a smartcard using NFC and a reader. Another
possibility would be to let the user enter the PIN directly on the smartphone
to increase security.
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Sharing files/folders

In the last segment, we proposed a system to bind meta data to a decryption key. We
showed protocols which describe in what way the files are encrypted/decrypted and
authenticity is established/verified. We now describe how it is still possible to share
files/folders when following the described protocols.

Sharing a file/folder with Bob works just like encrypting a folder for later decryption
on the same PC. We just substitute our public key with Bob’s. On our PC, we have
all the information Bob needs to do the same procedure on his PC. So in the end, from
a cryptographic point of view, the only difference between the saved files (referring to
figures 45 and 46) is the signature being done with Alice’s private key instead of Bob’s.
To decrypt the files/folder, Bob can proceed just as shown in figures 47 and 48.
Verifying authenticity of shared files/folders is possible as already described in the

last segment. It makes sense to do it on the PC because then, the cloud storage
provider cannot forge messages easily. If we assume that our PC is controlled by the
attacker Mallet, verifying only makes sense on the token. We can then prevent Mallet
from creating new files, but not from changing already existing ones. We pay for that
by confirming every signature operation.

Conclusions

In this chapter, we presented our system design. Our goal was to show meta data on a
trusted display (of a token or reader) before performing a decryption operation. This
way, the security of the system can be increased.

In the first segment, we examined, what requirements a token has to fulfill in our use
case. We concluded by providing a list of six requirements. Afterwards, we presented
available tokens and analyzed to what extend they satisfy the six requirements. We
concluded that none of the available tokens satisfies all of the requirements. We showed,
however, that a smartcard with an included trusted display and PIN keyboard would
be perfect for our use case.
We then described the problem of binding meta data to a decryption key. Doing

so is necessary to make sure the information shown on the display is trustworthy.
Trustworthy means that if we confirm the operation, only a file with the matching
meta data can be decrypted and none of the other files we encrypted when our system
was not controlled by an attacker. We first showed what requirements the system
described in section 2 has to satisfy to make this possible. We concluded that hybrid
decryption and folder-wise decryption are required. Hybrid decryption is already done
in the system, the folder-wise decryption could easily be implemented by doing small
changes.
Afterwards, we proposed a system to establish the binding between meta data and

decryption key. Our idea is to encrypt meta data and decryption key in one blob. We
also analyzed, what limitations concerning authenticity exist in general, assuming that
the PC is controlled by Mallet. We concluded that we can prevent Mallet from creating
new authentic files by paying with usability drawbacks.
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Lastly, we showed that sharing files/folder is still easily possible in the proposed
system.

3.4 Implementation
In the last chapter, we described our system design from an abstract point of view.
We now provide a proof of concept implementation[38] (a tutorial on how to use the
software can be found in the Readme in the appendix of this work). We describe how
we implemented the system described in chapter 3.3 and list the existing software we
used.

For our proof of concept, we use a smartphone as a prototype token. A smartphone
does not provide a good level of security, but has interfaces to develop a proof of
concept comfortably. The procedure for encrypting a file encryption/decryption key is
shown in figure 46, the decryption procedure in figure 48. We chose usability over the
small security gain and did not implement the signature verification on the token.

To implement the encryption procedure, we used libgcrypt49. To receive the public
key from GnuPG, we used GPGME and python-pgpdump50. Libgcrypt was also used
to calculate the hash value.

To implement the decryption procedure, we used OpenSC51 to access the token. We
were able to use the included OpenPGP card driver. To receive the PIN from the user,
we used pinentry52.

To use an Android smartphone as a smartcard, we used Host-based Card Emulation
(HCE)53.

As we used GnuPG on the PC, we had to implement a correspondent smartcard
functionality on the smartphone. GnuPG has a standard for tokens, see [39]. There is
also a Java Card Applet available implementing that standard54. This project has been
forked by Yubico55. The standard does not comply56 with the Public Key Cryptography
Standard (PKCS)#11 standard [40]. But there is a program available to use PKCS#11
instead of the OpenPGP smartcard standard57. Using this program, we could use a
PKCS#11 compliant smartcard with GnuPG instead of a smartcard compliant to [39].
We used jCardSim58 to provide the Java Card59 functionality, which is needed by

the Java Card Applet. We then installed the Yubico Neo OpenPGP applet on the
virtual smartcard created by jCardSim.

49https://gnupg.org/related_software/libgcrypt/index.html
50https://github.com/toofishes/python-pgpdump
51https://github.com/OpenSC/OpenSC
52https://www.gnupg.org/related_software/pinentry/index.de.html
53https://developer.android.com/guide/topics/connectivity/nfc/hce.html
54https://sourceforge.net/projects/javacardopenpgp/
55https://github.com/Yubico/ykneo-openpgp
56See e.g. https://lists.gnupg.org/pipermail/gnupg-devel/2005-September/022362.html
57http://gnupg-pkcs11.sourceforge.net/man.html
58https://github.com/licel/jcardsim
59http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
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One remaining problem is that jCardSim does not support persistent saving of a
simulator’s state yet. But the project identified this problem and is working on it60.
For the meantime, an existing solution is described in [37, pages 32 and following].

With this setup, we emulate a normal OpenPGP card, but we can also intervene in
the communication. We can work on data before sending it to the applet, and we can
implement additional functionality in the Android app. We used this possibility to
implement the protocol described in chapter 3.3. As a hash function, we used SHA-256
according to [24]. A screenshot of the implemented Android App is given in figure 49.

Figure 49: Screenshot of the implemented Android App when demanding user confir-
mation.

In this chapter, we provided our proof of concept implementation. We used a
smartphone as a token. By using HCE, we emulated a smartcard. We then used
jCardSim to create a virtual Java Card on the smartphone. By installing the Yubico
Neo OpenPGP applet on the virtual smartcard, we provided the OpenPGP card
functionality needed to communicate with GnuPG on the PC. An overview of the used
software is given in figure 50.

60https://github.com/licel/jcardsim/issues/77
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Figure 50: Involved software when using a smartphone as a token.

3.5 Conclusions
In this part, we carved out the possible security advantages when using a token. We
proposed a system to achieve these security advantages. We now present our conclusions
to clearly show the results of this part of the work.
To show why it is necessary to treat the subject of showing meta data before

performing decryption operations, we showed that using a token only protects the
confidentiality of Alice’s data until she uses her token for the next time. In contrast,
controlling the decryption operations on her token empowers her to protect one specific
data’s confidentiality until she uses that specific data for the next time.

We then analyzed existing work concerning similar systems. An existing procedure
doing similar things is the eID function of the nPA. We described in what way this
system contains controlling operations on a token. We also explained abstractly how
this existing system could be changed to implement our idea.
We then described, what demands we have concerning a token to be used in our
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system. While doing this, we described possible attacks in case our requirements are
not satisfied. We presented existing tokens and explained to what extend they satisfy
our requirements.
Afterwards, we proposed a system resisting the described attacks. It binds the

meta data to the encryption/decryption key by encrypting the meta data’s hash value
and the key in one blob. We also showed the authenticity limitations based on our
assumptions about the attacker.

We then presented our open source implementation of our system. It consists of two
parts. The first part is an Android app, the second part is a Linux program.

The Android app provides the functionality to use an Android smartphone as a token
using NFC. When Alice decrypts her cloud storage data, the meta data about the files
to decrypt is shown on her smartphone. She has to confirm it to do the decryption.
This app uses the OpenPGP Java card applet and jCardSim.

The Linux program is a modification of the implementation from section 2. It has
been modified to perform direct asymmetric encryption locally and direct asymmetric
decryption on the token. For the communication with the token, OpenSC, pinentry and
libassuan are used. For the direct asymmetric encryption, GPGME, python-pgpdump
and libgcrypt are used.
The contribution in this part of the work was to present a system providing a

higher level of security when using a token for decryption. The results are not specific
for the cloud storage use case and could, for example, also be useful for general file
encryption/decryption (like encryption of a whole hard disk drive).
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4 Conclusions
As stated in the introduction (section 1), our goal was to provide a possibility to use
cloud storage services without losing privacy.
In section 2, we showed that client-side encryption is a requirement, but not a

sufficient one. We did so by describing a man-in-the-middle attack the cloud storage
provider is able to perform. In the cloud storage applications we examined, this attack
was possible. So in these cloud storage systems, Alice needs to trust her cloud storage
provider not to spy on her.
We proposed a system that performs client-side encryption and makes the trust in

the provider as a CA needless. Attacks as described in section 1 and chapter 2.1 are
not possible anymore within our system. We replaced the trust in the provider with
the trust in oneself. That means that Alice herself has to do the public key verification.
We described how this can be done comfortably. By using smartphones and QR

codes for verification, Alice does not need to verify public key fingerprints by comparing
byte by byte. She can just scan the QR code and let her software do the verification.
Smartphones provide a high level of comfort because they are widely spread and most of
the time at hand. So whenever two persons meet, they most probably have everything
with them to do a comfortable public key verification.

We showed that encrypting cloud storages without changing the cloud storage
application can be done transparently for the daily usage. Daily usage means creating
new files, changing and deleting files and accessing them from several devices. When
we use the full functionality, not everything can be done transparently. For example,
Alice cannot use the following features without noticing that she uses an encrypting
program:

• Sharing files/folders

• Accessing older file versions

• Accessing folders shared by Bob (Alice has to verify that she expects the folder
to be signed by Bob)

So providing a basic cloud storage functionality and encrypting a cloud storage are
separate problems for the daily routine. For the remaining features, the cloud storage
applications could define ways to change their program, like add-ons. Another way
would be to implement the features in the encrypting/decrypting program. Anyhow,
this is not purely transparent, as Alice would notice that she does not use her original
cloud storage application anymore. Additionally, this approach is hard to implement
and depends on the cloud storage provider. If the cloud storage provider does not
communicate the interfaces, we have to find out how they work. If the interfaces are
changed, our program also has to be changed. Summarized, we presented a system,
which is purely transparent for the daily usage. For the use cases which cannot be
done purely transparent, we described ways to keep up a good level of comfort.
Our implementation proves that the system as proposed works in practice. It uses

GnuPG for the certificate management and provides transparency for the daily usage
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as described here. The comfortable public key verification is already possible by using
OpenKeyChain. We described how it can be done using existing software.
In section 3, we added a token to the setup in section 2. Tokens are independent

of the PC system. That is why a token can be used on any system without having
to transfer the secret key to that system. Additionally, tokens can be protected by
PINs (or other secrets). The token is locked after too many wrong PIN inputs. That is
why a secure PIN can be way shorter than a secure password. So tokens can increase
usability and security.

We analyzed in what way security is increased when a token is used. We assumed that
the attacker Mallet controlled Alice’s system. If Alice’s system would be trustworthy,
we would not increase security by adding a token. We concluded that, without further
precautions, a token protects Alice’s privacy, until she accesses her files for the next
time. We concluded that we could achieve a higher level of security by controlling the
decryption operations. That way, Alice’s file f is not only protected until she accesses
her data in general for the next time. It is protected until she accesses f for the next
time.
We defined requirements for a token in that scenario. Then, we compared these

requirements with the properties of available tokens. No token satisfied all of our
requirements.

By outlining attacks, we showed that a binding between meta data and decryption
key is necessary. We established that binding by encrypting the meta data’s hash value
and the decryption key in one blob. We proposed a protocol that shows the meta data
on the token and gets Alice’s confirmation before decryption. Before transmitting the
result of the decryption to the PC, the binding between meta data and decryption key
is checked. We described how this protocol can be applied to sharing files.
We also carved out general limitations. There is a trade-off between usability and

security when determining granularity. Confirming a decryption for every single file
cuts down usability, while being a very secure solution. We can increase usability while
still providing more security than in the original scenario by confirming the decryption
of folders.
Another limitation exists when checking authenticity of files. We cannot check the

authenticity of whole files on the token, as files may be very large. We can check a file’s
meta data’s authenticity. But then, the attacker can still show forged content on the
PC system. The possible security gain is just to permit only existing meta data. But
we have to pay for this gain by letting the user confirm signature operations, which
cuts down usability.
Our implementation proves that the system as proposed works in practice. It is a

modification of the system implemented in section 2. It uses a smartphone as a token
and accesses it via an NFC reader.

So in the end, we showed ways to help people to use cloud storage services without
losing their privacy. We showed how trusting in the provider can be overcome, how
encryption can be done transparently, and how tokens can increase usability and
security.
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Appendix
Readme of the implementation of the first part

Welcome
This software enables you to transparently encrypt your Dropbox folder on your PC. It
also supports sharing files with other Dropbox users, while still encrypting the shared
data.

Figure 51: Overview of the involved components.

Warning: This is just proof-of-concept code and should NOT be used in production
environments

Tested platforms:
• Debian Jessie (32 Bit)

Building
To build the software, execute the following commands:

git clone https://github.com/eriknellessen/encrypting-cloud-storages
cd encrypting-cloud-storages/build
cmake ..
make install

Using
Transparent client-side encryption
Setting up Dropbox

This needs to be done only once. It must be done before starting the transparent
client-side encryption or Dropbox.

1. Create user Dropbox: adduser Dropbox
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2. Install Dropbox (download *.deb from https://www.dropbox.com/)
3. Start Dropbox as normal user, so the files are installed. When it asks for your

e-mail, close dropbox.
4. Grant user Dropbox write access to your home directory, e.g. by executing chmod

777 ~
5. Execute xhost + (as normal user)
6. Start Dropbox (as user Dropbox)
7. Choose your home directory when asked where to place the Dropbox directory
8. Terminate Dropbox
9. Reclaim your Dropbox directory via chown
10. Remove all files in Dropbox, e.g. by executing rm -rf ./* ./.* inside the

Dropbox directory

Starting the transparent client-side encryption

This needs to be done before starting Dropbox.
To start the transparent client-side encryption, execute the following command:

bin/start_fuseecs.sh

Starting Dropbox

This must not be done before starting the transparent client-side encryption.
We need to share our display, so the user Dropbox can use it. We then switch to the

user Dropbox and start the program:

xhost +
su Dropbox
/home/user/.dropbox-dist/dropbox-lnx.$PLATFORM-$VERSION/dropbox

Sharing files
For sharing a folder, execute the following command:

bin/start_share_a_folder.sh $FOLDER $OPENPGP_FINGERPRINT

For example, the command could look like this:

bin/start_share_a_folder.sh /home/user/Dropbox/folder_to_share \
A6506F46

This shares the folder in a cryptographic way. Afterwards, you still have to share
the folder via Dropbox.
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Readme of the implementation of the second part

Welcome
This software enables you to transparently encrypt your Dropbox folder on your PC.
It also lets you confirm the decryption operations on an Android smartphone, which
is used as an NFC-enabled token. Additionally, it supports sharing files with other
Dropbox users, while still encrypting the shared data.

Figure 52: Overview of the involved components.

Warning: This is just proof-of-concept code and should NOT be used in production
environments

Tested platforms:
• Debian Jessie (32 Bit) and Android Lollipop (5.0)

Building
To build the software, execute the following commands:
git clone https://github.com/eriknellessen/user-\
controlled-decryption-operations
cd user-controlled-decryption-operations
make

Using
Android App
Installing

To install the Android App on your smartphone, connect it to your PC, enable debugging
and execute the following command:
cd Android
make install
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Setup

We use the Android smartphone just like an NFC-enabled smartcard. So just place
your smartphone on your NFC reader.

You now need to generate a key on the smartphone/push an existing key to the
smartphone. Please notice, that the key is not saved to the next usage of the App, see
https://github.com/licel/jcardsim/issues/77.
You can use gpg to generate/import the key. For a tutorial on importing keys to

the smartphone, see https://developers.yubico.com/PGP/Importing_keys.html.
For a tutorial on generating a key on the smartphone, see https://www.gnupg.org/
howtos/card-howto/en/ch03s03.html.

Transparent client-side encryption
Configuring OpenSC

We need to configure OpenSC, so it chooses the right driver to communicate with our
Android smartphone. To do so, add the following lines to the file
/etc/opensc/opensc.conf:

card_drivers = openpgp-modified, internal;

card_driver openpgp-modified {
# The location of the driver library
module = /path/to/the/build/directory/lib/card-openpgp-modified.so;

}

card_atr 3b:80:80:01:01 {
driver = "openpgp-modified";

}

On a 64 Bit system, you might need to change the path from

/path/to/the/build/directory/lib/card-openpgp-modified.so

to

/path/to/the/build/directory/lib64/card-openpgp-modified.so

Setting up Dropbox

This needs to be done only once. It must be done before starting the transparent
client-side encryption or Dropbox.

1. Create user Dropbox: adduser Dropbox
2. Install Dropbox (download *.deb from https://www.dropbox.com/)
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3. Start Dropbox as normal user, so the files are installed. When it asks for your
e-mail, close dropbox.

4. Grant user Dropbox write access to your home directory, e.g. by executing chmod
777 ~

5. Execute xhost + (as normal user)
6. Start Dropbox (as user Dropbox)
7. Choose your home directory when asked where to place the Dropbox directory
8. Terminate Dropbox
9. Reclaim your Dropbox directory via chown
10. Remove all files in Dropbox, e.g. by executing rm -rf ./* ./.* inside the

Dropbox directory

Starting the transparent client-side encryption

This needs to be done before starting Dropbox.
To start the transparent client-side encryption, execute the following command:

cd encrypting-cloud-storages/build
bin/start_fuseecs.sh

Starting Dropbox

This must not be done before starting the transparent client-side encryption.
We need to share our display, so the user Dropbox can use it. We then switch to the

user Dropbox and start the program:

xhost +
su Dropbox
/home/user/.dropbox-dist/dropbox-lnx.$PLATFORM-$VERSION/dropbox

Sharing files
For sharing a folder, execute the following commands:

cd encrypting-cloud-storages/build
bin/start_share_a_folder.sh $FOLDER $OPENPGP_FINGERPRINT

For example, the commands could look like this:

cd encrypting-cloud-storages/build
bin/start_share_a_folder.sh /home/user/Dropbox/folder_to_share \
A6506F46

This shares the folder in a cryptographic way. Afterwards, you still have to share
the folder via Dropbox.
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