
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Evaluation of Structured Parallelization of
k-Means-Based Clustering Methods

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Maximilian Mackeprang
geboren am: 23.01.1990
geboren in: Kiel

Gutachter/innen: Prof. Dr. rer. nat. Jens-Peter Redlich
Prof. Dr. sc. nat. Joachim Fischer

eingereicht am: verteidigt am:

Abstract

At the present time, data size and complexity of clustering tasks (e.g. machine learning)
demand parallel computing on multiple cores. However, designing parallel applications
using threads and blocking is prone to non-trivial errors. This thesis uses an structured
parallelization approach called algorithmic skeletons to build a model to express
variants of one of the most used algorithms in data analysis: k-Means. We compare
different variations of the k-Means algorithm to establish a common ground between them.
The similarities are used to build a general k-Means skeleton that can be used to
implement different k-Means variations. Based on the interface, different parallelization
possibilities are shown. Furthermore the runtime properties of the original k-Means
algorithm, a kd-tree based version, k-Median and fuzzy c-Means are evaluated in an
experimental setup, using the algorithmic skeleton framework Skandium to provide the
implementations.

Abstract(german)

Die Komplexität und Datenmenge heutiger Computersysteme zur Clusteranalyse
(z.B. im maschinellen Lernen) erfordert die parallele Verarbeitung der erforderlichen
Berechnungen, um die Laufzeit in annehmbaren Grenzen zu halten. Ein Problem dabei
ist, dass das Erstellen paralleler Applikationen unter Verwendung von Threads und
locking Mechanismen anfällig für nicht-triviale Fehlerfälle ist. Ansätze strukturierter
Parallelisierung versuchen dieses Problem zu lösen, in dem sie Anwendungsentwicklern
Modelle der nebenläufigen Programmierung bereitstellen. Diese Arbeit benutzt einen
„algorithmic skeletons“genannten Ansatz zur strukturierten Parallelisierung, um ein
Modell für verschiedene Varianten von einem der meistgenutzten Algorithmen in der
Datenanalyse auszudrücken: k-Means. In der Arbeit werden verschiedene Varianten
des Algorithmus verglichen und auf Gemeinsamkeiten untersucht. Des Weiteren wird
ein Überblick über verschiedene Ansätze zur Parallelisierung des Algorithmus gegeben.
Ausgehend von diesen Erkenntnissen wird eine Schnittstelle für ein allgemeines Modell
des k-Means Algorithmus entworfen und als algorithmic skeleton umgesetzt. Mithilfe
der algorithmic skeleton Bibliothek Skandium wird das entworfene Modell umgesetzt und
in einem experimentellen Umfeld evaluiert. Die Evaluation untersucht die Eigenschaften
der Parallelisierungsmöglichkeiten für vier verschiedene Variationen: der originale k-
Means Algorithmus, eine kd-tree basierte Version, der k-median sowie der fuzzy c-means
Algorithmus.

Contents
1. Introduction 8

1.1. Motivation . 8
1.1.1. Algorithmic Skeletons as a Model of Structured Parallelism 8
1.1.2. Application: Cluster Analysis . 10

1.2. Research Goals . 10
1.3. Outline . 11

2. Background 12
2.1. Cluster Analysis . 12
2.2. k-Means . 14

2.2.1. Lloyds Algorithm . 16
2.2.2. Variations . 18
2.2.3. k-Median . 20
2.2.4. Fuzzy c-Means . 20

2.3. Generalized k-Means . 21
2.4. Algorithmic Skeletons . 22

2.4.1. History . 22
2.4.2. Basic Principles . 22
2.4.3. Goals . 23
2.4.4. Advantages . 24
2.4.5. Common Skeletal Patterns . 24
2.4.6. Limitations . 25

3. Related Work 26
3.1. Structured Parallelism . 26

3.1.1. HPC Based Approaches . 26
3.1.2. Task Based Approaches . 27
3.1.3. Data Driven Approaches . 27
3.1.4. Parallel Patterns . 27
3.1.5. Other Approaches . 28

3.2. k-Means optimizations . 30
3.2.1. Exact Sequential Acceleration . 30
3.2.2. Approximative Approaches . 31
3.2.3. Centroid Initialization . 32
3.2.4. Number of Clusters (k) . 32

3.3. Parallelization of k-Means . 33
3.3.1. Datacenter/Cluster Environments 33
3.3.2. Shared Memory Multicore Systems 35
3.3.3. Grid Computing/Distributed Systems 35
3.3.4. Others . 36

3

4. Definition of the General k-Means Skeleton 38
4.1. Features of k-Means-Algorithms . 38

4.1.1. Assignment Step . 38
4.1.2. Update Step . 38
4.1.3. Convergence Criterion . 39

4.2. Higher Order Function . 40
4.2.1. Parallelization Schemes . 42

5. Realization 47
5.1. Skandium . 47
5.2. Instruction Generation Semantics . 48

6. Evaluation 50
6.1. Methodology . 50
6.2. Lloyd/Forgy k-Means . 52

6.2.1. Cost Model Comparison . 52
6.2.2. Parallelization Schemes . 53
6.2.3. Sizeup Properties . 57
6.2.4. Performance on Real World Datasets 57
6.2.5. Overhead . 59
6.2.6. Relation of Speedup and Problem Size 60

6.3. Algorithmic Variations . 62
6.3.1. kd-Tree Based k-Means . 62
6.3.2. k-Median . 63
6.3.3. Fuzzy c-Means . 64

6.4. Speedup Comparisons . 65
6.5. Discussion . 65

7. Conclusion 67
7.1. Summary . 67
7.2. Outlook . 67

7.2.1. Further Evaluation . 68
7.2.2. Leveraging the Abstraction . 68
7.2.3. Other Data Mining Algorithms 69

A. Appendix 78
A.1. Survey of k-Means Parallelization Approaches 78
A.2. Skeleton Configurations . 80

A.2.1. k-Median (Sequential Maximization) 80
A.2.2. k-Median (Map Maximization) 81
A.2.3. kd-Tree (Random Decomposition) 82
A.2.4. Fuzzy c-Means (Sequential Maximization) 83

A.3. Performance Measurement Methodology 83
A.3.1. Data Sets . 83

4

A.3.2. Measurement Script . 84
A.3.3. System Specifications . 85
A.3.4. Source Code . 85
A.3.5. Raw Runtime Data . 86

A.4. Runtime Plots . 87

5

List of Figures
1. Examples for different data groupings (taken from [53]) 13
2. visualization of the Llyod/Forgy algorithm (d=2,k=3,i=3) [32, p. 617] . . 17
3. Visualization of the map-skeleton [7] . 23
4. Activity diagram for the sequential maximization parallelization scheme . 43
5. Activity diagrams for the parallelization schemes based on a parallel

execution of the maximization/update step 45
6. Activity diagram for the partial merge parallelization scheme 46
7. Principles of Skandium task processing [71] 49
8. Runtime behavior of k-means implementations with respect to data size . 53
9. Speedup measurements for Lloyds algorithm on a random input data set

with varying number of cores . 54
10. Scaleup measurements for Lloyds algorithm on a random input data set

with varying number of cores . 56
11. Relative runtime deviation between the map-maximization and hybrid

partition schemes in the speedup measurement runtimes. 56
12. Effects of varying input data size (n) on Speedup factor for Lloyds algorithm 57
13. Speedup measurements of Lloyds algorithm for various datasets 58
14. Overhead induced through the use of the skandium library: Deviations be-

tween total runtime of manual vs skandium based parallelization (skandium
runtime - manual runtime) averaged over 10 runs 59

15. Speedup measurements of Lloyds algorithm for three synthetic datasets
with varying problem size . 61

16. Runtime Results for the sequential K-Means algorithm in Comparison to
the kd-tree based Version (for varying amounts of n) 62

17. Speedup factor for kd-tree based k-means algorithm, using the sequential
maximization scheme to provide random decomposition (kd-rd) 63

18. Speedup factor for the k-median algorithm using the parallel maximization
parallelization scheme . 64

19. Speedup factors for the fuzzy c-means algorithm using the sequential
maximization parallelization scheme . 64

20. Speedup comparison of the implemented algorithmic variations Lloyd,
k-median and fuzzy c-means . 65

21. Runtime measurements of Lloyds algorithm for various datasets 87
22. Runtime measurements of Lloyds algorithm for various datasets 87
23. runtime measurements for the fuzzy c-means algorithm using the sequential

maximization parallelization scheme . 88
24. Runtime measurements for the k-median algorithm using the map maxi-

mization parallelization scheme . 88
25. Runtime comparison of the sequential algorithm using one and eight cores

available to the system . 89

6

List of Algorithms
1. Lloyd-Forgy k-Means . 16
2. The fuzzy c-Means algorithm . 21
3. Generalized k-Means approach [82] . 21
4. The filtering algorithm [61] . 31
5. p-chunks problem decomposition of the k-Means cluster assigment step . . 37
6. local centroid calculation and global aggregation parallelization scheme . . 37
7. k-median-sm . 80
8. k-median-mm . 81
9. kdtree-random-decomposition . 82
10. fcm-sm . 83

7

1. Introduction
1.1. Motivation
In the past decades the computing industry was driven by fast improvements of the
underlying hardware technology. This regular growth, well known as Moore’s law was
traditionally accompanied by a doubling of the CPUs clock frequency [18]. For application
developers this meant a reliable improvement of sequential code runtime over time. In
2004 however clock speed stalled due to physical constraints and the manufacturers
instead began building CPUs with multiple execution cores [93]. Researchers expect
this trend to continue leading to hardware systems comprising tenths to hundreds of
integrated cores [6]. To utilize these cores efficiently, programs that are able to perform
concurrent computations in parallel are needed. Another recent development in the field
of information technology are ever increasing amounts of data, both stored and processed
[98]. To deal with this development and to keep systems using these data amount in
acceptable time frames, parallel processing is necessary.

1.1.1. Algorithmic Skeletons as a Model of Structured Parallelism

There are many models available to enable the programming of concurrent systems,
providing a wide range of levels of abstraction. The subsequently featured models are
representatives for the low and the high end of the scale.

The Thread Model (from thread of execution) is a widely adopted concept for modeling
of concurrent execution. Threads provide an interface to create and manage lightweight
sub-processes in a program. In contrast to operating system processes, the user handles
creation and management of the threads [13]. Thread based approaches can be divided
into two categories: in the model of Hoare/Dijkstra [47, 29] threads are seen as Commu-
nicating Sequential Processes, e.g. communication between them has to be explicitly
modeled. The advantage of this model is that race-conditions (e.g. concurrent accesses of
shared data) cannot occur. The disadvantage is that modeling communications between
threads tends to grow very fast in complexity especially when greater amounts of threads
are involved [40].
The other model (developed by Wyllie/Vishkin [89, 38]) bases the communication of
threads on shared memory and explicitly allows concurrent access. Both approaches
share a low level of abstraction: the programmer is explicitly tasked with modeling
concurrency. On the one hand this allows fine grained access and tuning of potential
systems, on the other hand communication and coordination has to be managed manually.
This fact bears great error potential and often results in considerable complexity especially
for large systems [69, 54]. For this reason the thread-model is often compared to the
GOTO-Instruction in assembly languages: the amount of potential interactions between
threads and with globally shared memory segments make it difficult to isolate error
sources or reason about side effects in a parallel system [77, 40].

8

Functional Programming On the other side of the spectrum, providing a high level
of abstraction, there are languages based on the lambda calculus. Programs are
expressed as a set of functions, with no notion of explicit state or concurrency. The
absence of state is fulfilled via the concept of pure functions, meaning functions must
not have side-effects on any components of the program and always return the same
corresponding result value when invoked with a specific argument. A functional program
is expressed in nested function calls, which can be represented as a graph. The process of
evaluating this graph and executing the correct functions is called graph reduction. For a
parallel execution of the program, execution graphs can be partitioned and executions
assigned to different processors. The advantages of functional programming in respect to
parallelization are that data races cannot occur in a programming model which provides
function application on immutable data. Furthermore, due to the absence of side-effects,
race conditions or different results due to multiple invocations of a function cannot occur.
The disadvantages of this model are strongly linked to the implicit parallelism: The
following example taken from [22, p. 10] shows that the degree of parallelism inherent to
a functional program depends on the function structure: In the naive implementation the
factorial is implemented as a recursive function, leading to a sequential execution graph

factorial 0 =1
factorial n =n ∗ factorial(n− 1)

By reformulating the problem to:

factorial 0 =1
factorial n =product 1 n
product a a =a

product a b =(product aba+ b

2 c) ∗ (product(ba+ b

2 c+ 1)b)

We get an execution graph with multiple branches which can possibly be executed in
parallel. This shows the disadvantage that the problem formulation language has no
concept of explicit parallelism. In order to write programs that efficiently use parallel
systems, the programmer still has to know about the runtime parallelization techniques
used. Another problem of parallelism in functional languages is the distribution of work
to available nodes [22].

Structured Parallelism To find a trade-off between these abstraction levels, researchers
developed the method of structured parallelism. Similar to the principles of structured
programming, structured parallelism tries to find patterns that can be used to formulate
well defined parallel execution [78]. The idea of structured parallelism is to divide the
problem space into two layers: In the productivity layer the patterns are combined
by programmers to achieve concurrency and parallelism in domain specific application

9

areas in reasonable amounts of time. The patterns are implemented in what is called
the efficiency layer: experts for parallel programming create the synchronization and
communication needed for a specific pattern preferably optimized to a specific hardware
layout [6]. Algorithmic skeletons are a model for structured parallelism that tries to
abstract patterns in the form of parameterizable higher order functions. These functions
capture the communication and synchronization needed by a specific pattern (and thereby
providing interfaces for the productivity layer). These skeletons provide abstract generic
views on algorithms, which are specialized by the supply of computation functions, that
are inserted into the skeletal outline. The computation functions used by a skeleton can
be expressed in an imperative or object-oriented matter, thus enabling programmers
with a background in these programming paradigms to build parallel programs while
still relying on their expertise.

1.1.2. Application: Cluster Analysis

Both computing power and data volume have reached a point where its possible for
enterprise users to apply theoretic insights and algorithms in the field of machine learning
productively and economically feasible. This fact has lead to a rise in applications using
machine learning techniques and applying formerly theoretic algorithms in practice. To
process the amount of data currently used in enterprise applications we need parallel
applications that are able to process data quickly. Clustering is an essential task for
applications in fields like machine learning or data mining. One of the most used clustering
algorithms is k-Means [97]. By providing an algorithmic skeleton for this algorithm we
can reduce the runtime, leveraging the benefits of skeletal programming (namely the
abstraction of parallelism and synchronization) while simultaneously enabling users with
domain specific knowledge to adapt implementation details quick and easy.

1.2. Research Goals
The goal of this thesis is to provide an algorithmic skeleton for the general k-Means
algorithm. The skeleton then will be evaluated on shared-memory multi-core systems in
regard to the following aspects:

parallelism: different parallelization possibilities extracted from the related work in
the area.

drop-in improvements: the kd-tree based improvement of k-Means will be imple-
mented and compared to the original version.

adaptability to show the application of the skeleton to different k-Means variations,
the k-median and fuzzy c-means algorithm will be implemented using the skeleton
and evaluated regarding their parallelization efficiency.

10

1.3. Outline
This thesis is structured as follows: The section Background (section 2) provides
fundamentals and theory in the two fields used: algorithmic skeletons and cluster
analysis. For each field terminology, background and features are explained. Next the
chosen algorithm k-Means is introduced. Furthermore some variations are presented
(namely the k-median, k-medoid and fuzzy c-means variants) In section 3 Related Work
is discussed: different models and approaches for handling parallelism and concurrency are
presented briefly. Afterwards an overview of optimizations and parallelization approaches
for the k-Means-algorithm is given and the different methods are compared to each other.
Based on this survey, the different parallelization possibilities are listed and used for the
Definition of the General k-Means Skeleton (section 4) based on which different
parallelization schemes are derived. To evaluate the skeleton design it is realized using
an algorithmic skeleton library called Skandium. The section Realization 5 explains
characteristics and execution semantics of the library. An empirical analysis of the
realization of the different schemes is given in the Section Evaluation (6) along with a
discussion of the obtained results.

11

2. Background
In the subsequent section an overview is given over the theoretical foundations of both
cluster analysis and algorithmic skeletons. Key concepts are listed and terminology
is defined.

2.1. Cluster Analysis
The field of cluster analysis concerns itself with the classification of data into different
partitions. These partitions are called cluster. Informally, data elements belonging to
a cluster share some kind of distinct feature. There is no widespread formal definition,
but for the context of this thesis a cluster is defined as a set of objects which share
an internal homogeneity (similarity) and an external separation (dissimilarity). This
corresponds to definitions found in [99]. Ideally, the degree of dissimilarity between the
subsets should be larger than the degree of similarity within each cluster [8].

Cluster Analysis originally developed in the field of anthropology and was then adopted
by other fields like psychology or biology [88]. The task of organizing data into different
groups is a fundamental human approach to comprehending all kinds of phenomena
[99]. Taking this fact into account, it seems natural that cluster analysis is applied in
many different areas, ranging from natural sciences (genotyping in biology, prediction of
molecule properties in chemistry or classification of materials in geology) to sociology
(analysis of connections in social networks), computer science (computer vision, multimedia
processing, machine learning, data retrieval) and many more [99, 88, 31].

In cluster analysis the input data is normally represented as a set of data elements.
Each of these elements (also called data points or observations) consists of multiple
features defining the element. These features are normally represented as a multidimen-
sional vector. They can be quantitative or qualitative, continuous or binary, nominal or
ordinal, which determines the usable measures to compare them [99].
Due to the wide range of application areas, many approaches to the automation of

cluster analysis with the help of clustering algorithms exist today. The coarse-grained
classification of the approaches is based on the amount of prior knowledge about the
data:

Statistical Classification If the task is to assign new data elements to a set of already
known clusters, it is called statistical classification. The goal is to take a set of labeled
data (meaning the clusters are known a priori and every data element is assigned to one
of the clusters) and, for a new element, to decide to which cluster to assign it to. Every
element should be assigned to a cluster so that both the similarity within this cluster
(intra-cluster-similarity) and the dissimilarity between clusters (inter-cluster-dissimilarity)
remain high. In machine learning terminology this is called supervised learning [99].

Clustering In contrast to the supervised approach the starting situation for unsupervised
clustering is that there is no prior knowledge about the data set. The overall goal is
to gain knowledge about the data (as a first step of information retrieval) [99]. The

12

goal for the algorithms is to divide the data into subsets that share some similarity. As
clustering is an unsupervised machine learning technique it provides a tool for autonomous
systems to extract information for further decision making [99]. Similarly, in the field
of data-mining, researchers presented with a visualization of found clusters can detect
patterns or make further assumptions about the data more easy. Unsupervised clustering
can be further divided into the hierarchical and partitional approaches:

Hierarchical Clustering Hierarchical clustering is an approach similar to biological
systematics: starting at one end (top-down: the first cluster is the whole dataset or
bottom-up: the starting points are individual elements) the whole data set is divided into
a hierarchical structure (like trees or dendrograms) with unions of clusters aggregating
the contents of their children [53, 88].

Partitional Clustering In contrast the goal of partitional clustering is to find a fixed
number of clusters (usually denoted k) without hierarchical structure in a dataset. The
clusters are defined as disjoint subsets of the original set. Formally, given a set of
input data X = x1, . . . , xj, . . . , xn partitional clustering seeks k partitions of X,C =
C1, . . . , Ck(k ≤ n) such that

1. Ci 6= ∅, i = 1, . . . , k

2. ⋃k
i=1 Ci = X

3. Ci ∩ Cj = ∅, i, j = 1, . . . , k and i 6= j

(a) data that fits to centroid based clustering (b) data that fits to density based clustering

Figure 1: Examples for different data groupings (taken from [53])

13

Cluster Representation The similarity criterion used in the preceding cluster definition
can be interpreted in many ways. This leads to various ways to represent clusters. The
simplest way to represent a cluster is the raw grouping information: each element is
assigned to a cluster. To extract concepts, generalizations or data aggregations, the
clusters have to be represented by some kind of model [34]. One feature of similarity is
the density of a region of point. Cluster models based on this feature are called density-
based [82]. Figure 1b depicts a sample for clusters depending on density. Another way
to represent clusters is to create a model expressed as functions and to interpret the
given data as the output of one or multiple statistical distribution (an example for this
cluster representation is the Expectation Maximization Algorithm which interprets data
as output of multiple Gaussian normal distributions). In prototype or center-based
algorithms the clusters are objects which are more similar to a prototype that defines
the cluster than to the other existent prototypes. If the input data is in the form of a
graph, clusters can be represented by connected components that are differentiated
from the rest of the graph.

Similarity Measures To determine clusters which share internal similarity, a notion of
a similarity measure between data elements is needed. The chosen concept for similarity
determines the clustering results and often depends on the features of the dataset. One
natural way to express both similarity and dissimilarity is to determine the distance of
two points. A function that expresses a distance between two elements is called a metric
(examples for possible distance metrics are shown in section 2.2.2). The requirements for
proximity metrics/measures are [99]:
• Symmetry: D(xi, xj) = D(xj, xi)

• Reflexivity: D(xi, xj) = 0 if and only if xi = xj

• Positivity: D(xi, xj) ≥ 0∀xi, xj

• Triangle inequality: D(xi, xj) ≤ D(xi, xk) +D(xk, xj) for all xi, xj and xk

Cluster Configuration Quality To determine the result quality of partitional clustering,
a function is needed to express the quality for a given clustering configuration. This
function is often called objective function or criterion function. Like the cluster model
and the similarity function the objective function influences the result clusterings and
relies on knowledge about the data: clustering results considered good in respect to one
criterion are not necessarily valid in respect to the (unknown) source groupings.

2.2. k-Means
The k-means problem uses a center-based approach to partitional clustering: each cluster
in the data is represented by a centroid. The data elements are assigned to a cluster if
they are “near” to it (in respect to a chosen proximity measure). The number of clusters
k is normally a parameter. Options to determine a suitable value for this number can be
found in section 3.2.4.

14

Problem Definition The problem is to determine a set of k points (called centroids) in
the data space so as to minimize the mean distance from each data point to its nearest
centroid. The goal is to partition data into k clusters so that the similarity between
the points within a cluster is maximized. This means the quality of one cluster Si

(intra-cluster similarity) can be measured by summing up the distances from all points
in the cluster to the centroid (ci): ∑

x∈Si

d(x, ci)

To measure the quality of the overall cluster configuration (given k clusters) the distances
of all clusters are summed up as well:

k∑
i=1

∑
x∈Si

d(x, ci)

this leads to the subsequent target function (also called objective function) [31]:

arg min
S

k∑
i=1

∑
x∈Si

d(x, ci)

For the input space Rd the most commonly used distance measure is the squared
euclidean distance which leads to the following objective function:

arg min
S

k∑
i=1

∑
x∈Si

‖x− ci‖2

To find the global optimal clustering, the naive way is to iterate through all possible
cluster configurations and calculate the objective function value. There are kn ways to
partition a set of n points into k possibly-empty clusters. If we only consider non-empty
cluster the number of possibilities is [31]:

1
k! ∗

k∑
j=0

(−1k−j

(
k

j

)
)jn

This results in configuration amounts not feasible for simple enumeration of all possibilities:
“for example, if 25 objects are to be grouped into 4 clusters, there are approximately
4.69× 1013 different partitions” [90].

Furthermore, research has shown that the problem of finding the cluster configuration
that minimizes the global squared error is NP-complete [3, 27, 76, 64]. This leads to a
heuristic, iterative hill climbing approach, which means starting out with one partition
configuration and an objective function to determine the quality of the current clustering.
Subsequently, the cluster configuration is adapted iteratively (by moving data elements
between the subsets), so that the objective function value is reduced with each step. This

15

leads to a local optimum clustering in acceptable time [53].

2.2.1. Lloyds Algorithm

The most widespread algorithm solving the k-Means problem heuristically is the version
described in algorithm 1 which was proposed by Lloyd [74] as a vector quantization
method and therefore is often called Lloyds algorithm. A very similar algorithm was
proposed by Forgy [37] which is why the algorithm is sometimes referred to as Lloyd-Forgy
algorithm. The term k-Means itself was first used by MacQueen [75] to describe a model
representation for the partitions of a dataset having high within-cluster similarity.

The algorithm solves the problem of unsupervised clustering in the Rd space. Due to
the simplicity and efficiency k-Means is one of the most used algorithms in the field of
data mining, being used in a wide area of applications such as image processing, pattern
classification, computer vision or machine learning [31, 97].

Algorithm 1: Lloyd-Forgy k-Means
Data: data set: x1, . . . , xn with xi ∈ Rd

Data: Initial set of means: c1, . . . , ck with ci ∈ Rd and ci chosen randomly from the
data set

Result: local optimum for the cluster centers: c1, . . . , ck

1 while assignments changed between the iterations do
2 Assignment Step: S(t)

i =
{
xp :

∥∥∥xp − c(t)
i

∥∥∥2
≤
∥∥∥xp − c(t)

j

∥∥∥2
∀j, 1 ≤ j ≤ k

}
,

3 Update Step: c(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i

xj

4 end

Informally the algorithm iterates between two steps: In the Assignment Step the
squared euclidean distance to all cluster centers is calculated for every point in the given
data set. The squared distance is used to avoid the computational intensive square
root. The point is then assigned to the cluster center mi that has the minimal distance
to the point. After assigning all points to a center the Update Step recalculates the
cluster centers: The mean of all points assigned to the ith cluster is calculated (in every
dimension) and the center for the next iteration mi is set to the result value. These two
steps are repeated until the assignments of the data points does not change between the
iterations. Figure 2 shows a visualization of the algorithm.
The version presented by MacQueen [75] differs slightly: cluster-centroids are moved

after each assignment of a data element instead of being recalculated in batches after each
assignment iteration. This variation is sometimes called h-means [91] and was further
investigated by Hartigan et al. [46].

Complexity The algorithm has to keep track of the cluster centroids and the data
elements used. Therefore the space complexity of the algorithm is bound by the

16

Figure 2: visualization of the Llyod/Forgy algorithm (d=2,k=3,i=3) [32, p. 617]

number of data elements n and the number of cluster centroids k each with a given
dimension d [103]:

O((n+ k)d)

The theoretical worst case runtime complexity is determined by the number of possible
clustering configurations (the number of possible voronoi cells): Inaba et al. [51] found
that this is in O(nkd). Arthur et al. [4] proved that k-Means has polynomial smoothed
complexity, which means that although the worst-case behavior is in O(nkd) the practical
runtime is normally polynomial [31]. The average runtime of the algorithm depends on
the number of elements in the input data n, the dimensionality d, the number of cluster
centers k and the number of iterations until convergence i, therefore:

O(nkdi)

Kucukyilmaz [64] divides the algorithm into the following steps:

1. Centroid Initialization

2. Distance Calculation: nk distance calculations are needed, each of which needs 2d
floating point operations (flops).

3. Minimum: to get the cluster centroid with the minimal distance, nk flops are
needed.

4. Recalculation of the mean squared error (used to determine convergence): kd flops

5. Recalculation of the cluster centroids: nd flops

Given T iterations and a duration of Tflop per floating point operation this leads to the
following k-Means runtime:

(2nkd+ nk + nd+ kd)× T × Tflop (1)

17

Drawbacks The k-Means algorithm has several drawbacks. The variations presented
in the next section try to overcome some of them. First of all, the value of k needed
to execute the algorithm has to be determined. Choosing the right number of clusters
remains a difficult task (although there are various proposed method of deriving this value,
see 3.2.4). Furthermore the result of the algorithm is a local minimum dependent on
the initial centroid configuration (seeding) and has no theoretical guarantees concerning
the global optimum (result clusters may be arbitrarily far from the optimal clustering).
Due to the centroid representation as the mean of all cluster members and the clustering
of all datapoints the algorithm is sensible to outliers and noise. Due to the choice of
similarity measure (euclidean distance) and the recalculation method (means) the input
data is limited to numerical values. The last point is that the resulting clusters are
in the forms of hyperspheres (due to the centroid representation). This means natural
clusters in the input data with another shape will not be found by the algorithm [99].

2.2.2. Variations

Due to its popularity the k-Means algorithm is subject to many proposed variations
aiming at different stages. In the next section, different variations are summarized and
analyzed in respect to their shared features, in order to establish a general k-Means
approach, used for the algorithmic skeleton. The biggest group of variations is the choice
of proximity metrics other than the euclidean distance used by Lloyds algorithm.

Distance Metric As illustrated in the cluster analysis background (section 2.1) the
chosen distance metric determines the clustering results substantially. Due to the
representation of data elements as d-dimensional vectors, metrics valid for a d-dimensional
space can be used. For example the Manhattan distance (used in k-median, see 2.2.3)
can be used as distance measure. The generalization of these metrics is calledMinkowski
distance which is defined between two Elements X and Y as:

(
n∑

i=1
|xi − yi|p)1/p

where the before mentioned metrics are the special case for p = 1 (Manhattan) and
p = 2 (Euclidean).The advantage of using the generalized Minkowski distance is that
it allows for other cluster shapes depending on the value of p [31]. Taking into account
correction for scale or distribution of data, the Mahalanobis distance could be used,
which augments the euclidean distance with a covariance matrix.

There are multiple ways to account for data not in Rd: for composed binary features
(e.g. bit patterns) a distance measure based on the equality of the features’ parts could be
applied (for example the Hamming distance), for nominal features a mean matching
criterion. Furthermore the distance of two elements can be expressed in a similarity
matrix, where the element mij represents the distance between the ith and the jth element
of the input data [99].
To account for symmetry features in the data instead of locality (as with Minkowski

18

distance) a distance measure that treats symmetric elements as similar can be used. This
approach is used by Su et al. for a symmetry based k-Means method [92] which uses
point symmetry distance (between a point xj and a centroid cj):

ds(xj, c) = min
j=1,...,N,j 6=i

||(xi − xj) + (xj − xi)||
||(xi − xr)||+ ||(xj − xi)||

With this measure, clusters with symmetric features are found. The point symmetry
distance is non-metric, meaning the limitations listed in section 2.1 do not apply.

Algorithmic Variations The k-medoid method addresses the problem of spaces where
the notion of a mean of several points is not defined (for example for nominal features).
Instead of using the centroids defined by the mean of all points in a cluster the k-medoid
method uses the point with the minimal distance to all cluster members. The distances
can be expressed by a nominal metric (e.g. an equality metric on every dimension of
the compared points) or as a given distance table (with a fixed distance value for every
point combination). The most popular algorithm addressing the k-medoid problem is
partitioning around medoids [62]. Park et al. [83] show that the k-medoids problem
can be solved using a k-means-like approach of iteratively reassigning medoids for each
cluster.

The fuzzy c-means algorithm [86] transfers the k-Means approach into the realm of
fuzzy clustering. A detailed description is given in 2.2.4.

In [95] Wagstaff et al. show an algorithmic variation that incorporates domain knowl-
edge about relations between data elements in the k-Means algorithm. To achieve the
integration, the assignment step is adapted so that during the assignment of a point the
constraints are checked for the proposed cluster (an example for a constraint is that two
points cannot exist in the same cluster). If the assignment fails the second nearest cluster
is chosen continuing through the clusters.

Empty Cluster Handling A feature not specified by the original k-Means algorithm
is the handling of centroids with no data-element assigned during the assignment step.
This case can be handled in various ways: The easiest is to abort the algorithm execution
and report an error. The center without assignments can be removed from the list of
centroids for the next iteration. In this case final results contains only k − 1 centroids.
Alternatively it can be set to a new randomly chosen location and passed to the
next iteration. Furthermore, Muhr and Granitzer proposed an algorithm that merges
multiple clusters with to few assigned points into a new cluster [81] (see also section
3.2.4) Another way to circumvent the existence of empty clusters is a method called
constrained k-means proposed by Bradley et al. in [16]: The constraint that clusters
should not contain fewer than τ points is integrated in the assignment step. After the
integration the problem is solved by showing it’s equivalence to the Minimum Cost Flow
(MCF) linear network optimization problem.

19

Convergence Criteria The convergence criterion depends on the chosen distance metric
and recalculation method: It defines a threshold for the optimizations carried out by
assignment and update steps. In Lloyds algorithm the criterion was defined as the
stabilization of clusters: when no points are assigned to two different clusters between
two iterations, the algorithm has converged to a local optimum. This criterion can
be converted to the comparison of the sum of squared errors (if SSEi = SSEi+1)
because it is the objective function derived from the assignment/update combination of
the algorithm. In [32] Duda et al. showed how to derive other criterion functions from
multiclass discriminant analysis. For fuzzy variations often a threshold ε is chosen to
indicate convergence. To limit runtime of the algorithm another method is to limit the
iterations of the algorithm to a fixed value.

2.2.3. k-Median

The k-Median algorithm tries to improve the quality of the results by changing the
distance measure and the recalculation method: Instead of the squared euclidean error
the taxicab-geometry is used. During the Update Step the clusters are recalculated by
using the median instead of the mean [53].

2.2.4. Fuzzy c-Means

Fuzzy c-Means is an enhancement of Lloyds algorithm: Instead of assigning every data
point to exactly one cluster center, the algorithm uses assignment probabilities which are
calculated for every point and all cluster centroids [33, 12]. This is often referred to as
“soft k-Means” to differentiate from the “hard” assignment of every point to exactly one
cluster. The objective function used in fuzzy c-means is

J =
n∑

i=1

c∑
j=1

(uij)md

where d is a distance measure (normally squared euclidean distance). m ∈ R with m ≥ 1
is the fuzziness index: for m = 1 the results converge towards the results of Lloyds
algorithm. uij represents the membership degree between the ith data element and the
jth cluster (with uij ∈ [0, 1]∀i, j). To iteratively optimize the clustering configuration,
the steps of algorithm 2 are repeated until the maximum delta of the centroids between
two iterations falls below a predefined threshold: maxij{|u(k+1)

ij − u(k)
ij |} < ε.

The fuzzy c-Means algorithm can be interpreted as an intermediate step toward a
expectation maximization algorithm using gaussian mixture models to describe the
clusters [86, 842 ff].
In [106] Zhi et al. show that the k-harmonic Means proposed by [103] is a special

case of fuzzy k-means clustering, with the fuzziness index set to m = 2. The fuzzy
c-Means algorithm is subject to variations as well. A generalized model for fuzzy c-Means
as well as a discussion of variations can be found in the work of Yu et al. [100].

20

Algorithm 2: The fuzzy c-Means algorithm
Data: data set: x1, . . . , xn with xi ∈ Rd

Data: Membership matrix [uij] initialized randomly
Result: local optimum for the cluster centers: c1, . . . , cC

1 while error greater than ε do

2 recalculate centroids: cj =
∑n

i=1 u
m
ij · xi∑n

i=1 u
m
ij

3 update membership matrix: uij = 1∑C
k=1 (‖xi−cj‖

‖xi−ck‖
)

2
m−1

4 end

2.3. Generalized k-Means
This generalized approach is formalized in algorithm 3. The two abstract steps can be
instantiated by choosing a proximity measure and a objective function (for an example
see 2.2.1). Due to the fact that the k-Means approach was proposed in Lloyds algorithm
the version depicted in algorithm 3 is sometimes called generalized Lloyd algorithm
[67].

Algorithm 3: Generalized k-Means approach [82]
1 Select k points as initial centroids.
2 repeat
3 Form k clusters by assigning each point to the centroid minimizing the distance

measure.
4 Recompute the centroid of each cluster.
5 until convergence Criterion is reached;

21

2.4. Algorithmic Skeletons
Algorithmic skeletons provide a means to express structured parallelism in programs.
The subsequent chapter provides an overview over the history, the original objectives, the
basic principles and the advantages of this technology. In addition common algorithmic
skeletons are listed and explained.

2.4.1. History

The idea of algorithmic skeletons goes back to the work of Muray Cole [24] in 1989 who
proposed it as a programming model that enables the user to express parallelism in a
structured, concise way. Cole evaluated the trade-off between the clarity and portability
of a program and the performance gains by leveraging specific hardware and combining
techniques from functional and imperative programming to express the skeletal structure
of parallel algorithms (see 2.4.2). In the following years the field was further developed
and enhanced by various universities. Implementations of the idea for most of the common
programming languages were provided (an overview of algorithmic skeleton libraries
is provided in [40]). During the last two decades the algorithmic skeleton model was
enhanced by providing a way to nest skeletons [44], proposing sensible restrictions for
the structure and implementation of the model [23] and the development of common
algorithmic skeletons: general use patterns for parallel programming [40]. Another
research area is the optimization of skeleton configurations via automatic tuning [19].
Despite the improvements and implementations, the idea of algorithmic skeletons was
never adopted in commercial settings, although various techniques bare resemblance to
the concept (for example the map/reduce approach [40]).

2.4.2. Basic Principles

To explain the basic principles of algorithmic skeletons the example of the map function is
chosen. Informally map applies a function to all elements of a collection of data elements
(for a graphical representation see 3). This can be expressed by the use of higher order
functions, a technique from the functional programming environment, defining functions
with functions as a parameter. Given a function in the form of [22]:

square x = x ∗ x

with a type
square : int→ int

We can use the aforementioned map which applies the function to all elements of a given
collection to express the following:

(map square) : [int]→ [int]

22

By abstracting the square function to an arbitrary function with the type f : a→ b we
can obtain a generalized map function, like follows:

map : (a→ b)→ ([a]→ [b])

Next the notion of a split and a merge function is introduced to provide arbitrary
segmentation of a data collection. The types of these functions are:

split fs : a→ [a]

merge fm : [b]→ b

This leads to the following definition of a map-skeleton:

4map(fs, f, fm) : (([a]→ a)→ (a→ b)→ (b→ [b]))→ ([a]→ [b])

A programmer that wants to use this skeleton now has to provide implementations for
the 3 functions (split, apply, merge). One key element of the original algorithmic skeleton
approach is that these three functions are provided as sequential imperative code. This
eliminates the need for the programmer to adopt the functional programming style and
use already existent skills instead.

Figure 3: Visualization of the map-skeleton [7]

2.4.3. Goals

The goal of algorithmic skeleton is to provide an abstraction level that on the one hand
enables explicit expression of parallelism (in contrast to functional languages) and
on the other hand hides details about the communication and synchronization needed

23

to achieve parallelism (in contrast to basic message passing libraries). By making the
skeletons parameterizable through the provision of sequential functions, the model provides
flexibility and encourages re-usage of the skeleton patterns. Another goal was to enable
scalability: The interface of a skeletal system doesn’t grow in complexity when adding
more processing nodes. Therefore the user is enabled to build applications for many-core
systems without error prone manual management of concurrency. Although algorithmic
skeletons have been implemented in functional languages, the core idea of Cole was to
provide a means to parallelize imperative languages.

2.4.4. Advantages

An algorithmic skeleton separates the computation (which result is computed) from the
coordination (how the result is computed). This provides multiple advantages:

• clarity: The separation enables a user interface that can be expressed in sequential
functions. This improves reasoning about the actual computations the program
executes. Code concerning synchronization and communication between processes
is separated from the business logic (separation of concerns).

• portability: When the application is expressed as an interaction of skeletons,
underlying hardware changes can be abstracted away. This enables portability:
A given skeletal program can be executed on a given system, as long as the used
skeletons are implemented for it.

• optimization potential: by abstracting away the communication, the implementation
of a skeleton for a specific system can use the communication optimizations provided
by this system

• adaptability: changing minor details about the business logic (e.g. variations of
k-Means) leaves the overall structure of the program untouched.

• flexibility: Due to the missing order of function application in parallel skeletons,
runtime optimizations can be done on different systems: An example would be to
weigh parallelization overhead against performance gains and sequentialize execution
ad hoc [2].

2.4.5. Common Skeletal Patterns

Since the initial proposal of Cole, many algorithmic skeletons have been proposed. The
following chapter provides an overview over common skeletons, which are general purpose
and can often be found implemented outside the skeleton research area (taken from [40]).
These general purpose skeletons can be classified into three subsets:

Data-parallel skeletons enable parallel processing of multiple data elements concurrently
and are normally used when dealing with a large amount of elements. The most used
example from this class is the map skeleton shown in 2.4.2. It provides a way to execute

24

the same function on multiple data elements. The fork skeleton works in a similar manner:
a collection of data elements is split and functions are applied in parallel. The difference
to the map skeleton is that with fork a different function can be applied to each data
element. The reduce skeleton aggregates data into a single result by applying a provided
aggregation function to element pairs from the input set.

Task-parallel skeletons operate on tasks rather than splitting data elements: they
define which operations can be carried out concurrently and how different tasks interact
with each other. The most used skeleton in this subset is the pipe skeleton: It describes
the pipeline approach to parallelism also found in CPU pipelines: The processing of
data is split into multiple stages which can be carried out concurrently. The data is
passed on from one stage to another. farm describes the well known master/slave-worker
pattern: a coordination task triggers different subtasks that carry out their assigned work
concurrently. The skeleton equivalents of the classic control flow patterns are also part
of the task-parallel skeletons: The if skeleton runs a skeleton only if a condition function
evaluates to true, the for skeleton executes a skeleton for a predefined number of times
and the while skeleton executes another skeleton while a condition function remains true.

Hybrid skeletons are the third class, which represents algorithm-based skeletons working
with both data and task parallelism. The most common patterns in this class are
description of two algorithms: first divide-and-conquer is a skeleton representation of
the well known divide and conquer algorithm: An input problem is split by a divide
function as long as a condition function remains true for the split input. The handling of
the split results is done in parallel. When a point is reached where the condition is no
longer true a sub-skeleton representing the conquer logic is applied to each subset. The
divide and conquer approach is used in various approaches to structured parallelism (see
section 3.1.4). For combinatorial optimization problems, the branch and bound algorithm
can be expressed as a skeleton, taking a set of problem instances and a set of feasible
solutions and applying a given objective function to determine result quality and pruning
possibilities.

2.4.6. Limitations

Although algorithmic skeletons provide an elegant way to abstract away communication
and synchronization patterns of parallel computation, they do not solve problems inherent
to the performance evaluation of parallel algorithm. Implementations of skeletons are
still subject to performance affecting problems as contention on synchronization objects,
load imbalance, overhead, false sharing, inefficient memory access patterns or I/O being
the bottleneck [78].

25

3. Related Work
Both fields used in this thesis received great attention over the last decades. Since the rise
of multi-processor architectures in the common desktop and server computers, parallel
programming is subject to a increasingly large number of improvement approaches and
research topics. Similarly due to the increasing popularity of machine learning, many
papers investigate possibilities of optimizing the k-Means algorithm and adapting it
to newly emerging computing environments. This chapter gives an overview over the
essential developments in both fields.

3.1. Structured Parallelism
Structured parallelism tries to reduce the possibility for errors and improve the re-usability
of parallel solutions by introducing patterns/structures similar to the way structured
programming did to sequential code. Due to the stalling of processor clock speed,
models for structured parallelism have seen great attention in the past decade. Because
of this an exhaustive study of approaches to parallel programming is not feasible in the
given context. Instead this study shows a selection of programming models representative
for trends in the field. The focus of this section is on models in the realm of imperative
programming. Approaches not based on this paradigm are listed in section 3.1.5.

Terminology When talking about parallel programming, it is important to differentiate
between two concepts related to the field. If a system is able to switch execution context
and therefore switch between multiple tasks in progress, it is called concurrent. A
parallel system however can independently execute different tasks at the same time [17].
This becomes more clear by looking at the thread abstraction used in many programming
languages: Although the programmer is able to express the possibility to execute parts of
the program concurrently, for a system with only one processing unit the code is executed
sequentially.

3.1.1. HPC Based Approaches

The first class of structured parallel programming originated in the field of high perfor-
mance computing (HPC) and often provides a high number of fine tuning options. The
first approach uses compile directives (directive based) to express the parallelization of
sequential code blocks. Representative techniques are for example OpenMP or OpenACC
[25]. The aim of this approach is to parallelize iterations over data in a structured
manner (for example a for loop). The other approach uses an abstract model to enable
accelerators (like GPUs or Co-processors). Languages designed to program such highly
parallel systems (e.g. OpenCL or CUDA) use a geometric model to express thread
relations.

26

3.1.2. Task Based Approaches

To abstract the usage of threads, one approach is to define a notion of work that is
executed. This work is generated dynamically while executing a program (for example
using the fork/join model) and then mapped to the available level of parallelism on a
given machine (load balancing). The scheduling of the work can be done by an executor
component which schedules work onto a processing unit, or done in a decentralized
manner. One work balancing approach is work stealing where every processing unit is
assigned a queue of work items to execute. When this queue is empty for a processor, it
takes work from the queues of one of the other processors. The work stealing approach is
employed in many of the popular languages(e.g. the fork/join framework in java, the
TBB scheduler, or the Task Parallel Library (TPL)) [79].

3.1.3. Data Driven Approaches

The data driven approaches are related to the field of dataflow programming (see 3.1.5)
which focuses on a purely functional approach backed by special purpose hardware.
The subsequently presented approaches however model data transformations as libraries
for sequential programming languages. The idea is to model the system as a series of
computations on a stream of data (stream processing). One way is to model the graph
explicitly either graphically or textually through the representation of nodes and edges
as objects (e.g. Dryad [52] or the Thread Building Blocks Graph Flow, an approach to
parallelization of C++ Code). The disadvantage of using graphic representation is that
a mapping between the graph nodes and available computing capacities of a system is
needed.
The second approach is to express the desired results as functions on data elements

and then evaluating only the data transformations needed for the result (lazy evaluation).
This approach is used in a data center computing context with a concept called Resilient
Distributed Datasets [101]. The key aspect of data driven approaches is a more
declarative approach: instead of describing how the results are computed the user
of the technique describes what desired transformation should be applied to the data.
This abstracts away the specific implementation which leaves room for parallelization.
Another way is taking data structures familiar in the programming community (for
example a vector) and designing libraries that provide the same interface as the original
data structure but internally handle the communication and synchronization needed
when a concurrent access occurs. This approach is called concurrent data structures
[80].

3.1.4. Parallel Patterns

In the last decades, different ways to handle parallelization of programs emerged. The
field of parallel patterns tries to extract programming design patterns specially suited
for parallelization. This shows close resemblance with algorithmic skeletons: They can be
viewed as a formal notation for parallel patterns. This is the main difference between
the two approaches: Parallel patterns are implemented in programming libraries (e.g.

27

Thread Building Blocks’ Parallel Patterns for C++ [78]), while the skeletons express
an abstract mathematical way for the pattern interface. Naturally the commonly used
design patterns overlap with the common general purpose skeletons shown in section
2.4.5. An example for a parallel design pattern is the map pattern taken from [77]:

“The map parallel computation pattern applies a function to every element
of a collection (or set of collections with the same shape), and creates a new
collection (or set of collections) with the results from the function invocations.
The order of execution of the function invocations is not specified, which
allows for parallel execution. If the functions are pure functions with no side
effects, then the map operation is deterministic while succinctly allowing the
specification of a large amount of parallelism.” [77]

The research areas of parallel patterns and algorithmic skeletons overlap: In the
subsequently presented ParaPhrase project skeletons are used as the implementation tool
for common parallel patterns [45]. Other commonly used parallel patterns include reduce
(combining elements of a set in parallel), pipeline or the workpile pattern which corresponds
to the divide and conquer skeleton. The fork/join model is a generalization of the
divide and conquer algorithm. Examples for implementations are the Java Fork/Join
Pool or CILK’s spawn and sync directives.

ParaPhrase: The ParaPhrase Project (started in 2011) tries a holistic approach to the
field of parallelization. It aims to provide parallelism through the refactoring of programs
using high-level design patterns (implemented with the algorithmic skeleton approach).
Furthermore, the parallelization is optimized via mapping of available hardware resources
during execution. Its target are heterogeneous many-core architectures. During the
project, skeleton libraries were developed for both erlang (Skel) and C++ (FastFlow)
[45].

3.1.5. Other Approaches

Dataflow Programming originated as an alternative to the von Neumann model: In
contrast to the static nature of data in the model, the dataflow model proposes a
computational structure, building on local memory and execution of instructions as soon
as their operands are available. A program for this model is described as a directed
graph where data is send from one computation node to another. The model introduces
corresponding hardware (dataflow hardware architecture) [57].

Parallelization of Functional Languages: To harness the implicit parallelism in func-
tional languages given by independently evaluated functions, distributed execution
analyses the distribution possibilities of execution graphs [50, 26]. For the explicit expres-
sion of parallel execution in functional language, language extensions like concurrent
Haskell or MutiLisp extend the languages with explicit directive for parallelism. These
extensions enable the expression of the before mentioned models (task/data based) in a
functional context.

28

Coordination Models and Languages propose programming languages dedicated to
process coordination. These languages (such as Linda [39]) establish a virtual shared
memory system in heterogenous networks and provide means to manage data and
processes in this system.

29

3.2. k-Means optimizations
k-Means has been subject to various optimizations and enhancements. The focal point
of this thesis are the different methods of parallelization of the algorithm, therefore
sequential optimizations are only analyzed briefly. For further explanation of sequential
k-Means optimizations see [31].

3.2.1. Exact Sequential Acceleration

The goal of exact sequential acceleration is to modify the algorithm so that the runtime
is improved while the results stay the same. These methods are also called drop-in
optimizations. The approaches can be divided into two subsets: First the algorithm can
be sped up by using spatial data structures. The authors of [84] and [61] use a kd-tree
to store the input data: In both cases a set of candidate centroids is maintained while
traversing the data tree which is filtered for each passed level in the tree (representing
subdivisions of the data space). A further explanation of the filtering algorithm is given
subsequently.
The other approach is to use one of the features of distance metrics: the triangle

inequality (see Section 2.1). Due to the subdivision of the input space and the geometric
reasoning, the sequential optimizations are often sensible to the natural clustering of the
data. When data uniformity is high, assignment of large amounts of points to one cluster
centroid based on their spatial arrangement becomes unlikely. The triangle inequality
based approaches are different in respect to the achievable speedup over the original
k-Means algorithm given a dataset configuration (number of elements, dimensionality,
number of cluster centers). In a comprehensive quantitative study Drake shows an
overview of different speedup schemes and their suitability for different dimensionality
and number of centers. The reported speedups (for the birch dataset) reach up to 38
times less execution time compared to the original k-Means algorithm [31].

The Filtering Algorithm The algorithm proposed in [61] uses a kd-tree [11] as the data
structure for the data elements. The input space is subdivided by the nodes of the tree:
The root node represents the whole input set. Each node represents a split of the input
space into two subspaces. The split dimension is determined by iterating the available
dimensions and splitting the space at the median coordinate of the input set for the
current dimension. The node’s children represent the points partitioned above and below
the split coordinate. The leaf nodes represent each point in the input data set. The
filtering algorithm leverages this partitioning to reason about cluster membership of the
containing points: if a subspace of a node (denoted u.cell) is in its entirety further away
from a centroid than from another, the further centroid can be filtered from the list of
centroids the points in the subspace have to be compared to. The algorithm traverses
the whole tree and for each node removes centroids from a candidate set using the logic
outlined before. Algorithm 4 shows the logic used, given a Node u and a set of candidate
centroids Z. The function z.isFarther(z∗, C) is used to remove centroids which are
farther away from z∗ than the whole cell described by C. The performance gains of the

30

Algorithm 4: The filtering algorithm [61]
1 Function Filter(kdNode u, CandidateSet Z)
2 C ← u.cell ;
3 if u is a leaf then
4 z∗ ← the closest point in Z to u.point ;
5 z ∗ .wgtCent← z ∗ .wgtCent+ u.point;
6 z ∗ .count← z ∗ .count+ 1 ;
7 else
8 z∗ ← the closest point in Z to C’s midpoint ;
9 foreach z ∈ Z \ {z∗} do

10 if z.isFarther(z∗, C) then
11 Z ← Z \ {z};
12 end
13 if ‖Z‖ = 1 then
14 z ∗ .wgtCent← z ∗ .wgtCent+ u.wgtCent ;
15 z ∗ .count← z ∗ .count+ u.count ;
16 else
17 Filter(u.left, Z);
18 Filter(u.right, Z);
19 end
20 end
21 end

filtering algorithm are sensitive to the distribution of the input data elements. When
a natural clustering is present in the input data, more centroids are filtered earlier in
the tree traversal (because of a higher probability that the spatial decompositions of
the input space match a natural clustering). Furthermore, it is shown that for higher
dimensions the performance degrades [31].

3.2.2. Approximative Approaches

The idea of approximative approaches is to provide better runtime while deviating from
the results of the original algorithm (preferably by a theroretical bound). For k-Means
this often means choosing subsets of the input data. This can be done either by picking
random data elements from the input set (sampling, as shown by the APKM algorithm
in [63]) or based on knowledge about the data (core-sets) [60, 10]. A subcategory of the
approximative approaches are streaming algorithm which try to cluster the data in a
single pass. Furthermore, they do not require loading the complete set of data input
elements into the main memory. Proposed algorithms are single pass k-Means [1] or
ScaleKM [14].

31

Yinyang k-Means proposed by Ding et al. [30] combines the usage of the triangle
inequality with a grouping approach. For each element-group upper and lower bounds to
the centers are calculated to eliminate unnecessary distance calculations.

3.2.3. Centroid Initialization

Due to the iterative hill climbing approach of Lloyds algorithm, it’s result is dependent
on the initial clustering configuration (it finds a local optimum dependent on it). There
are many different ways to pick the first set of centroids (this step is also referred to as
seeding), with the easiest being a random pick either from the input data set or from
the data space. This initialization however provides no guarantee about the final result.
Furthermore, the choice of initial centroids has impact on the number of iterations until
convergence is reached and on the quality of the final result [5].

k-Means++ The idea of k-Means++ is to choose the first centroid randomly and
subsequent centroids so that they are far away from each other (the probability of choosing
a point as a centroid rises proportionally to its distance to the existing centroids). With
Lloyds algorithm no theoretically motivated statements can be made on the quality of
the found minimum. k-Means++ can show that its Θ(log k)-competetive to the global
optimum [31].

Scalable k-Means++ The k-Means++ algorithm has a time complexity of O(nkd)
(equivalent of one sequential k-Means iteration). The process of k-Means++ can be
parallelized as well. One technique to do so is described in [9].

Competitive Passes Another method of improving the quality of the result clustering
is to run the algorithm with different seedings in parallel. Mux-k-Means uses a technique
that connects multiple runs and compares their final error-values [72].

3.2.4. Number of Clusters (k)

A traditional shortcoming of k-Means is the assumption of a known number of clusters
(k) in the dataset. The objective function optimized by Lloyds algorithm (within-cluster
sum of squares) decreases monotonically with increasing k (down to the trivial clustering
of k = n where each point has its own cluster). Therefore other measures are needed to
determine the validity of a chosen k [34].

To determine the number of clusters, some methods have been proposed: The first one
is the manual review of validity through visualization of the data set. However this
method only works if the given dataset can be projected into a 2-dimensional space.
Another method is the definition of a stopping rule: Xu et al. [99] mention that

there are over 30 indexes proposed to determine the quality of a given k.
A different approach to this problem is proposed by Muhr and Granitzer [81]: During

the execution of the algorithm defined thresholds are introduced, that provide logic when

32

to split and merge clusters [81]. As pointed out by Estivill-Castro [34] the validity
criterion functions could for themselves be used as clustering objectives.

x-Means tries to solve the problem of finding an appropriate number of clusters by
starting multiple runs of k-Means with increasing values of k and examines the result
quality by a given secondary criterion. There are multiple proposed information criteria,
most notably Akaike’s information criterion (AIC) or the Bayesian inference
criterion [85]

3.3. Parallelization of k-Means
Due to the popularity of the k-Means algorithm, various approaches to parallelize the
process exist. Subsequently some selected techniques are presented. The given approaches
are analyzed on problem decomposition and distribution features. All examined sources
assume that the number of input elements is sufficiently larger than the number of clusters
(n >> k). Furthermore, most of the examined papers provide algorithms for a specific
target platform (shared memory, NUMA, MapReduce). The goal of this thesis is to
unify these approaches in a skeletal model of the algorithm. A majority of the analyzed
sources leverages the inherent data-parallelism in k-Means: The input data elements are
not dependent on each other, therefore distance measurement and assignment to the
next centroid can be done in parallel. The common approach is to divide the input data
into preferably uniform subsets and to perform the distance calculation on one chunk
per processor. This approach will be referred to as p-chunks and is sketched out in
algorithm 5. Subsequently the analyzed approaches to k-Means are classified in relation
to their target system architecture.

3.3.1. Datacenter/Cluster Environments

The first category of targeted systems is the datacenter/cluster environment. The
nodes in this environment are assumed to be under the operators’ control and able to
communicate with each other. This target system architecture can be broadly categorized
into two fields: First the networked systems, where computing nodes are explicitly
addressed and communication is modeled using a variation of message passing. The
second category describes clusters of nodes participating in MapReduce based algorithms:
The communication between the nodes is not modeled explicitly anymore, instead the
parallelization semantics of the MapReduce model are applied.

Networked Systems In the networked systems environment, computing nodes have no
shared memory. Communication between processes is done using a network protocol like
TCP/IP or Infiniband. The most used communication model is the Message Passing
Interface(MPI) (which is used by the most high performance computing systems).

The earliest proposition of a parallel version of k-mean found is by Stoffel and Belkoniene
[91]. The authors propose parallelization of the assignment step (similar to algorithm 5).
The paper emphasizes the difference between cluster recalculation after every assignment

33

(which can’t be done in parallel effectively) and global recalculation after each assignment
step (see 2.2.1). The performance was tested on a 32 PC network connected by 10MBit
Ethernet. The authors claim 90% efficiency for this setup and a data set of 20 attributes
and 100 000 objects (with 20 clusters). The time needed to distribute the data is not
measured.

Dhillon and Modha [28] propose a parallel k-means algorithm for distributed memory
multiprocessors using the MPI-communication model. The paper uses the approach of
splitting the data into p chunks and furthermore computes partial results for the new
centroids: For each processes k “weighted centroids” are calculated by adding up all
vectors belonging to each cluster. Also, the amounts of added data elements are tracked
for each cluster. This enables the algorithm to recalculate the centroids by summing
up each local weighted centroid and dividing them by the total summed up amount
of data elements for each cluster (see algorithm 6). This method works because the
mean calculation can be splitted into local operations without changing the result (see
section 4.1.2). The empirical analysis shows that, while speedup degrades with smaller n,
it’s near linear for a data size greater than 221 (for d=8 and k=8). Furthermore, the
measurements show linear scaleup for varying n,d and k. The approach by Dhillon and
Modha is enhanced by Tian [94] by adding a subset clustering seeding and by Joshi [58]
by adding bisecting k-means based seeding.
The approach of Kantabutra et al. [59] is to partition input data into k subsets.

These subsets are sent to the computation nodes in a master/slave approach: every slave
computes the mean of its own subset and broadcasts it. Afterwards the slaves calculate
all distances and broadcast the resulting subsets to all other slaves. From this broadcast
every slave receives the data elements assigned to its own managed cluster and repeats
the process. At the end, the master process collects the resulting subsets and returns
them. The used communication model is MPI over TCP/IP. Experiments show that no
speedup is achieved until n > 600K (with d=2 and k=4 on random data). For greater
data size a speedup between one and two is measured (for four nodes). The disadvantage
of this approach is that the number of possible processing elements is determined by the
number of cluster centers.

MapReduce Based Approaches The first approach to adapt k-Means to the MapRe-
duce paradigm is proposed by Chu et al. [21] as part of a broadly applicable programming
method for algorithms that fit the statistical query model. The used algorithm resembles
the local centroids: the data is split into p subgroups and in the map-function assigned
in parallel. Afterwards the local weighted centroids along with the amounts are summed
up by the reduce-function. Measurements conducted on a sixteen node cluster show a
speedup between eight and twelve for sixteen used nodes. The approach is essentially
repeated by Zhao [105] explicitly for k-means. Furthermore, empirical results for sizeup,
speedup and scaleup are given. Results show that speedup is between 2.5 and 3.5 for 4
nodes; the speedup degrades with a smaller dataset (the datasets tested were 1, 2, 4 and 8
GB in size).
Another approach proposed Li et al. [73] uses locality sensitive hashing (LSH) to

34

implement various optimization approaches: First, the initialization phase is executed on
prototype points extracted from the hash buckets created by the LSH. This provides
efficient creation of a initial centroid configuration. Furthermore, the prototypes are
used to prune unnecessary distance calculation during the assignment step: Due to the
locality feature of the hash function, for a prototype point p distances are calculated only
for the centroids placed in buckets near the hash bucket of p. Furthermore, all points
represented by p can be assigned at once.

3.3.2. Shared Memory Multicore Systems

The first contribution found explicitly targeting shared memory systems is by Hohlt [48]:
The author proposes a pthread based parallelization of k-Means. The parallelization
follows the scheme depicted in algorithm 6. First, the data is partitioned into p chunks
and then, the assignment is done in parallel. The feature data, membership of the data
and the global centroids are shared between the used threads. Empirical analysis shows
that the recalculation step of the mean takes up only a negligible fraction of the overall
runtime. The experiments conducted (on image segmentation data) show that speedup
is near linear for one to four threads. Another contribution for shared memory systems
was made by Kucukyilmaz [64]. The approach uses threads with a fixed capacity to
execute the assignment step in parallel. Centroid recalculation is done following the
localcentroid (algorithm 6) scheme. Kucukyilmaz adds a parallel seeding variation, where
each processing task initializes a fraction of the initial centroids.

kd-Tree Based Parallelization Parallelization approaches for the kd-tree based k-
means were proposed by Gursoy in [42] for shared memory using pthreads and [41]
for distributed memory environments. The first approach is to parallelize the distance
calculations occurring while the tree is traversed: A thread takes nodes out of a shared
work pool and applies the calculations needed to filter the set of centroid candidates. It
then proceeds with the left child node while storing the right child node in the pool. The
right child node is then processed by other available threads.

The other proposed approach works similar to the p-chunks scheme: The input data
is divided into equal sized subsets and for each subset a kd-tree is generated, which is
then traversed using the filtering algorithm (see section 3.2.1). This approach is called
random decomposition. To further improve this approach, the data can be partitioned
by dividing the input set into subspaces using a geographical partitioning. This variation
is called spatial decomposition.

3.3.3. Grid Computing/Distributed Systems

Another type of target systems are distributed systems. In contrast to the system
architecture used in the previous target environments, distributed systems are not
assumed to be under the control of one individual. This leads to several implications
regarding the algorithm design: First, the data distribution cannot be assumed to be
evenly across the involved computing nodes. Second, communication time between nodes

35

can be non-uniform, making moving data difficult. This leads to a series of approximative
k-Means algorithms, trying to calculate clusterings using as few data reads as possible.
Jin et al. [56] propose an drop-in approach to k-Means combined with a distributed

version that targets loosely coupled computing nodes in a setting where the input data
is unevenly distributed over the machines. The authors show that in the presence of
load imbalance the proposed algorithm outperforms a parallel k-Means version using
p-chunks.

3.3.4. Others

Another approach to speed up runtime of k-means is to use special purpose hardware
like Graphics Processing Units (GPUs), Manycore Solutions or Field Programmable
Gate Arrays which provide ample parallelism capabilities and can be programmed
using Frameworks such as Compute Unified Device Architecture (CUDA) or the Open
Computing Language (OpenCL) [102].

Graphics processing unit (GPU) Farivar et al. [36] propose a parallel version of k-
means using the CUDA programming interface to leverage GPU processing power. The
parallelization follows the p-chunks algorithm, with a sequential cluster recalculation
step. The centroids of each iteration are stored in the constant memory which is an 8
KB cache per thread. This limits the dimensionality of the data. Experiments were
conducted using 1 million one dimensional data elements and 4.000 cluster centers. The
conducted experiments showed an achieved speedup factor of 13, compared to a general
purpose 2Ghz CPU.

Manycore Solutions (MIC) Another specialized hardware example is the Intel Many
Integrated Core (MIC) co-processor, which offers a high number of hardware level threads
combined with integrated units for vectorized execution of computation (SIMD). In [96]
Wu et al. propose a vectorized implementation of Lloyds algorithm tailored for the use on
the MIC co-processor (and using OpenMP as the threading model). The approach taken
by the authors is to invert the distance calculation sequence from iterating the centroids
for each point to iterating the data points for each centroid. The distance calculations
are executed in a vectorized settings and the results are send to a CPU acting as the
master. The distance comparison and assignment is done by this CPU. The evaluation
done shows that speedup scales near linear for a number of threads lesser then 32, when
clustering a dataset consisting of 5 million elements, each with a dimensionality of 10,
into 50 clusters.

36

Algorithm 5: p-chunks problem decomposition of the k-Means cluster assigment
step
Data: vectors: x1, . . . , xn with xi ∈ Rd

Data: centroids: c1, . . . , ck with ci ∈ Rd

Data: processing units: P
1 for processing node p ∈ P do in parallel
2 for i← (i− 1) ∗ (n/P), i ∗ (n/P) do
3 for j ← 1, k do
4 distp, j ← distance(xi, cj);
5 end
6 clusterIndex← index(min(distj,0<j<k);
7 end
8 end
9 Cluster recalculation;

Algorithm 6: local centroid calculation and global aggregation parallelization scheme
Data: vectors: x1, . . . , xn with xi ∈ Rd

Data: centroids: c1, . . . , ck with ci ∈ Rd

Data: processing units: P
1 for processing node p ∈ P do in parallel
2 for i← (i− 1) ∗ (n/P), i ∗ (n/P) do
3 for j ← 1, k do
4 distp, j ← distanz(xi, cj);
5 end
6 localVector[j]+ = xi : i = index(min(distj,0<j<k));
7 localAmount[j]++;
8 end
9 send localAmountp to master;

10 send localV ectorp to master;
11 end
12 for i← 1, k do
13 for processing node p ∈ P do
14 globalV ector[i]+ = localV ectorp[i];
15 globalAmount[i]+ = localAmountp[i];
16 end
17 c[i]← (globalV ector[i]/globalAmount[i]);
18 end

37

4. Definition of the General k-Means Skeleton
In order to find a suitable abstraction for the skeleton, multiple aspects have to be
considered: The abstraction level must be high enough to allow different variations
of the algorithm to be expressed. On the other side, the abstraction level must allow
implementations to leverage possible parallelization schemes. In section 4.1 distinctive
features of the selected k-Means variants are analyzed. Based on the insights the type
of the higher order function is motivated in section 4.2 and the possible parallelization
schemes are presented in section 4.2.1.

4.1. Features of k-Means-Algorithms
Starting out with the abstract steps depicted in algorithm 3, the following chapter com-
pares realization variants and features of k-Means in respect to parallelization possibilities.

4.1.1. Assignment Step

The first feature used in the assignment step is the choice of a distance metric. The main
difference of the metrics looked at in section 2.2.2 is the amount of shared data used
to determine the distance: While Lloyds algorithm uses only the point in question and
the set of cluster centroids, other algorithms use secondary data structures (for example
the membership matrix used by fuzzy c-means) which are shared between distance
calculations. Another example for this is the point symmetry distance which depends
on the value of multiple input points. These dependencies could lead to difficulties
when executing distance calculations in parallel because they represent a shared resource
and could therefore be subject of contention. However as long as there are no direct
dependencies between calculations of different input data elements it is still possible to
parallelize this step (as seen in section 3.3) by using the p-chunks decomposition scheme
(see algorithm 5). The chosen distance metric also determines the applicability of drop-in
improvements using geometric reasoning (see section 3.2.1): When the distance metric
doesn’t conform to the metric constraints (especially the triangle inequality), drop-in
improvements cannot be applied. Therefore we need a general k-Means skeleton definition
that is agnostic to these drop-in variants. Furthermore, The distance metric can be
relaxed to distance functions operating on nominal or binary features (for example
the k-Medoids algorithm). To account for this variations both the cluster assignment
and the centroid update step have to operate on abstract data spaces accounting for
both nominal and continuous features. Another task that theoretically could be done in
parallel is the distance calculation for each dimension (assuming that the metric allows
for independently calculation of dimension-subsets and aggregation of the results).

4.1.2. Update Step

For the recalculation of the cluster model in the update step even greater differences
between the algorithmic variations exist. They range from the sequential recalculation of

38

every new cluster centroid (e.g. k-median) to the simple aggregation of parallel computed
partial results. As shown by Kantabutra et al. [59] the recalculation logic of a centroid
for one cluster has no effects on the recalculation of other clusters and therefore can
be done in parallel. This holds up for the other selected variations as well which leads
to a possible parallel execution of the update step. Another important aspect is the
distribution semantic of the recalculation function:

Aggregation Function Properties When considering parallelization of the recalculation
step, it is necessary to reason about the distribution semantics of the aggregation
functions. In general, aggregation functions can be classified in respect to their distribution
possibilities as follows [107, p. 47]:

distributive functions: Distributive functions can be evaluated on different subsets
of the data and merged, without the result depending on the subset partition.
Formally we call a function F distributive when an operator Θ exists so that
F (uΘv) = F (u)ΘF (v)∀u, v.

algebraic functions: An aggregation function with m arguments is called algebraic if
every argument of the final result is a distributive function. An example is the
mean: Sum and Count of the Elements can be independently collected.

holistic function: Every aggregation function that needs full knowledge of the input and
therefore can not be partially calculated (e.g. the median).

When using this classification we see that for distributive or algebraic functions we can
build partial results of the recalculation during the parallel execution of the assignment
step (as shown in algorithm 6).

4.1.3. Convergence Criterion

The convergence criteria proposed by the different variations can be classified into two
subsets: Lloyds algorithm defines convergence as the state where no data elements are
assigned to different centroids between two cluster iterations. Other variants define the
convergence as the stability of a secondary criterion between the two iterations (either by
defining equality or in the context of fuzzy clustering defining a threshold). This can be
abstracted to a function operating on two representations of the clustering configuration
(either the clustering itself or a secondary value), that determines the convergence of the
algorithm. The k-Means algorithm is inherently stateful: because we have to compare
iteration results (for the convergence criterion), we have to provide informations about
the model before and after one specific iteration. From this, pathological cases can be
constructed, defining the model so that its data size makes storing the model impossible.
Unfortunately, algorithmic skeletons provide no means to syntactically prohibit this case.
Therefore using secondary criteria like the mean squared error is encouraged to keep
memory overhead low.
Similar to the recalculation of the cluster centroids, it is possible to calculate partial

results of the convergence criteria if the aggregation function for the criterion is distributive

39

or algebraic (for example the mean squared error can be calculated in parallel by summing
up the error of each distance calculation, see [28]).

4.2. Higher Order Function
The type system used for the following chapter is taken from the work of Leyton [70]
who provided a typed skeleton system along with correctness proof and a skeleton library
implementation. When designing the higher order function representing the k-Means
skeleton, the starting point is the definition of the input data space. We define an
input space V that is deliberately underspecified. With this we can account for elements
having continuous features as well as binary or nominal ones (e.g. the k-Medoids
algorithm). Another advantage of leaving the input data organization underspecified is
that drop-in improvements like kd-tree based k-Means can be applied to the general
skeleton without changing its type signature. An example of this is the parallel execution
of kd-tree based k-Means where V represents a set of kd-trees and the split for the
assignment step simply assigns one kd-tree to each parallel execution in the assignment
step.

The input data is defined as a set V ∈ V that has a cardinality of n. To enable parallel
processing of input elements we need a way to split the data in subsets. This is modeled
as a function:

fsplit : V→ [V]

The next consideration to take into account is the abstract generalized input and
output type of the skeleton. The abstract goal of k-Means is the iterative refinement of a
clustering configuration. In Lloyds algorithm this cluster configuration is represented
by a set of centroids. The algorithm takes an input set and returns a set of updated
centroids representing a local minimum. Furthermore, we need the input data for the
algorithm to work on. This can be modeled as the abstract algorithm having a type of

fkmeans : 〈V× C〉 → C

where C represents a set of elements from the input space C ⊂ V (note that this does
not mean that the centroids are part of the input elements). To furthermore abstract the
concept of the centroid cluster representation we define a model space M that represents
different ways to express the cluster configuration (for example the set of centroids
C ∈M). This leads to the following type of the general k-means skeleton

fkmeans : 〈V×M〉 →M

Modeling the Convergence Criterion As shown in section 4.1.3 the convergence
criterion can be modeled as a function comparing model representation between the
iterations. Given the model type introduced in the last paragraph we can define the
convergence criterion as:

fc : 〈M×M〉 → B

40

Another advantage of the abstract model space is that secondary criteria can be defined
as part of the model (e.g. M := 〈N × C〉) where the first part of the tuple represents
the squared error and a convergence function for Lloyds algorithm could be modeled as
fc(a, b) 7→ true if a1 < b1.

Skeleton Definition The simplest way to model the abstract k-Means skeleton would
be to define a skeleton that takes as input a function for the assignment/expectation step
fe, a function for the update/maximization step fm and the convergence criterion function
fc. However this approach has several drawbacks: The aggregation semantics of the
maximization function (see section 4.1.2) provide different parallelization possibilities for
the update/maximization step, that cannot be expressed by one skeleton. Furthermore,
defining the skeleton using only the 3 functions disables further nesting capabilities for
the skeleton. According to Leyton [70], nesting is an important factor for skeletons in
order to achieve scalability on heterogeneous systems. Therefore, a better model for the
k-Means Skeletons is an interleaving of two sub-skeletons for each step of the algorithm,
called expectation and maximization skeleton. This leads to a higher order function
consisting of the following components:

• The input functions: The convergence criterion fc which has a type definition of
fc : 〈M×M〉 → B, an expectation skeleton and a maximization skeleton.

• The output of the higher order function is the abstract algorithm definition fkmeans,
having a type of fkmeans : 〈V×M〉 →M

This leads to the following definition of a general k-Means skeleton:

4kmeans(fc,4e,4m) :〈V×M〉 →M
input 7→output if fc(input, output)

7→4e ◦ 4m(input)otherwise

Where the sub-skeletons are defined as follows:

Expectation Skeleton For the different proposed distance metrics a general function
fe can be established, which assigns every data element to a cluster. The type of this
function is therefore fe : V → 〈N × V〉. Note that this assignment is not necessarily
the fixed assignment. Fuzzy c-means can be simulated with this behavior by defining
the probabilities as part of the data element and choosing the cluster with the highest
probability as assignment result. The overall skeleton takes the model and input data
elements as input and produces an intermediate representation of the labeled data
elements as output, which is then processed by the maximization skeleton.

Maximization Skeleton The maximization skeleton calculates the new model for the
algorithm from the labeled data output produced by the expectation skeleton. The

41

formal restrictions on this skeleton depend on the intermediate data from the expectation
step. Furthermore, the output has to be of type M so that it can be used as the model
for the next iteration. This leads to a corresponding function type of: fm : 〈N×V〉 →M

4.2.1. Parallelization Schemes

In the original work of Cole [24], for every proposed skeleton there is an exemplary
implementation on a theoretical computer-model (a processor grid) provided. The
drawback of the used hardware model is that lacks applicability to currently used
systems, both in the home computing sector and in data-center environments. Instead of
providing a model for the processor grid this thesis proposes four different parallelization
schemes which are evaluated empirically (see section 6). Subsequently the different
schemes are presented and their features explained. For each parallelization scheme
the corresponding configuration of the sub-skeletons is shown and the parallelization
semantics are visualized by providing an UML activity diagram describing the parallel
execution and synchronization points for each scheme.

Assignment Step All further parallelization schemes make use of the data parallelism
inherent to the k-Means algorithm, by using data decomposition following the p-chunks
scheme explained in section 4.1.1. The differences between the parallelization schemes
therefore lie in the handling of the update/maximization step:

Sequential Maximization The first parallelization scheme derives from the fact that
the update/maximization step contributes only to a minor portion of the total runtime
(as seen in [48]): While the assignment step is executed in parallel, the update is carried
out sequentially for all results by the master.

4kmeans(4e,4m, fc)
with 4e = map(fsplit, fe, fmerge)
4m = seq(fm)

Where fsplit and fmerge split the input according to the p-chunks scheme. The expectation
step is carried out by a function fe : 〈V ×M〉 → 〈N × V〉 that computes the distance
of every data element in the input subset to the corresponding cluster centroids and
outputs the index of the centroid with the lowest distance. fm takes the assigned data
elements and inputs and uses them to calculate the new cluster centers given a function
type of fm : 〈N× V〉 →M. The parallelization semantics can be described by an UML
activity diagram as shown in figure 4. After the parallel assignment step, the threads are
synchronized, the results merged and the master executed the maximization step.

42

Figure 4: Activity diagram for the sequential maximization parallelization scheme

43

Parallel Maximization leverages the fact that in various k-Means based algorithms
centroid recalculation depends only on the data points assigned to the corresponding
cluster (for example calculating the means of all points in a cluster in Lloyds algorithm).
Therefore, the centroid update can be executed in parallel by splitting the input data
along the cluster assignments (k). The parallelization of the maximization step is limited:
When the number of computing nodes exceeds the number of desired clusters, computing
nodes can’t be used (similar to the approach taken by Kantabura et al. in [59]. The
parallel maximization scheme can be expressed by the following configuration for the
general k-Means skeleton:

4kmeans(4e,4m, fc)
with 4e = map(fsplit, fe, fmerge)
4m = map(fpartition, fm, fmerge2)

where the expectation skeleton is defined in the same way as it was in the sequential
maximization: The input is split using the p-chunks scheme and assignment is carried
out in parallel. For the maximization skeleton, we need a function that splits the labeled
data on the lines of the clusters, leading to fpartition : 〈N × V〉 → [V] The resulting
clusters can now be used to recalculate the new centroids in parallel. This is done by
the maximization function fm : V→M (an example for Lloyds algorithm would be fm

calculating the mean of the input elements). The new cluster representations now have
to be merged to form a new global model. This is done by the fmerge2 function that
merges the results fmerge2 : [M]→ M. With this model, the first map skeleton merges
its partial outputs to an intermediate data representation which is then re-split by the
partition function of the maximization skeleton. We can condense this to a function
fp : [V]→ [M]. The condensed scheme is subsequently called Hybrid Partition. The
UML activity diagrams for both schemata can be seen in figure 5.

Partial Aggregation The partial aggregation scheme is a method which only works
for model-update functions that are either distributive or algebraic (see 4.1.2). It uses
the parallelization of the maximization step proposed by map-reduce based approaches
(see 3.3.1): The expectation step is carried out in parallel and the intermediate results
are aggregated by a partial merge function (like shown in figure 6). There is no static
configuration of the general k-Means skeleton for this parallelization scheme due to
the fact that the parallelism degree of the partial merge step has to be chosen by the
application developer. In the following evaluation the partial merge is implemented by

44

(a) Activity diagram for the sequential
maximization parallelization scheme

(b) Activity diagram for the sequential
maximization parallelization scheme

Figure 5: Activity diagrams for the parallelization schemes based on a parallel execution
of the maximization/update step

45

defining the skeleton as:

4kmeans(4e,4m, fc)
with 4e = map(fe)
4m = seq(fmerge)

and defining the output of the expectation skeleton to be the partial computation results.
In the example of Llloyds algorithm, this means defining the output of the expectation
skeleton as a tuple 〈sump, countp〉, where sump defines a vector with the sum of all
elements assigned to a cluster and countp the count of elements assigned to a cluster.
This means that the maximization skeleton is reduced to a simple fmerge that computes
sump/countp for each cluster. This scheme can only be applied to distributive and
algebraic aggregation functions.

Figure 6: Activity diagram for the partial merge parallelization scheme

46

5. Realization
To implement the parallelization schemes an algorithmic skeleton library called Skandium
(proposed by [71]) was chosen. Skandium is an algorithmic skeleton library for Java,
based on the semantics of the Calcium library [70] and implemented on top of the Java
Executor Framework, therefore targeting shared memory multi-core systems. The next
section (5.1) lists the advantages and drawbacks of the chosen approach. The conversion
semantics defined by Calcium are applied to the general k-Means skeleton in section 5.2.

5.1. Skandium
Choosing Java as the implementation language has the advantage of using a widespread
language known by many people that could possibly benefit from the proposed solutions
(especially in the setting of data mining and machine learning). It provides ease of use and
multiple aspects (such as first class functions, concurrent data structures or asynchronous
execution abstractions) useful for the implementation of algorithmic skeletons. In addition
the execution environment provides portability and interoperability with other JVM-
based languages (this enables usage in polyglot programs based on the JVM [35]). A
disadvantage is the indirect memory handling, which provides no means to directly
reason about memory layout of implemented data structures or perform manual cache
optimization, complicating the analysis and discussion of runtime deviations. Furthermore,
the garbage collection system of the JVM introduces performance side effects (see [7])
Using an open source library as the algorithmic skeleton abstraction has the advantage
of easy customization and expandability while providing concise execution semantics (see
5.2) and build in optimizations (such as a notify-system to communicate between tasks
and their children). The library provides the abstractions needed by algorithmic skeletons
without introducing the need to learn a new language. A disadvantage is that the Java
programming language provides no method of defining pure functions, therefore giving
no language level protection against parallel programming pitfalls: It is still possible to
construct data races or deadlocks when using the Skandium library.

Assumptions To provide the execution model used in Skandium, multiple assumptions
about the given skeletons are made. These are subsequently outlined and analyzed in
respect to the given problem. Further explanations can be found in [70, Chapter 3].

Single input/output: Skeletons can only receive/produce scalar inputs/outputs. This
assumption can be fulfilled by defining a model class that represents data, centroids
and assignments. The trade-off here is between the expressiveness of the algorithm
and extensive data copying/sharing

Passive skeletons: Each skeleton output is directly related to a previously received
input. This has little impact on the proposed implementation, because the process is
triggered by an input model and produces exactly one output model corresponding
to the convergent state.

47

Stateless skeletons: Skeletons are stateless and therefore their sequential blocks
are also stateless. This imposes a restriction on the convergence criterion: the
state of the last iteration has to be compared with the current state to determine
convergence. This fact is accounted for by the type definition of the criterion
function fc as 〈M×M〉 → B: The state is kept outside the function (old and new
Model are passed to the function as parameters). The old model to compare with
is kept in memory by the corresponding iteration-instruction (see section 5.2). The
drawbacks of this approach are outlined in section 4.2.

5.2. Instruction Generation Semantics
The Skandium library uses the instruction approach defined by Leyton [70] to convert
the abstract skeletons into an executable system. The outermost instruction mapping
converts the sub-skeletons for expectation and maximization step to instruction sets
using their corresponding rules. Furthermore, a kmeansI instruction is generated that
represents the skeleton as a whole:

4� S

4kmeans(fc,4e,4m) � kmeansI(fc, Se, Sm)

In order to transform the k-Means skeleton to instructions, fitting the Skandium model,
we have to enable transparent handling of splitting the given model parameter (p) into
a pair (mold,mnew) that can be handled by the criterion function fc. Furthermore, we
need to model the ongoing iteration depending on the result of fc. To achieve this using
Skandium instruction reduction rules the following instruction types are introduced:

• loopI : This instruction represents one loop iteration of the k-Means algorithm. It
applies the criterion function to the model pair (given to it as the parameter) and
returns the result model if convergence has been reached. Otherwise it pushes the
sub-skeleton and a copy of itself to the instruction stack to continue the loop.

• esI is a utility function to enable transparent handling of the statefulness of k-Means:
although the loop instruction accepts a tuple mold,mnew, the expectation skeleton
accepts a single model as parameter. To convert the stateful representation back
to the new model needed for the next iteration, the esI instruction passes only the
current model to the sub-skeleton.

• msI is the counterpart of esI . It is created by the loop function and parameterized
with the model of the current iteration. After the evaluation of the expectation
and maximization steps the msI instruction takes the output of the maximization
skeleton and joins it with the model parameter to gain the tuple mold,mnew which
is passed as input to the next loop iteration.

48

Reduction Rules Evaluating the instruction kmeansI splits the given model for further
processing in the loop instruction:

p : M
kmeansI(fc, Se, Sm)(p)→ loopI(fc, Se, Sm)(p(1), null)

p : M ×M
kmeansI(fc, Se, Sm)(p)→ p(2)

The loop instruction pushes further instances of itself on the stack, depending on the
convergence criterion. Furthermore, it generates the maximization instruction that saves
the previous value of the model used in the criterion function.

fc(p) = true

loopI(fc, Sc, Sm)(p)→ p

fc(p) = false

loopI(fc, Sc, Sm)(p)→ esI(p) · Se · Sm ·msI(p(2)) · loopI

Lastly, the support instructions handle supplying the sub-skeletons and the convergence
criterion with the needed model parameters:

esI(p)→ p(2) msI(pold)(p)→ (pold, p)

The generated instruction stacks are processed by tasks as depicted in figure 7: While
tasks exist in the ready queue, the system assigns them to the thread pool. Every task
consumed possibly generates new sub-tasks, which are added to the queue as well. When
all tasks are marked as finished, the result is put into the output stream.

Figure 7: Principles of Skandium task processing [71]

49

6. Evaluation
Due to the abstract general nature of the proposed skeleton, possible usages have many
degrees of freedom, leading to various usage scenarios. One scenario can be categorized
by:

• The algorithm used

• The parallelization scheme used

• The parameters of the input data (number of input elements n, and dimensionality
d of each input element)

• The desired number of clusters k

• The natural clustering of the data (random or well separated)

• The initial clustering model

In the next chapter the, proposed parallelization schemes are evaluated in respect to
different properties: First we show that when using the original k-Means algorithm (Lloyds
algorithm), the runtime results of the parallelization schemes match the theoretical model.
To achieve this goal, the measurements conducted by Kucukyilmaz [64] are replicated
using the given implementation. Second we evaluate the efficiency of the different
parallelization schemes and compare them with the results achieved by related work in
the field. Dhillon and Modha [28] show that the efficiency of the parallel algorithms
depends on the input data size n. To validate this, various experiments with different
input data sizes are conducted. To determine the overhead induced by using Skandium
as the skeleton library, a manual parallelization is implemented and compared to the
skeleton-based implementation in respect to their runtime.

A main aspect of the skeleton is the adaptability to different usage scenarios. To show
that it is possible to use drop-in improvements of k-Means, a kd-tree based version is
implemented using the skeleton and its parallelization possibilities are shown. Next we
show that different variations of k-Means can be implemented using the skeleton. We
show how to realize implementations of the k-median and the fuzzy c-means algorithm.
For both algorithms we show the applicability of the parallelization schemes and influence
of the different data access patterns and computation shares. In the last section we
compare achievable speedup for the different implemented variations of k-Means to
determine shared properties and influence of different expectation/maximization skeletons
on achievable speedup.

6.1. Methodology
To evaluate runtime behavior and parallelism, the proposed parallelization schemes were
implemented as skeletons with the Skandium skeleton framework. The implementations
were integrated into a Java application, which was deployed to the target system using

50

a single jar file. Measurements were taken on a multi-tenant system provided by the
Computer Science Department of the Humboldt University. To mitigate influences caused
by system utilization, the measurements were repeated multiple times, through different
times of the day and days of the week. The hardware specifications, along with used
software versions can be found in appendix A.3.3.

Data Sets The data set used to compare changes in the input element parameters
(number of values n, attributes of a data element d) is synthetically generated. It consists
of random double precision float values (8 bytes) between zero and one. Furthermore,
multiple real world application datasets are used (for an overview see A.3.1). The datasets
are completely loaded into memory and made accessible to the skeletons via immutable
shared memory (static data).

Convergence Criterion For the conducted tests a convergence criterion is implemented
that sets the number of iterations to a fixed amount (given as a parameter). This enables
the data independent variation of the number of iterations.

Model Initialization All implemented variants use the random from dataset centroid
initialization method (see section 3.2.3). To ensure comparability of the algorithm results
a pseudo-random number generator is used which is initialized with a given seed. The
clustering results of the different parallelization schemes are compared to their sequential
counterparts to ensure validity.

Time Measurements The time measurements are performed by using the Java Sys-
tem.currentTimeMillis() method call. For every run two measurements are recorded: the
total time measurement represents the time difference between the first and the last line
of the main method, the algorithm time represents the runtime of the implementation
excluding the time to set up the skeletons and read the input data from disk. The time
measurements are stored in a SQLite Database, along with the input parameters of
the execution. Until otherwise noted the subsequently presented runtime show results
averaged over ten runs.

Parallelization Scheme Abbreviations The parallelization schemes illustrated in sec-
tion 4.2.1 are abbreviated in the subsequent figures as follows: the sequential maximization
scheme is denoted sd-sm, the parallel maximization scheme sd-mm, the hybrid partition
scheme sd-hp and the partial aggregation scheme sd-pm.

Parallelization Metrics When examining parallel algorithms, it’s not sufficient to show
the validity of the results. Instead we need metrics to describe the quality of the
parallelization. A number of metrics are proposed by literature, for measuring the
efficiency and scalability of parallel algorithms [65]. For this thesis we measure the
following metrics, which are widely used in parallel algorithm research [77]: Informally,
speedup measures how the addition of further computing units reduces the runtime for

51

a fixed problem. Formally, if a single computing unit needs T1 time to process a given
problem, and TP denotes the time needed to process the same problem on P processing
elements, then speedup is defined as:

T1

TP

The ideal speedup is linear, which means that the runtime directly depends on the
amount of computing unit that are added to the system (e.g the runtime is half the
sequential runtime for two computing units, etc) . Ideal speedup is hard to achieve, due
to synchronization and communication overhead of parallel systems.
Scaleup defines the ability of a parallel system with p processing nodes to perform a

p-times larger job on p in the same runtime as the original system. If T (n)p = time to
process a problem of size n using p processing nodes this is defined as:

T (n)1

T (p ∗ n)p

The computing cores available to the implementation is externally set via the use of
the taskset unix utility. For the full measurement script see A.3.2.
All measurements assume that the input data fits into main memory (for data not

fitting in main we expect performance drops, since the k-Means algorithm requires
multiple passes over the data set. For further analysis of k-Means in a environment with
disk-resident datasets the reader is referred to the work of Hadian and Sharivari [43]).

6.2. Lloyd/Forgy k-Means
The first set of experiments conducted uses the implementation logic of Lloyds algorithm
(see algorithm 1). To evaluate if the given implementation conforms to the theoretical
model in respect to runtime behavior, the following experiment conducted by Kucukyilmaz
[64] is repeated. To examine the efficiency of the parallelization, we measure the speedup
and scaleup metrics introduced in the last chapter for each of the parallelization schemes.

6.2.1. Cost Model Comparison

The first experiment conducted serves as a validity check for the Skandium based im-
plementation provided. We expect the runtime of the implementation to be similar
to both the results of Kucukyilmaz and the theoretical runtime complexity shown in
section 1. The experiment sets fixed values for the dimensionality, number of clusters and
iterations while varying the input element count. For a set with random input data and a
dimensionality of 30, every parallelization scheme of the skeleton is run for three clusters
(k = 3) and for a fixed number of five iterations i = 5. The runtime is measured for an
input size ranging from 10, 000 to 1, 000, 000 data elements (n). For the sequential version
we expect a linear increase of runtime duration, as predicted by the cost model shown in
section 2.2.1. For the parallel versions we expect a better runtime than the sequential
version, bound by the optimal linear speedup achievable for the parallelization (in this

52

case 1/8 of the sequential runtime). Figure 8 shows the result of the experiment: We see
that the runtime results conform with our theoretical model: with increasing input size
the runtime deteriorates. For n = 1, 000, 000 the runtime rises higher than the predicted
linear model while still staying inside the O(nkdi) bounds. Possible explanations for this
phenomenon include non-linear memory access on the target system or suboptimal cache
accesses. The parallel versions show the expected decreased runtime compared to the
sequential version. The efficiency of the different schemes is compared in the next section.

Figure 8: Runtime behavior of k-means implementations with respect to data size

6.2.2. Parallelization Schemes

After verifying the runtime of the skeleton and it’s parallelization schemes in the last
section we now investigate the features of the parallel versions further by using the
common metrics of speedup and scaleup. The first experiment in the next section
uses the random dataset and fixed values for the data size and k-Means-parameters
(d = 3, k = 10, i = 10, n = 5, 000, 000) while gradually increasing the number of cores
available to the program. For this configuration we measure the speedup and scaleup
for the different provided parallelization schemes. For the partial-merge scheme we
expect speedup measurements similar to the experiments conducted by Dhillon and Moda
[28], because the skeleton configuration corresponds to the local centroids scheme as
depicted in algorithm 6. For the parallel maximization and the hybrid partition scheme
we expect similar speedup results, as the parallel maximization limits the sequential
proportion of the executed code. Furthermore, we expect better speedup results for

53

the hybrid partition scheme as the overhead induced by the execution of the merge and
partition functions is reduced by unifying them into the hybrid-partition function. For
the sequential maximization scheme we expect lower results, because the amount of
sequential executed program is higher than for the other schemes.
The speedup results in figure 9 show the following insights: Although the speedup

of the partial-merge scheme increases for a higher number of cores, it shows sub-linear
behavior: The speedup reaches four for eight Cores which corresponds to 50% efficiency.
There are various possible reasons for this behavior: Overall the skeleton library produces
runtime overhead that varies with the input parameters: intermediate results of parallel
execution paths are stored for synchronization and work is not executed directly but
through a TaskExecutor given by the framework. To further investigate the overhead
induced by the Skandium library, the experiments shown in section 6.2.5 were conducted.

Figure 9: Speedup measurements for Lloyds algorithm on a random input data set with
varying number of cores

The scaleup property shows how the algorithm behaves when scaling the input problem
size proportional to the available computing resources. For k-Means, this gives us three
variables for the problem size: the number of input elements (n), the dimensionality of
each element (d) and the expected number of clusters (k). For each of the variables the
scaleup was measured:

Scaling the Number of Input Elements (n) The expected results for the scaleup
property when increasing n are that the parallelization schemes behave similar as in the
speedup measurements: due to the parallel nature of the assignment step which accounts
for the majority of the algorithms runtime, increasing the problem size (in this case
scaling the number of input elements) yields the same results as adding new cores. We
therefore expect near linear scaleup for n with slight deterioration for higher processor
count, due to the overhead of communication and the sequential recalculation of the
cluster centroids. We expect that the scaleup penalty induced by the larger sequential
parts has a higher impact on the sequential maximization scheme. In figure 10 the

54

scaleup measurements for an input size of n = p ∗ 10.000 are shown (where p denotes the
number of processors available for the system). We see that after a phase of superlinear
scaleup the values for all parallelization schemes deteriorate for higher processing unit
count. This conflicts with the linear scaleup measured by Dhillon and Modha. There are
multiple possible reasons for the deterioration: For greater problem size, the size of the
input data increases. This leads to a greater amount of time spent in garbage collection
increases. Furthermore, allocating and freeing the data structures for both the master
and the execution in the different threads takes more time.

Scaling the Dimensionality (d) Based on the measurements done by Dhillon and
Modha [28] we expect better than linear scaleup behavior for the partial merge scheme
when increasing the dimensionality of the dataset. For the other parallelization schemes
we expect near linear scaleup behavior: The increased dimensionality primarily increases
the runtime spent on the assignment step, which is executed in parallel. Similar to
scaling the number of input elements we expect the map-maximization and hybrid-
partition scheme to outperform the sequential maximization scheme. The results in
figure 10b show scaleup properties similar to the results of the number of input elements:
scaleup deteriorates linearly after a brief superlinear speedup (for 2 cores). The possible
reasons for the drop are similar the ones discussed for the input elements: Memory
management takes up a greater share of the runtime (a problem that cannot be mitigated
by adding more computing units). Another problem with increased dimensionality is
that the data size of the centroid representation grows, leading to higher consumption of
caching capabilities in the cores. Another observation is that the achieved speedup of the
sequential maximization scheme is smaller than that of the other schemes. This could
be explained by the increased computational share of the maximization step (having a
runtime complexity depending on d), which can be mitigated by the map-maximization
and hybrid partition scheme by using the available cores (k > p).

Scaling the Number of Expected Clusters (k) The last measurement conducted was
varying the input parameter k, representing the number of assumed clusters in the dataset.
The effects on the runtime of the map-maximization and hybrid-partition schemes are
harder to predict than for the dimensionality or number of input elements: The degree of
parallelization depends on the number of clusters k and therefore we expect runtime to
increase when the number of cluster isn’t divisible by the number of processing elements
available (because this leads to work-imbalance). For the partial merge scheme we expect
linear scaleup behavior for k (similar to the findings of Dhillon and Modha). Figure 10c
shows the scaleup results for an input parameter of k = p ∗ 80. We see that for all 4
parallelization schemes, scaleup is nearly linear. This conforms with the measurements
of the related work.

For all three speedup curves we see slightly superlinear scaleup between the single core
version and the second measurement using multiple cores. One possible explanation is
the runtime overhead generated by garbage collection: When using a single core, garbage
collection blocks the algorithm. Using two cores, the system can process input on one

55

core, while the other does garbage collection, leading to slightly better throughput for
parallel versions. This hypothesis can be backed by comparing runtime results of the
sequential algorithm while using one or multiple cores: For the sequential algorithm, a
version that was executed on multiple cores showed better runtime results then a version
constrained to one core, albeit no parallel execution was defined in the program (see
figure 25 in appendix A.4).

(a) Scaleup results for varying n (running
the algorithm with p∗100.000 elements)

(b) Scaleup results for varying d (running
the algorithm with input dimensionality
of p ∗ 80)

(c) Scaleup results for varying k (using p∗80
clusters)

Figure 10: Scaleup measurements for Lloyds algorithm on a random input data set with
varying number of cores

Another property measured by these experiments is the runtime difference between the
hybrid partition scheme and the map-maximization scheme. For speedup as well as scaleup
the results show that the runtime difference between the schemes is small. This shows
that the overhead of splitting the re-mapping of the data into two functions negligible in
the context of the given implementation (Java & Skandium). This observation can be
confirmed when examining the relative runtime delta (runtime[sd-mm]−runtime[sd-pm])
which doesn’t exceed 1 % of the overall runtime (see figure 11).

Figure 11: Relative runtime deviation between themap-maximization and hybrid partition
schemes in the speedup measurement runtimes.

56

6.2.3. Sizeup Properties

As seen in [28] the speedup properties of k-Means vary with different input data sizes
(n). To examine the impact further, multiple runtime measurements, using the random
dataset, were conducted for the map-maximization and the partial merge parallelization
schemes: The speedup was measured for 1− 16 processors and for varying amounts of
data elements, from n = 213 up to n = 221 elements, while keeping the dimensionality and
number of clusters fixed. We expect that for a larger number of elements the achieved
speedup is better: the communication and synchronization overhead share of the total
runtime is less, if the absolute total runtime is higher.
The results in figure 12 show the impact of the data size on the speedup property:

While for a data size greater than 221 speedup is good in both cases, for a data size
of 213 and the map maximization scheme, speedup degrades even below the sequential
runtime for 16 processors. This shows that the overhead of parallel execution grows
with increasing number of processing elements. The communication and synchronization
runtime share becomes greater than the computing time on each CPU, leading to a
decrease in speedup. This insight shows that due to the overhead, parallel execution
should only be considered for larger amount of data. A potential skeleton system for
k-Means could use autotuning to determine the ideal number of processing elements for
a given input problem size and hardware configuration. A possible approach could be
the definition of heuristics for the points (as described in the outlook of this thesis in
section 7.2).

(a) Map-Maximization Scheme (b) Partial Aggregation Scheme

Figure 12: Effects of varying input data size (n) on Speedup factor for Lloyds algorithm

6.2.4. Performance on Real World Datasets

In the next experiment conducted, instead of using random data input and arbitrary
numbers of clusters, real world datasets were used (see appendix A.3.1 for dataset-
properties). The goal of the experiment was to show influences of dataset properties on the

57

speedup of the algorithms. The datasets used were birch1, MNIST and KDDCUP04Bio.
Figure 13 shows the speedup measurements for the given datasets.

(a) Speedup results for Lloyds algorithm (BIRCH
dataset)

(b) Speedup results for Lloyds algorithm (MNIST
dataset)

(c) Speedup results for Lloyds algorithm (KDD-
CUP04Bio dataset)

Figure 13: Speedup measurements of Lloyds algorithm for various datasets

For all three datasets we see a decreased slope when increasing the number of available
processors from 4 to 5 (for the BIRCH dataset the impact is higher than for the other
two datasets). This performance impact is explainable by the features of the underlying
test system (see appendix A.3.3). In the test systems, the computing units are organized
in four cores per socket. This leads to higher communication and synchronization times
when more than four processors are involved in the system.

Furthermore, we see that the impact of the chosen dataset on the speedup is high,
especially for a higher number of available processing cores. This matches the properties
shown in the last chapter: for greater input problem size the linear increase of the speedup
lasts for a higher number of processors. If we define the problem size Sp as the result of

58

n∗k ∗d we see that for the BIRCH (Sp = 20∗106) and the MNIST (Sp = 74∗106) dataset
the speedup deteriorates after 4 processing elements, while the KDDCUP04Bio dataset
with a problem size of 21 ∗ 107 has linear speedup up to 8 processors (the complexity
differences can also be seen in the runtime results for the three datasets (shown in
appendix A.4)). The effect of the problem size on the speedup behavior is investigated
further in section 6.2.6.

6.2.5. Overhead

To compare the computational overhead of using Skandium as the algorithmic skeleton
framework, manually parallelized versions of the sequential maximization and the partial
merge scheme were implemented using only thread primitives. Figure 14 shows the
overhead induced by the Skandium framework: Runtime of the manual parallelized
implementation is subtracted from the library-based runtime (for each 4 and 8 threads).
The graph therefore shows the overhead induced by using Skandium in seconds. Negative
overhead means a quicker library-based runtime.

(a) total runtime (b) overhead percentage

Figure 14: Overhead induced through the use of the skandium library: Deviations between
total runtime of manual vs skandium based parallelization (skandium runtime
- manual runtime) averaged over 10 runs

The results show that overhead induced is negligible for 4 processors and reaches up
to 14.51% (see figure 14b) for 8 processing units and 1.000 input data elements. This
shows while the overhead gets greater for a higher number of processing units it doesn’t
grow with the number of input elements. Instead the results show a negative overhead
for input data amount larger than 20.000 elements. This phenomenon remains yet to
be explained. Further research has to be conducted in this area: The negative overhead
could be in the standard deviation, as sample size of the runs is small (10 runs).

59

6.2.6. Relation of Speedup and Problem Size

In section 6.2.4 we observed that speedup behavior seems to vary with problem size
properties. To confirm this observation, the following experiment using random data was
conducted: The speedup of Lloyds algorithm was measured for three datasets: the first
represents a smaller problem size of Sp = 20 ∗ 106, with n = 10, 000, d = 20 and k = 100.
For this dataset we expect speedup properties similar to the BIRCH and the MNIST
datasets. The second and third datasets represent a larger problem size (Sp = 20 ∗ 107)
with the second dataset having a larger number of elements (n = 100, 000), and the third
dataset having a higher dimensionality (d = 200). Our hypothesis is that both the second
and third dataset show speedup properties similar to the KDDCUP04Bio dataset. In
figure 15 we see the speedup results for all three datasets.
The result show that the speedup is greater for the larger dataset, as assumed. Fur-

thermore, we see that the speedup properties for the second and third dataset are similar,
leading to the conclusion that the parts of the problem size can be swapped without
major impact on speedup behavior. Furthermore, this suggests using the problem size as
a heuristic to determine a trade-off between smaller execution time and needed computing
resources.

60

(a) Speedup results for Lloyds algorithm (smaller costmodel
dataset)

(b) Speedup results for Lloyds algorithm (larger costmodel
dataset 1)

(c) Speedup results for Lloyds algorithm (larger costmodel
dataset 2)

Figure 15: Speedup measurements of Lloyds algorithm for three synthetic datasets with
varying problem size

61

6.3. Algorithmic Variations
After evaluating the properties of the parallelization schemes for a given algorithm (Lloyds
algorithm), the next step is to evaluate the influence of using k-Means variations. In the
next section we show the applicability of the skeleton and the parallelization schemes to
three different variants: The kd-tree based k-Means which implements Lloyds algorithm
but uses a kd-tree as data layout, the k-median algorithm which uses a different distance
metric and recalculation logic, and the fuzzy c-means algorithm which implements
fuzzy clustering. For all versions we measure the achievable speedup for the parallelization
schemes usable with the specific algorithm. Furthermore, we compare the speedup results
to the findings of the previous section.

(a) Without Preprocessing (b) With Preprocessing

Figure 16: Runtime Results for the sequential K-Means algorithm in Comparison to the
kd-tree based Version (for varying amounts of n)

6.3.1. kd-Tree Based k-Means

To show that the skeleton approach is suitable for exact acceleration optimization, a
kd-tree based version of k-Means was realized for the sequential maximization scheme.
This shows the adaptability of the skeleton approach: by using a split function that
partitions the input data into p subsets and constructs a kd-tree for each subsets, we
can leverage the parallelism provided by the sequential maximization scheme without
changing the skeleton definition. The corresponding skeleton configuration along with
the algorithm used can be seen in algorithm 9 in appendix A.2.3).

To check the validity of the results, a sequential version was implemented first. Figure
16 compares the runtime of the original version and the sequential kd-tree based version.
The results show that the kd-tree shows lower runtime for the k-means iteration as shown
by Kanungo et al. [61]. When comparing the total runtime of the program, the kd-tree
implementation shows higher runtime results than the sequential. This is due to the

62

suboptimal implementation of the kd-tree construction algorithm (which uses a naive
median based split logic) which is not the subject of the evaluation.
The speedup results for the random decomposition implemented are shown in figure

17 indicate that the achievable speedup reaches 2.46 when using 7 processing elements.
This indicates slightly slower speedup when compared to the sequential-maximization
scheme applied to the sequential data layout as seen in the previous chapter. One possible
explanation for the decreasing speedup could be the memory access pattern generated by
the parallel traversal of the generated trees: As the input data is loaded into memory by
the master thread before the parallel execution, the data is most likely stored sequentially.
The traversal of the kd-tree produces memory access patterns on this data that are harder
to predict than the sequential accesses produced by the original version of the algorithm,
resulting in a higher cache miss rate.

Figure 17: Speedup factor for kd-tree based k-means algorithm, using the sequential
maximization scheme to provide random decomposition (kd-rd)

6.3.2. k-Median

The changes proposed by the k-median variant (as introduced in section 2.2.3) impose
the following variations in the algorithm: In the expectation step the taxi cab geometry is
used for distance calculations and in the maximization step the median for each dimension
is used as the new cluster-centroid [15]. The median is function is a holistic aggregation
function (see 4.1.2) and therefore parallelization with the partial aggregation scheme is
not possible. Instead the parallel maximization scheme is chosen (because the median
calculation for each cluster is independent). Figure 18 shows the speedup and efficiency
of the k-median implementation with the parallel maximization scheme. The results show
that for the k-median algorithm achievable speedup for the map-maximization scheme
behaves similar to the achieved speedup of Lloyds algorithm (as shown in figure 9). This
means while it is not possible to use the partial aggregation scheme, we can still achieve
parallelization benefits without changing the skeleton.

63

Figure 18: Speedup factor for the k-median algorithm using the parallel maximization
parallelization scheme

6.3.3. Fuzzy c-Means

The next examined algorithmic variation is the fuzzy c-means algorithm, as shown in
section 2.2.4. Due to the probabilistic nature of the clustering, data dependencies for the
distance calculation are higher, making parallelization of the algorithm difficult. Still,
the parallel version proposed by Kwok et al. [66] can be expressed using the sequential
maximization scheme. Due to the higher data dependencies, we expect higher overhead by
communication of shared values. The speedup measured, as shown in figure 19 shows that
while speedup does not exceed 2.5 the results are similar to the speedup measurements for
the sequential maximization scheme for Lloyds algorithm. Possible further research could
be to search for parallelization approaches enabling the use of the map maximization or
partial merge parallelization schemes.

Figure 19: Speedup factors for the fuzzy c-means algorithm using the sequential maxi-
mization parallelization scheme

64

6.4. Speedup Comparisons
In the next experiment, we compare speedup for the 3 algorithms (Lloyd, k-median, fuzzy
c-means) for a fixed problem size (random data set with n = 1.000000, k = 8, d = 8)
with fixed iterations in order to evaluate the behavior of the different parallelization
schemes, given different algorithms. Figure 20 shows the results for the sequential and
the map maximization scheme. For the sequential maximization scheme we compare the
speedup behavior of Lloyds algorithm to k-median and fuccy c-means. The results show
that for all algorithms, sequential maximization reaches lower achievable speedup, due
to the higher sequential computation amount. Furthermore, we see that the algorithm
type has influence on achievable speedup: While the implementation of Lloyds algorithm
reaches a speedup of 2.1, the highest speedup of fuzzy c-means is 1.2. This is due
to the higher amount of sequential computation time needed by fuzzy c-means: the
membership matrix has to be updated for all points, making the maximization step more
computationally expensive. For the map maximization scheme we compare behavior
of Lloyds algorithm and k-median (because the fuzzy c-means algorithm can not be
parallelized in the maximization scheme). We see that the speedup of the k-median
performs better, due to the higher runtime share of the maximization step (calculating
the median is computationally more expensive than calculating the mean). This shows
that when parallelizing the algorithms, the application developer has to take into account
sequential amounts of the target algorithm and has to decide which optimizations to use.

(a) Speedup measures for the sequential maximization scheme (b) Speedup measures for the map maximization scheme

Figure 20: Speedup comparison of the implemented algorithmic variations Lloyd, k-
median and fuzzy c-means

6.5. Discussion
In the previous evaluation we have seen that the proposed general k-Means skeleton
is applicable to the chosen variations of k-Means both in data layout and algorithmic
model. We have validated our assumptions about the theoretical runtime behavior of
Lloyds algorithm, recreating the measurements undertaken by Kucukyilmaz in his work

65

[64]. We have seen that the size of the input data plays a significant role in the speedup
achievable by k-Means and that scaling up the processing nodes does not always yield
benefits, to the point were runtime exceeds sequential execution (see section 6.2.3). This
suggests carefully choosing how and when to parallelize the k-Means algorithm

Various effects on the runtime remain to be explained. Choosing Java as the implemen-
tation language for the measurements made reasoning about memory usage and overhead
induced by other factors (e.g. garbage collection) difficult. To validate the measurements
of this thesis, a goal for further research is the usage of an implementation language with
direct memory access (for example using the Fastflow skeleton library with the C++
language).
Furthermore, the use of a system not exclusively reserved for the undertaken perfor-

mance measurements could have an impact on observed phenomenons, although the
measurements were spread over different time periods.

Comparing systems with different memory access patterns (different numbers of cores
per socket) or memory bandwidth, could show which observed effects can be attributed
to memory management and how it affects the overall system behavior.

66

7. Conclusion
7.1. Summary
This thesis proposed a way to parallelize k-Means based algorithms like Lloyds algorithm,
k-Median or fuzzy c-Means using a structured parallelism approach named algorithmic
skeletons. The problem definition of k-Means was shown and classified in the wider field
of clustering. Furthermore, variants of k-Means were shown and examined in respect to a
general k-Means model. The algorithmic skeleton approach was motivated and explained
using the map-skeleton example. An overview of different optimization and parallelization
approaches to the original k-Means algorithm was given and the different parallelization
approaches compared to each other. Furthermore, existing research concerning the
structured expression of parallel computation was reviewed and the different techniques
were compared to the algorithmic skeleton approach. Given the different variants of k-
Means and the restrictions on parallelization approaches, a general k-Means skeleton was
introduced, providing a unified interface for the expression of k-Means based algorithms.
For this skeleton, different parallelization possibilities were shown and the corresponding
skeleton configuration provided. To evaluate the found parallelization schemes, multiple
experiments were conducted: The parallelization properties of Llloyds algorithm were
examined using all of the given parallelization schemes. The speedup and scaleup metrics
were measured for the schemes and the results analyzed. To show the applicability of
drop-in improvements of Lloyds algorithm, the kd-tree based variant shown in section 3.2.1
was implemented using the skeleton and parallelization capabilities of the implementation
were measured using the speedup metric. Furthermore, using the k-Median and the fuzzy
c-Means algorithm, it was shown how the general k-Means skeleton can be applied to
algorithmic variations of Lloyds algorithm. For both cases the implementations could be
parallelized using the proposed parallelization schemes, therefore providing algorithm
speedup without the need to manually implement the synchronization and communication
needed for the system. Evaluation showed that although parallelization decreased the
overall system runtime, the achievable speedup depends on the problem size, the chosen
algorithm and the usable parallelization schemes. We have shown that problem size plays
a major role in the speedup achievable for Lloyds algorithm.

7.2. Outlook
This thesis has shown how to leverage algorithmic skeletons to model systems based on
the k-Means algorithm. During the evaluation we have seen that speedup properties
conform to observations made by related work when implementing Lloyds algorithm.
On the other hand, observations were made that need further evaluation to establish
guidelines for the usage of the proposed parallelization scheme.

67

7.2.1. Further Evaluation

Implementation language and Library During the evaluation, multiple runtime devia-
tions were observed which could not be precisely explained with the chosen implementation.
The first influence not under control is the memory access: Usage of a language with
explicit allocation and memory management could show the influence of sequential mem-
ory access patterns, padding or cache sensitive programming. Next, due to the garbage
collection mechanism used by the Java Virtual Machine, runtime overhead is introduced
to the system. Using a non-garbage collected language would mitigate the runtime
influence of garbage collection processes. Furthermore, the Just in Time Compilation
mechanism used makes reasoning about runtime effect of different implementation parts
difficult and induces overhead if parts of the program are optimized during execution.
Using a compiled language would improve the ability to reason about performance impact
of different implementation strategies. Therefore further work could use a low level
language without the aforementioned limitations and show runtime properties of the
parallelization schemes in an environment using explicit memory handling and static
compilation.

Runtime Behavior on Distributed Systems The evaluation target architecture for
the Skandium library and therefore for the evaluation chosen in this thesis was shared
memory symmetric multi-processors (multi-core systems). Further research could apply
the skeleton to a distributed system context (for example a MPI or middleware based
skeleton implementation).

7.2.2. Leveraging the Abstraction

By providing the general k-Means skeleton interface, we can now profit from the clear
separation between problem definition and implementation. This enables the following
research possibilities:

Autotuning The experiments conducted in this thesis show that achievable speedup
depends on the input problem size (see section 6.2.3). This means that for a given
algorithm and a problem size, we can determine the number of processors where optimal
speedup is achieved for a chosen system/hardware. Further research could implement a
program that automatically determines this point and provides feedback to determine an
optimal system configuration. More experiments should be conducted aiming to derive
heuristics for this configuration.

In the case of Lloyds algorithm, Drake [31] shows that the choice for the optimal drop-in
improvement of Lloyds algorithm depends on features of the input data (dimensionality,
number of elements, natural clustering). Further research could extend the list of available
algorithms by parallel k-Means variants and define a system that chooses an algorithm
based on information about input data parameters and system properties (for example
available computing units). An adaptive k-Means system could choose an algorithm
implementation from both linear optimizations and parallelization possibilities to achieve

68

the smallest runtime on a system, depending on system properties like thread creation
costs, data access time or RAM size.
In the next step, the system could be applied to variants of k-means, similar to the

implementation of the variants presented in this thesis. For each variant, effects of
optimization and parallelization could be studied, leading to abstract constraints (like
the applicability of partial aggregation) determining the chosen implementation.

Offloading Another way to leverage the abstraction provided by the algorithmic skele-
tons is to realize a skeleton implementation that relies on offloading computation heavy
task to special hardware resources like GPUs or coprocessors (depending on availability of
the resources). Furthermore, the overhead generated by this strategy could be examined
and heuristics showing the expected runtime could be derived. In the last step, the
offloading strategy could be incorporated into the auto-tuning system proposed in the
previous section.

7.2.3. Other Data Mining Algorithms

Many algorithms applied in the field of data mining operate on large amounts of data,
making parallel approaches desirable. Further research could investigate the structured
parallelization of algorithms like gradient decent or neural networks. Integration into
other machine learning libraries could make the skeleton based versions available to a
broader audience.

69

References
[1] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. “Streaming k-means approxi-

mation”. In: Advances in Neural Information Processing Systems. 2009, pp. 10–
18.

[2] Marco Aldinucci et al. “Managing Adaptivity in Parallel Systems.” In: FMCO.
Springer. 2011, pp. 199–217.

[3] Daniel Aloise et al. “NP-hardness of Euclidean sum-of-squares clustering”. In:
Machine learning 75.2 (2009), pp. 245–248.

[4] David Arthur, Bodo Manthey, and H Roglin. “k-Means has polynomial smoothed
complexity”. In: Foundations of Computer Science, 2009. FOCS’09. 50th Annual
IEEE Symposium on. IEEE. 2009, pp. 405–414.

[5] David Arthur and Sergei Vassilvitskii. “k-means++: The advantages of careful
seeding”. In: Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics. 2007,
pp. 1027–1035.

[6] Krste Asanovic et al. “A view of the parallel computing landscape”. In: Commu-
nications of the ACM 52.10 (2009), pp. 56–67.

[7] Ioannis Assiouras. “A MapReduce Skeleton for Skandium”. MA thesis. School of
Informatics, University of Edinburgh, 2011.

[8] Eric Backer and Anil K Jain. “A clustering performance measure based on
fuzzy set decomposition”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 1 (1981), pp. 66–75.

[9] Bahman Bahmani et al. “Scalable k-means++”. In: Proceedings of the VLDB
Endowment 5.7 (2012), pp. 622–633.

[10] Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. “Distributed k-
means and k-median Clustering on General Topologies”. In: Advances in Neural
Information Processing Systems. 2013, pp. 1995–2003.

[11] Jon Louis Bentley. “Multidimensional binary search trees used for associative
searching”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[12] James C Bezdek, Robert Ehrlich, and William Full. “FCM: The fuzzy c-means
clustering algorithm”. In: Computers & Geosciences 10.2 (1984), pp. 191–203.

[13] Andrew D Birrell. “An Introduction to Programming with Threads”. In: (1989).
[14] Paul S Bradley, Usama M Fayyad, Cory Reina, et al. “Scaling Clustering Algo-

rithms to Large Databases.” In: KDD. 1998, pp. 9–15.
[15] Paul S Bradley, Olvi L Mangasarian, and W Nick Street. “Clustering via concave

minimization”. In: Advances in neural information processing systems (1997),
pp. 368–374.

70

[16] PS Bradley, KP Bennett, and Ayhan Demiriz. “Constrained k-means clustering”.
In: Microsoft Research, Redmond (2000), pp. 1–8.

[17] Clay Breshears. The art of concurrency: A thread monkey’s guide to writing
parallel applications. " O’Reilly Media, Inc.", 2009.

[18] David C Brock and Gordon E Moore. Understanding Moore’s law: four decades
of innovation. Chemical Heritage Foundation, 2006.

[19] Denis Caromel and Mario Leyton. “Fine tuning algorithmic skeletons”. In:
Euro-Par 2007 Parallel Processing. Springer, 2007, pp. 72–81.

[20] Rich Caruana, Thorsten Joachims, and Lars Backstrom. “KDD-Cup 2004: results
and analysis”. In: ACM SIGKDD Explorations Newsletter 6.2 (2004), pp. 95–108.

[21] Cheng Chu et al. “Map-reduce for machine learning on multicore”. In: Advances
in neural information processing systems 19 (2007), p. 281.

[22] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Cambridge, MA, USA: MIT Press, 1991. isbn: 0-262-53086-4.

[23] Murray Cole. “Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming”. In: Parallel computing 30.3 (2004), pp. 389–406.

[24] Murray I Cole. “Algorithmic skeletons: A structured approach to the management
of parallel computation”. PhD thesis. University of Edinburgh, 1988.

[25] Leonardo Dagum and Rameshm Enon. “OpenMP: an industry standard API for
shared-memory programming”. In: Computational Science & Engineering, IEEE
5.1 (1998), pp. 46–55.

[26] John Darlington and Mike Reeve. “ALICE a multi-processor reduction machine
for the parallel evaluation CF applicative languages”. In: Proceedings of the 1981
conference on Functional programming languages and computer architecture. ACM.
1981, pp. 65–76.

[27] Sanjoy Dasgupta and Yoav Freund. “Random projection trees for vector quanti-
zation”. In: IEEE Transactions on Information Theory 55.7 (2009), pp. 3229–
3242.

[28] Inderjit S Dhillon and Dharmendra S Modha. “A data-clustering algorithm
on distributed memory multiprocessors”. In: Large-Scale Parallel Data Mining.
Springer, 2000, pp. 245–260.

[29] Edsger W Dijkstra. Cooperating sequential processes. Springer, 2002.
[30] Yufei Ding et al. “Yinyang k-means: A drop-in replacement of the classic k-means

with consistent speedup”. In: Proceedings of the 32nd International Conference
on Machine Learning (ICML-15). 2015, pp. 579–587.

[31] Jonathan Drake. “Faster k-means clustering.” PhD thesis. 2013.
[32] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John

Wiley & Sons, 2012.

71

[33] Joseph C Dunn. “A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters”. In: (1973).

[34] Vladimir Estivill-Castro. “Why so many clustering algorithms: a position paper”.
In: ACM SIGKDD explorations newsletter 4.1 (2002), pp. 65–75.

[35] Benjamin J Evans and Martijn Verburg. The well-grounded Java developer: Vital
techniques of Java 7 and polyglot programming. Manning Publications Co., 2012.

[36] Reza Farivar et al. “A Parallel Implementation of K-Means Clustering on GPUs.”
In: PDPTA. Vol. 13. 2. 2008, pp. 212–312.

[37] Edward W Forgy. “Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications”. In: Biometrics 21 (1965), pp. 768–769.

[38] Steven Fortune and James Wyllie. “Parallelism in random access machines”. In:
Proceedings of the tenth annual ACM symposium on Theory of computing. ACM.
1978, pp. 114–118.

[39] David Gelernter. “Generative communication in Linda”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 7.1 (1985), pp. 80–112.

[40] Horacio González-Vélez and Mario Leyton. “A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers”. In: Software:
Practice and Experience 40.12 (2010), pp. 1135–1160.

[41] Attila Gursoy. “Data decomposition for parallel k-means clustering”. In: Parallel
Processing and Applied Mathematics. Springer, 2004, pp. 241–248.

[42] Attila Gürsoy and Ilker Cengiz. “Parallel pruning for k-means clustering on shared
memory architectures”. In: Euro-Par 2001 Parallel Processing. Springer, 2001,
pp. 321–325.

[43] Ali Hadian and Saeed Shahrivari. “High performance parallel k-means clustering
for disk-resident datasets on multi-core CPUs”. In: The Journal of Supercomputing
69.2 (2014), pp. 845–863.

[44] Mohammad Hamdan, Greg Michaelson, and Peter King. “A scheme for nesting
algorithmic skeletons”. In: Proceedings of the 10th International Workshop on
Implementation of Functional Languages, IFL. Vol. 98. 1998, pp. 195–212.

[45] Kevin Hammond et al. “The paraphrase project: Parallel patterns for adaptive
heterogeneous multicore systems”. In: Formal Methods for Components and
Objects. Springer. 2013, pp. 218–236.

[46] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means clustering
algorithm”. In: Applied statistics (1979), pp. 100–108.

[47] Charles Antony Richard Hoare. “Communicating sequential processes”. In:
Communications of the ACM 21.8 (1978), pp. 666–677.

[48] Barbara Hohlt. “Pthread Parallel K-means”. In: UC Berkeley (2001).

72

[49] Bai Hong-Tao et al. “K-means on commodity GPUs with CUDA”. In: Computer
Science and Information Engineering, 2009 WRI World Congress on. Vol. 3.
IEEE. 2009, pp. 651–655.

[50] Paul Hudak and Benjamin Goldberg. “Distributed execution of functional pro-
grams using serial combinators”. In: Computers, IEEE Transactions on 100.10
(1985), pp. 881–891.

[51] Mary Inaba, Naoki Katoh, and Hiroshi Imai. “Applications of weighted Voronoi
diagrams and randomization to variance-based k-clustering”. In: Proceedings of
the tenth annual symposium on Computational geometry. ACM. 1994, pp. 332–
339.

[52] Michael Isard et al. “Dryad: distributed data-parallel programs from sequential
building blocks”. In: ACM SIGOPS Operating Systems Review. Vol. 41. 3. ACM.
2007, pp. 59–72.

[53] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988. isbn: 0-13-022278-X.

[54] Noman Javed and Frédéric Loulergue. “OSL: Optimized bulk synchronous parallel
skeletons on distributed arrays”. In: Advanced Parallel Processing Technologies.
Springer, 2009, pp. 436–451.

[55] Ruoming Jin and Gagan Agrawal. “Combining distributed memory and shared
memory parallelization for data mining algorithms”. In: HPDM: High Perfor-
mance, Pervasive, and Data Stream Mining 6th International Workshop on High
Performance Data Mining: Pervasive and Data Stream Mining (HPDM: PDS’03).
In conjunction with Third International SIAM Conference on Data Mining, San
Francisco, CA. 2003.

[56] Ruoming Jin, Anjan Goswami, and Gagan Agrawal. “Fast and exact out-of-core
and distributed k-means clustering”. In: Knowledge and Information Systems
10.1 (2006), pp. 17–40.

[57] Wesley M Johnston, JR Hanna, and Richard J Millar. “Advances in dataflow
programming languages”. In: ACM Computing Surveys (CSUR) 36.1 (2004),
pp. 1–34.

[58] Manasi N Joshi. “Parallel k-means algorithm on distributed memory multiproces-
sors”. In: Computer 9 (2003).

[59] Sanpawat Kantabutra and Alva L Couch. “Parallel K-means clustering algorithm
on NOWs”. In: NECTEC Technical journal 1.6 (2000), pp. 243–247.

[60] Tapas Kanungo et al. “A local search approximation algorithm for k-means
clustering”. In: Proceedings of the eighteenth annual symposium on Computational
geometry. ACM. 2002, pp. 10–18.

[61] Tapas Kanungo et al. “An efficient k-means clustering algorithm: Analysis
and implementation”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 24.7 (2002), pp. 881–892.

73

[62] Leonard Kaufman and Peter J Rousseeuw. “Partitioning around medoids (program
pam)”. In: Finding groups in data: an introduction to cluster analysis (1990),
pp. 68–125.

[63] Kittisak Kerdprasop and Nittaya Kerdprasop. “A lightweight method to parallel
k-means clustering”. In: International Journal of Mathematics and Computers in
Simulation 4.4 (2010), pp. 144–153.

[64] Tayfun Kucukyilmaz. “Parallel K-Means Algorithm for Shared Memory Multipro-
cessors”. In: Journal of Computer and Communications 2.11 (2014), p. 15.

[65] Vijay P. Kumar and Anshul Gupta. “Analyzing scalability of parallel algorithms
and architectures”. In: Journal of parallel and distributed computing 22.3 (1994),
pp. 379–391.

[66] Terence Kwok et al. “Parallel fuzzy c-means clustering for large data sets”. In:
Euro-Par 2002 Parallel Processing. Springer, 2002, pp. 365–374.

[67] Jim ZC Lai and Yi-Ching Liaw. “Improvement of the k-means clustering filtering
algorithm”. In: Pattern Recognition 41.12 (2008), pp. 3677–3681.

[68] Yann LeCun, Corinna Cortes, and Christopher JC Burges. “The MNIST database
of handwritten digits, 1998”. In: Available electronically at http://yann. lecun.
com/exdb/mnist (2012).

[69] Edward A Lee. “The problem with threads”. In: Computer 39.5 (2006), pp. 33–42.
[70] Mario Leyton. “Advanced features for algorithmic skeleton programming”. PhD

thesis. Nice, 2008.
[71] Mario Leyton and José M Piquer. “Skandium: Multi-core programming with

algorithmic skeletons”. In: Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on. IEEE. 2010, pp. 289–
296.

[72] Chen Li et al. “Mux-Kmeans: Multiplex Kmeans for Clustering Large-scale Data
Set”. In: Proceedings of the 5th ACM Workshop on Scientific Cloud Computing.
ScienceCloud ’14. New York, NY, USA: ACM, 2014, pp. 25–32. isbn: 978-1-
4503-2911-8. doi: 10.1145/2608029.2608033. url: http://doi.acm.org/10.
1145/2608029.2608033.

[73] Qiuhong Li et al. “An efficient K-means clustering algorithm on MapReduce”. In:
Database Systems for Advanced Applications. Springer. 2014, pp. 357–371.

[74] Stuart P Lloyd. “Least squares quantization in PCM”. In: Information Theory,
IEEE Transactions on 28.2 (1982), pp. 129–137.

[75] James MacQueen et al. “Some methods for classification and analysis of multivari-
ate observations”. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

[76] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. “The planar
k-means problem is NP-hard”. In: Theoretical Computer Science 442 (2012),
pp. 13–21.

74

http://dx.doi.org/10.1145/2608029.2608033
http://doi.acm.org/10.1145/2608029.2608033
http://doi.acm.org/10.1145/2608029.2608033

[77] Michael D McCool. “Structured parallel programming with deterministic patterns”.
In: Proceedings of the 2nd USENIX conference on Hot topics in parallelism.
USENIX Association. 2010, pp. 5–5.

[78] Michael D McCool, Arch D Robison, and James Reinders. Structured parallel
programming: patterns for efficient computation. Elsevier, 2012.

[79] Maged M Michael, Martin T Vechev, and Vijay A Saraswat. Idempotent work
stealing. Vol. 44. 4. ACM, 2009.

[80] Mark Moir and Nir Shavit. “Concurrent data structures”. In: Handbook of Data
Structures and Applications (2007), pp. 47–14.

[81] Markus Muhr and Michael Granitzer. “Automatic cluster number selection using a
split and merge k-means approach”. In: Database and Expert Systems Application,
2009. DEXA’09. 20th International Workshop on. IEEE. 2009, pp. 363–367.

[82] Tan Pang-Ning, Michael Steinbach, Vipin Kumar, et al. “Introduction to data
mining”. In: Library of Congress. 2006, p. 74.

[83] Hae-Sang Park, Jong-Seok Lee, and Chi-Hyuck Jun. “A K-means-like Algorithm
for K-medoids Clustering and Its Performance”. In: Proceedings of ICCIE (2006),
pp. 102–117.

[84] Dan Pelleg and Andrew Moore. “Accelerating exact k-means algorithms with
geometric reasoning”. In: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 1999, pp. 277–281.

[85] Dan Pelleg, Andrew W Moore, et al. “X-means: Extending K-means with Efficient
Estimation of the Number of Clusters.” In: ICML. 2000, pp. 727–734.

[86] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

[87] SN Tirumala Rao, EV Prasad, and NB Venkateswarlu. “A critical performance
study of memory mapping on multi-core processors: An experiment with k-
means algorithm with large data mining data sets”. In: International Journal of
Computer Applications 1.9 (2010), pp. 90–98.

[88] T Hitendra Sarma, P Viswanath, and B Eswara Reddy. “A hybrid approach to
speed-up the k-means clustering method”. In: International Journal of Machine
Learning and Cybernetics 4.2 (2013), pp. 107–117.

[89] Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging and sorting in a
parallel computation model. Springer, 1981.

[90] Douglas Steinley. “K-means clustering: a half-century synthesis”. In: British
Journal of Mathematical and Statistical Psychology 59.1 (2006), pp. 1–34.

[91] Kilian Stoffel and Abdelkader Belkoniene. “Parallel k/h-means clustering for large
data sets”. In: Euro-Par’99 Parallel Processing. Springer, 1999, pp. 1451–1454.

75

[92] Mu-Chun Su and Chien-Hsing Chou. “A modified version of the K-means algorithm
with a distance based on cluster symmetry”. In: IEEE Transactions on Pattern
Analysis & Machine Intelligence 6 (2001), pp. 674–680.

[93] Herb Sutter. “The free lunch is over: A fundamental turn toward concurrency in
software”. In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

[94] Jinlan Tian et al. “Improvement and parallelism of k-means clustering algorithm”.
In: Tsinghua Science & Technology 10.3 (2005), pp. 277–281.

[95] Kiri Wagstaff et al. “Constrained k-means clustering with background knowledge”.
In: ICML. Vol. 1. 2001, pp. 577–584.

[96] Fuhui Wu et al. “A Vectorized K-Means Algorithm for Intel Many Integrated
Core Architecture”. In: Advanced Parallel Processing Technologies. Springer,
2013, pp. 277–294.

[97] Xindong Wu et al. “Top 10 algorithms in data mining”. In: Knowledge and
Information Systems 14.1 (2008), pp. 1–37.

[98] Han Xiao. “Towards parallel and distributed computing in large-scale data mining:
A survey”. In: Technical University of Munich, Tech. Rep (2010).

[99] Rui Xu, Donald Wunsch, et al. “Survey of clustering algorithms”. In: Neural
Networks, IEEE Transactions on 16.3 (2005), pp. 645–678.

[100] Jian Yu and Miin-Shen Yang. “Optimality test for generalized FCM and its
application to parameter selection”. In: Fuzzy Systems, IEEE Transactions on
13.1 (2005), pp. 164–176.

[101] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”. In: Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation. USENIX Association. 2012,
pp. 2–2.

[102] Mario Zechner and Michael Granitzer. “Accelerating k-means on the graphics pro-
cessor via cuda”. In: Intensive Applications and Services, 2009. INTENSIVE’09.
First International Conference on. IEEE. 2009, pp. 7–15.

[103] Bin Zhang, Meichun Hsu, and Umeshwar Dayal. “K-harmonic means-a data
clustering algorithm”. In: Hewlett-Packard Labs Technical Report HPL-1999-124
(1999).

[104] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: A new data
clustering algorithm and its applications”. In: Data Mining and Knowledge
Discovery 1.2 (1997), pp. 141–182.

[105] Weizhong Zhao, Huifang Ma, and Qing He. “Parallel k-means clustering based on
mapreduce”. In: Cloud Computing. Springer, 2009, pp. 674–679.

[106] Xiao-bin Zhi and Jiu-lun Fan. “Some Notes on K-Harmonic Means Clustering
Algorithm”. In: Quantitative Logic and Soft Computing 2010. Springer, 2010,
pp. 375–384.

76

[107] Esteban Zimanyi. Advanced Data Warehouse Design: From Conventional to Spa-
tial and Temporal Applications. Data-Centric Systems and Applications. Springer,
2008.

77

A. Appendix
A.1. Survey of k-Means Parallelization Approaches

1999 Parallel k/h-means clustering for large data sets [91]
Algorithm: Lloyd/Forgy
Target architecture: distributed, shared nothing, TCP, manual data distribution
Parallelization: E-Step: p-chunks, M-step: sequential
2000 A data-clustering algorithm on distributed memory multiprocessors [28]

Algorithm: Lloyd/Forgy
Target architecture: distributed, C/MPI
Parallelization: partial merge: E-Step: p-chunks, M-step: sequential
2000 Parallel K-means clustering algorithm on NOWs [59]

Algorithm: Lloyd/Forgy
Target Architecture: distributed: network of workstations, C/MPI
Parallelization: k-Chunks
2001, Pthread Parallel K-means [48]

Algorithm: Lloyd/Forgy
Target Architecture: shared memory (SMP), C/pthreads
Parallelization: E-Step: p-Chunks, M-Step: unknown
2003 Combining distributed memory and shared memory parallelization [55]

Algorithm: Lloyd/Forgy
Target Architecture: hybrid, FREERIDE middleware based
Parallelization: PARALLELIZATION
2006 Fast and exact out-of-core and distributed k-means clustering [56]

Algorithm: drop-in improvement
Target Architecture: hybrid
Parallelization: PARALLELIZATION
Notes: uses sampling
2007 Map-reduce for machine learning on multicore [21]

Algorithm: Lloyd/Forgy
Target Architecture: Hadoop, HDFS
Parallelization: E-Step: n-chunks (map), M-Step: k-chunks (reduce)
2008 A Parallel Implementation of K-Means Clustering on GPUs [36]

Algorithm: Lloyd/Forgy
Target Architecture: GPUs, CUDA
Parallelization: E-Step: n-chunks (centroids in thread local storage), M-Step: sequential

78

2009 K-means on commodity GPUs with CUDA [49]
Algorithm: Lloyd/Forgy
Target Architecture: GPU, CUDA, data in RAM
Parallelization: E-Step: n-chunks, M-Step: k-chunks (on CPU)
2009 Parallel k-means clustering based on mapreduce [105]

Algorithm: Lloyd/Forgy
Target Architecture: Hadoop, HDFS
Parallelization: E-Step: n-chunks (map), M-Step: k-chunks (reduce)
2010 A critical performance study of memory mapping on multi-core processors [87]

Algorithm: Lloyd/Forgy
Target Architecture: shared memory, fread/mmap, OpenMP/pthreads
Parallelization: E-Step: p-chunks
2010 A lightweight method to parallel k-means clustering [63]

Algorithm: Lloyd/Forgy
Target Architecture: hybrid, erlang
Parallelization: PARALLELIZATION
2014 An efficient K-means clustering algorithm on MapReduce [73]

Algorithm: drop-in
Target Architecture: Hadoop, HDFS
Parallelization: M-Step: k-chunks (reduce)
Notes: uses samples and pruning
2014 Parallel K-Means Algorithm for Shared Memory Multiprocessors [64]

Algorithm: Lloyd/Forgy
Target Architecture: shared memory multicore
Parallelization: E-Step: p-chunks, partial merge

79

A.2. Skeleton Configurations
A.2.1. k-Median (Sequential Maximization)

Algorithm 7: k-median-sm
Data: data set: x1, . . . , xn with xi ∈ Rd

Input: centroids c1, . . . , ck

Output: List of cluster centroids c1, . . . , ck

1 fc = convergenceCriterion ;
2 4e = function map (subseti, centroids)
3 foreach xi ∈ subset do
4 labeledData[i]←

{
xp :

∥∥∥xp − centroids[l]
∥∥∥ ≤ ∥∥∥xp − centroids[j]

∥∥∥ ∀l, j, 1 ≤ j ≤
k
}
;

5 end
6 return labeledData;
7 4m = function seq(labeledData)
8 foreach cluster ∈ labeledData do
9 newCentroids[i]← median(cluster);

10 end
11 return newCentroids;
12 skeleton ←4kmeans(4e,4m, fc) ;
13 result ← skeleton.input(initial means);

80

A.2.2. k-Median (Map Maximization)

Algorithm 8: k-median-mm
Data: data set: x1, . . . , xn with xi ∈ Rd

Input: centroids c1, . . . , ck

Output: List of cluster centroids c1, . . . , ck

1 fc = convergenceCriterion ;
2 4e = function map (subseti, centroids)
3 foreach xi ∈ subset do
4 labeledData[i]←

{
xp :

∥∥∥xp − centroids[l]
∥∥∥ ≤ ∥∥∥xp − centroids[j]

∥∥∥ ∀l, j, 1 ≤ j ≤
k
}
;

5 end
6 return labeledData;
7 4m = function seq(labeledData)
8 foreach cluster ∈ labeledData do
9 newCentroids[i]← median(cluster);

10 end
11 return newCentroids;
12 skeleton ←4kmeans(4e,4m, fc) ;
13 result ← skeleton.input(initial means);

81

A.2.3. kd-Tree (Random Decomposition)

Algorithm 9: kdtree-random-decomposition
Input: KD-Trees for data-subsets: Kd1, . . . , Kdp

Input: initial means c1, . . . , ck

Output: List of cluster centroids c1, . . . , ck

1 fc = convergenceCriterion ;
2 4e = function map(Kdi, centroids)
3 localCandidateSet ← new CandidateSet(centroids);
4 Filter(Kdi,localCandidateSet);
5 return localCandidateSet;
6 4m = function seq(localCandidateSets)
7 CandidateSet aggregated ← new CandidateSet();
8 foreach Z ∈ localCandidateSets do
9 foreach z ∈ Z do

10 aggregated[z].wgtCent← z.wgtCent;
11 aggregated[z].count← z.count ;
12 end
13 end
14 foreach c ∈ centroids do
15 c← aggregated[c].wgtCent÷ aggregated[c].count;
16 end
17 return centroids;
18 skeleton ←4kmeans(4e,4m, fc) ;
19 result ← skeleton.input(initial means);

82

A.2.4. Fuzzy c-Means (Sequential Maximization)

Algorithm 10: fcm-sm
Data: data set: x1, . . . , xn with xi ∈ Rd

Input: centroids c1, . . . , ck

Input: fuzziness index: fi
Output: List of cluster centroids c1, . . . , ck

1 fc = convergenceCriterion ;
2 4e = function map (subseti, centroids,membershipMatrix)
3 PartialResult partialResult ← new PartialResult();
4 foreach ck ∈ centroids do
5 foreach xi ∈ subset do
6 partialResult[k].vector ← membershipMatrix[k][i]fi ∗ xi;
7 partialResult[k].count← membershipMatrix[k][i]fi;
8 end
9 end

10 return partialResult;
11 4m = function seq(partialResults)
12 PartialResult aggregated ← new PartialResult();
13 foreach Z ∈ localCandidateSets do
14 foreach z ∈ Z do
15 aggregated[z].vector ← z.vector;
16 aggregated[z].count← z.count ;
17 end
18 end
19 foreach c ∈ centroids do
20 c← aggregated[c].vector ÷ aggregated[c].count;
21 end
22 return centroids;
23 skeleton ←4kmeans(4e,4m, fc) ;
24 result ← skeleton.input(initial means);

A.3. Performance Measurement Methodology
A.3.1. Data Sets

• birch (n=100,000, d=2): Generated Data with a fixed set of 100 clusters, taken
from: [104]

• kddcup04(n=139,658, d=74): Test data for the protein homology task taken from
the KDDCup 2004 [20]

• mnist784(n= 10,000, d=784): The MNIST database of handwritten digits, from
[68]

83

A.3.2. Measurement Script

#!/ bin / bash

JAVA_EXECUTABLE=" / usr / l i b /jvm/ j r e 1 . 8 . 0 _65/bin / java "
#JAVA_EXECUTABLE=" java "

jarName=" skandium . j a r "

n=100000;
d=8;
k=100;
i t e r a t i o n s =5;
startCpuNumber=16;
endCpuNumber=31;

input=" /dev/shm/randomPoints−d30−n1000000 . csv " ;
output="measurement−r e s u l t s . db " ;

for r e p e t i t i o n in ‘ seq 1 10 ‘ ;
do
for projectName in " sd−sm" " sd−mm" " sd−hp " " sd−pm" ;
do
for i in ‘ seq −s ’ ’ $startCpuNumber $endCpuNumber ‘ ;
do
th r eadOf f s e t=$ [$startCpuNumber −1];
threads=$ [$ i − $threadOf f s e t] ;
tasksetParam=" $startCpuNumber−$ i "
tasksetCommand=" t a s k s e t ␣−ca␣$tasksetParam "
#<f lavour> <n> <k> <d> <i> <threads> <pa r t i t i o n s > <ta s k s e t >
params="−in ␣ $input ␣−out␣$output ␣− l i v e ␣−f ␣ $projectName␣−n␣$n

␣␣␣␣␣−k␣$k␣−d␣$d␣− i ␣ $ i t e r a t i o n s ␣−p␣ $threads ␣−t ␣ $tasksetParam "
runCommand=" n i c e ␣−n␣10␣$tasksetCommand

␣␣␣␣␣$JAVA_EXECUTABLE␣−j a r ␣$jarName␣$params "
echo $runCommand
$runCommand
done

done
done

84

A.3.3. System Specifications

Hardware
CPU Quad-Core AMD Opteron(tm) 8384
Clock rate 2,70 GHz
Cores 32
Cores/Socket 4
L1(D) Cache 64 KB
L2 Cache 512 KB
L3 Cache 6 MB
RAM 64619 MB

Software
Operating System Linux 3.11.10-29-desktop (SUSE Linux)
Java java version "1.8.0_45"
JRE Java(TM) SE Runtime Environment

(build 1.8.0_45-b17)
JVM Java HotSpot(TM) 64-Bit Server VM

(build 25.65-b01, mixed mode)
taskset taskset from util-linux 2.23.2

A.3.4. Source Code

The source code of the tested system is provided on the attached DVD in the folder
/source. The root java-package for the implementations is
cl.niclabs.skandium.examples.kmeans.
The algorithms used in the measurements can be found in the following sub-packages:

1. Lloyds algorithm (subpackage: lloyd)
• Lloyds algorithm: sequential implementation with static data (sd-seq): se-
quential.SDSeqKmeans
• Lloyds algorithm: sequential maximization scheme (sd-sm): sequentialmaxi-
mization
• Lloyds algorithm: map/parallel maximization scheme (sd-mm): mapmaxi-
mization
• Lloyds algorithm: hybrid partition scheme (sd-hp): hybridpartition
• Lloyds algorithm: partial merge scheme (sd-pm): partialmerge

2. kd-tree optimization: treebased
• sequential implementation (kd-tree): sequential
• random decomposition (kd-rd): randomdecomposition

3. k-Medians: kmedian

85

• sequential implementation: SDSeqKmedian
• sequential maximization (kmd-sd-sm): SDSMKmedian
• map-maximization (kmd-sd-mm): SDMMKmedian

4. fuzzy c-means: cmeans
• sequential implementation: SDSeqcmeans
• sequential maximization: SDSMFCMeans

A.3.5. Raw Runtime Data

The runtime measurement data is provided on the attached DVD in the folder /evaluation.

86

A.4. Runtime Plots

(a) Runtime for Lloyds algorithm
(BIRCH dataset)

(b) Runtime for Lloyds algorithm
(MNIST dataset)

(c) Runtime for Lloyds algorithm
(KDDCUP04Bio dataset)

Figure 21: Runtime measurements of Lloyds algorithm for various datasets

(a) Runtime for Lloyds algorithm
(Costmodel dataset 1)

(b) Runtime for Lloyds algorithm
(Costmodel dataset 2)

(c) Runtime for Lloyds algorithm
(Costmodel dataset 3)

Figure 22: Runtime measurements of Lloyds algorithm for various datasets

87

Figure 23: runtime measurements for the fuzzy c-means algorithm using the sequential
maximization parallelization scheme

Figure 24: Runtime measurements for the k-median algorithm using the map maximiza-
tion parallelization scheme

88

Figure 25: Runtime comparison of the sequential algorithm using one and eight cores
available to the system

89

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für Texte,
Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt, dass
bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw.
Täuschung eingeleitet wird.

Berlin, den April 13, 2016

90

	Introduction
	Motivation
	Algorithmic Skeletons as a Model of Structured Parallelism
	Application: Cluster Analysis

	Research Goals
	Outline

	Background
	Cluster Analysis
	k-Means
	Lloyds Algorithm
	Variations
	k-Median
	Fuzzy c-Means

	Generalized k-Means
	Algorithmic Skeletons
	History
	Basic Principles
	Goals
	Advantages
	Common Skeletal Patterns
	Limitations

	Related Work
	Structured Parallelism
	HPC Based Approaches
	Task Based Approaches
	Data Driven Approaches
	Parallel Patterns
	Other Approaches

	k-Means optimizations
	Exact Sequential Acceleration
	Approximative Approaches
	Centroid Initialization
	Number of Clusters (k)

	Parallelization of k-Means
	Datacenter/Cluster Environments
	Shared Memory Multicore Systems
	Grid Computing/Distributed Systems
	Others

	Definition of the General k-Means Skeleton
	Features of k-Means-Algorithms
	Assignment Step
	Update Step
	Convergence Criterion

	Higher Order Function
	Parallelization Schemes

	Realization
	Skandium
	Instruction Generation Semantics

	Evaluation
	Methodology
	Lloyd/Forgy k-Means
	Cost Model Comparison
	Parallelization Schemes
	Sizeup Properties
	Performance on Real World Datasets
	Overhead
	Relation of Speedup and Problem Size

	Algorithmic Variations
	kd-Tree Based k-Means
	k-Median
	Fuzzy c-Means

	Speedup Comparisons
	Discussion

	Conclusion
	Summary
	Outlook
	Further Evaluation
	Leveraging the Abstraction
	Other Data Mining Algorithms

	Appendix
	Survey of k-Means Parallelization Approaches
	Skeleton Configurations
	k-Median (Sequential Maximization)
	k-Median (Map Maximization)
	kd-Tree (Random Decomposition)
	Fuzzy c-Means (Sequential Maximization)

	Performance Measurement Methodology
	Data Sets
	Measurement Script
	System Specifications
	Source Code
	Raw Runtime Data

	Runtime Plots

