
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Embedding of U2F into TLS 1.3

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Marco Reda
geboren am: 18.8.1991
geboren in: Bonn

Gutachter/innen: Prof. Dr. rer. nat. Jens-Peter Redlich
Prof. Dr. rer. nat. Ernst-Günter Giessmann

eingereicht am: verteidigt am:

Contents
1 Abstract 4

2 Introduction 4

3 Contents of this Thesis 5

4 U2F - Universal Second Factor 6
4.1 What is U2F? . 6
4.2 The Components of U2F . 7
4.3 Communication Client - Token . 9
4.4 The Registration Process . 9
4.5 The Authentication Process . 9

5 TLS - Transport Layer Security 10
5.1 What is TLS? . 10
5.2 The components of TLS 1.2 . 10
5.3 The TLS Handshake . 11
5.4 The TLS Record Protocol . 13
5.5 The TLS Alert Protocol . 15
5.6 End of a TLS connection . 16
5.7 Extensions . 16

6 Changes in TLS 1.3 17
6.1 Handshake in TLS 1.3 . 17
6.2 Extensions . 19

7 ULS - U2F via TLS 20
7.1 What do we want? . 20
7.2 U2F Authentication summarised . 21
7.3 U2F Registration summarised . 23
7.4 Quick vs. Clean, the solutions . 24

8 ULS without new extensions 24
8.1 TLS 1.2 . 24
8.2 TLS 1.3 . 27

9 The TLS 1.3 Extension for ULS 29

10 Summary 32

11 Examples 33
11.1 ULS 1.2 Registration . 34
11.2 ULS 1.2 Authentication . 35
11.3 ULS 1.3 Registration without Extension 37

3

11.4 ULS 1.3 Authentication without Extension 39
11.5 ULS Registration . 40
11.6 ULS Authentication . 43

1 Abstract
One limit to the spread of technology making login processes safer, is difficulty and
effort to implement measures that are easy to utilise by end users. This document
describes how U2F, a protocol for simple and user friendly second factor Authentication,
can be embedded into TLS 1.3 to make implementing U2F as easy as patching an
installed TLS version.

2 Introduction
We live in a world of ever-growing digital infrastructure. The intertwining of computer
technology and our everyday life is reaching new heights regularly. By now most of us
even carry a powerful computer around in our pockets every day.
Driven by this rapid development of computer technology other fields have to progress
quickly to keep up. Information security is a topic often discussed lately, even having
found its way into politics and mass media[Her17][Whe17][Alj17].
Keeping our information private, among other security goals, is becoming increasingly
difficult, thus more and more of a challenge[Pag12][Ros16].

Nowadays we have a multitude of mechanisms to protect information from various
risks. Typical attacks we need to avoid include data manipulation, breach of privacy or
data theft. We can encrypt our data with algorithms capable of ciphering data to a
point where any decryption attempts by most attackers are not feasible[DBN+01].
We can digitally sign sent data to give others ways to verify a message we sent did
really originate from us and was not changed in the process[MKJR16]. These and
many other protective measures give us a huge arsenal of countermeasures to attacks
targeting our data.
Despite the broad availability of such security measures we hear of incidents preventable
through comprehensive usage of information security methods quite often[Her17][Whe17]
[Alj17]. In many cases measures were not taken to save time and money, not imple-
mented correctly due to lack of knowledge or simply ignored, because they did not
seem important. In short, information security must be simple, efficient and easy to
handle in order to increase and encourage broad usage[DBZ03, 281].

A typical example of an effective concept of information security is the TLS Protocol.
Most internet users use it without substantial knowledge about modern encryption,
often not knowing if and how the information they transmit is protected. In many
modern webservices TLS usage is handled by user software automatically without any

4

need to bother the user at all.

Another concept often found in our daily life is multi-factor Authentication, a way
of proving we are who we claim to be by more than one method at once. Financial
transactions are often confirmed by giving information only we are supposed to know,
such as a password or a PIN number, coupled with possession of an object supposedly
unique, such as a mobile phone in online transactions or an debit card in cash dispenser
usage.
Many programs with logins to accounts send a verification e-mail to the e-mail address
with which the account was registered, once a login from a previously unknown loca-
tion occurs. This e-mail has to be opened and the contained instructions followed, to
successfully login[Ste15].

A standard implementing second-factor Authentication as part of logins is the U2F
industry standard. A U2F device is registered on or together with an account, making
both possession of said unique device and knowledge of the login credentials necessary
to successfully log in[SBTC16]. Usage of the device is kept simple to make U2F easy
to use, but there are other factors limiting the daily use of U2F in logins.

As of now any application that uses U2F needs to implement U2F Client functionality
directly. Many developers do not see this as important enough to invest time and effort
to make their software U2F capable.
A simple way of tackling this limiting factor is taking away the need to deal with U2F in
application development by simply linking the application to a present implementation
of a protocol already incorporating U2F technology.
By adding U2F functionality to TLS we can provide a socket to all applications already
using TLS for encryption that utilise user logins, given the Servers they communicate
with are capable of U2F as well. This would increase the number of U2F capable appli-
cations without any need for changing any user software except TLS implementations
themselves.

3 Contents of this Thesis

This thesis contains information about the protocols mentioned, TLS, in particular
version 1.3, and U2F, along with concepts of embedding the latter into the former.
Different approaches will be presented and explored in detail on a conceptual level.
Implementation details depending on specific TLS implementations will not be addressed
in this work, as that would go beyond the scope of a bachelor thesis.
After an overview of U2F, its components and procedures an explanation of the
inner works of TLS in the currently widespread version 1.2 follows. The changes and
innovations of version 1.3 are explained and solutions to embed U2F into those TLS
versions are proposed and summarised.

5

4 U2F - Universal Second Factor

4.1 What is U2F?

Services providing account-based logins on the internet usually want to make sure that
people trying to log into an account really are who they claim to be, the legitimate
user behind the username they use.
This is usually made sure by password-based Authentication. Someone trying to log
into a service must present secret knowledge that is supposed to be only known to the
legitimate user of that account.

Over the years various standards for passwords have been established in reaction
to both advancements in password cracking and increasing computing power[San14].
Most modern Registration processes force a set of guidelines for password choice.
Some typical examples are a minimum length, the need to have at least one character
of each of a set of groups and avoidance of commonly used passwords.
Minimum length and necessary character classes, like needing to have at least one
upper case letter, one number and one special character, protect passwords against
brute force attacks, which is simply trying out combinations until one works.
Avoidance of common passwords protects against so-called dictionary attacks, where
the most common passwords are tried out[Guc17].
According to a 2016 study, where over 10 million passwords from data leaks were
analysed, it is estimated that more than 50 percent of all internet accounts use no more
than 25 common passwords, which means that by simply trying out 25 passwords each
we could attack countless password protected accounts successfully[Guc17].

Most people using the internet will have met guidelines like these while using the
internet and are quite familiar with a problem that goes along with these protective
measures: secure passwords get ever more long and complicated all the while we have
to memorise more and more passwords if we want to avoid using the same passwords
over and over. This would leave us wide open if someone were to find out a password
of ours, this password could simply be used to access other services.

Many attempts have been made to avoid this problem without increasing the risk of
using password-protected services[Lac16].
One typical and popular way of solving the aforementioned problem is adding a second
factor to the Authentication. This may be presentation of something other than knowl-
edge of a secret, to give proof that you are who you claim to be. Using this method
can provide additional security to the Authentication process without changing the
password-based first factor Authentication.
An often used method is a confirmation e-mail sent to the e-mail address connected
with the account, that has to be read in order to log in, that is sent if something about
a login attempt is unusual, e.g. a login attempt from a new location occurs[Ste15].
This would be a two-factor Authentication by two knowledge factors, knowledge of the

6

login credentials and knowledge of the credentials for the e-mail account.
Another example of two-factor Authentication in our everyday lives is almost every
financial transaction beyond hard cash.

The FIDO Alliance has proposed a protocol for easy-to-use second-factor Authen-
tication, based on knowledge and possession[SBTC16].
U2F, which stands for Universal Second Factor, is a protocol that "[...] enables relying
parties to offer a strong cryptographic 2nd factor option for end user security."[SBTC16,
1]
The concept is simple, yet effective. In addition to a username and password check
you present a unique device, analogous to a physical key, that is necessary for the
Authentication. If this ’key’ is truly unique and you make sure it does stay in your
possession, then only you can authenticate yourself with it.

In the U2F protocol the role of the ’key’ is played by a physical device connected to
the computer used to log into a service. Once you attempt to log in via name and
password, you receive a reply, called a challenge, that has to be answered correctly by
the device and sent back to the service[SBTC16, 4][BEL16, 2].
This reply contains information which the device can use to make sure it is really
receiving a reply from the service you want to log into. Also proof that said reply has
not been changed on the way to the device is given[SBTC16, 6]. You are prompted to
activate the device physically, e.g. by pressing a button on or touching the device, after
which it answers to the service, if everything is in order. Once the service receives the
answer and confirms its correctness, the Authentication ends in success[SBTC16, 3].

Since U2F is a technology aimed at usage with browsers, the Clients use a JavaScript
API for communication with the Relying Party, which might be undesirable, as it limits
the use of U2F to systems supporting JavaScript[BBL16].

4.2 The Components of U2F
In a U2F registration or Authentication process three instances are involved[BEL16, 1].

• The U2F Device, also called Token
This is usually a physical device, handling cryptographic operations of the U2F
protocol. It is connected to the Client Computer via USB, NFC or other local
connection. Direct connection to the internet is not allowed[BEL16, 1].

• The Relying Party
This is the service against which a user wants to authenticate oneself with a login
procedure. This is usually a Web-Server. Said Relying Party is identified by an
AppID[BEL16, 1].

• The Client

7

This is the program on the Client Computer that communicates with the Token,
the User and the Relying Party. This is usually a Web-Browser[BEL16, 1].

Before a Token can be used to authenticate the user against a service, it has to be
registered. This links a Key Handle to an AppID and a key pair. Hereby the key pair
is used for cryptographic operations and the Key Handle tells both the Token and the
Relying Party which key pair is used. This does not necessarily identify a user[BEL16,
5].
The key pairs consist of a private and a public key. The private key itself or the
necessary information to derive it from the Key Handle is stored on the Token and
must not leave it[SBTC16, 7]. The public key is sent to the Relying Party, identified by
the AppID[SBTC16, 5]. The identity of the service, that is the Relying party, is also
called Origin. The Registration or enrollment process is explained further in chapter 4.4.

After this is done the Token can be used, usually but not necessarily together with
a username and password, to authenticate a user against a Relying Party. Since the
U2F second factor Authentication is entirely an addition to username/password Au-
thentication, multiple Tokens can be registered with the same account and the same
AppID, analogous to multiple keys fitting the same lock[SBTC16, 10]. This can be
convenient, for example when one user is working at changing locations and cannot take
his Token with him, or when multiple legitimate users are working with only one account.

U2F uses challenge-response-based Authentication. The Relying Party constructs
a challenge, to which the Token must respond in a certain way. The answer is then
verified by the Relying Party[BEL16, 7].
To stay with our key analogy we might describe the process as follows.
The Relying Party presents a lock to the Token. The Token opens the lock and presents
the opened lock back to the Relying Party, which verifies that it is in fact open. U2F also
provides some additional security features, for example the built in Man-in-the-Middle
protection, which is described in the FIDO Alliance Specification[SBTC16, 6].

Both Registration and Authentication consist of three phases, listed as Setup, Process-
ing and Verification.
During Setup the Client connects to the Relying Party, identifies itself and initiates
the Authentication or Registration. It receives a response from the Relying Party.
In the Processing step the Client transmits that information to the Token(s) connected
to the machine, if the origin of the response matches the expected origin. A user re-
sponse is prompted, after which the activated Token performs cryptographic operations
and transmits the result to the Client.
In the following Verification step said response is transmitted back from the Client to
the Relying Party, where it is verified.
If everything is in order then the exchange succeeds, in the case of an Authentication
the Client has successfully authenticated itself against the Relying Party, in case of a
Registration all information necessary for allowing future Authentications has been

8

exchanged and the Token is registered[BEL16, 2].

4.3 Communication Client - Token
As the communication between the Client and the Token(s) connected to the machine
can be used in our case without any change, I will not go into detail as to how these
instances communicate. This is sufficiently documented by the FIDO Alliance already
and not of particular interest for this specification. Details to used message formats
and their framing can be found in the FIDO U2F specification[BEL16].

4.4 The Registration Process
The Registration of a U2F Token begins with a regular non-U2F Authentication of a
Client against the Relying Party[SBTC16, 9]. Once the Client has sent the information
used for authentication a Registration request message is sent to the Relying Party.
This will contain information to identify the User, such as a User Handle. This can be
taken from the regular login credentials. The Relying Party stores this information and
sends a U2FChallenge message back to the Client. This message contains a challenge
constructed by the Relying Party, an Application ID (AppID) which identifies the
Relying Party against the Client and additional information described in chapter 7.
If the Client confirms the Challenge Message was sent by the adressed Relying Party
by checking the AppID a message constructed from the contained information is sent
to the Token which handles cryptographic operations like producing a signature and
a certificate. The Token will ask for the User to activate the device manually. If this
does not happen in time the Token will send an error message instead. If Activation
is successful the result of these cryptographic operations is transmitted back to the
Relying Party as a U2FRegisterResponse along with additional information described
in chapter 7. This cryptographic information contains data to be saved and stored by
the Relying Party, such as the public key generated by the token, the KeyHandle by
which this public key is to be indexed and a Response to the Challenge[BEL16].

4.5 The Authentication Process
Authentication follows a similar structure. As with Registration a Request Message with
the User Handle is sent after the credential-based login. The Relying Party responds
with a Challenge Message same as in Registration, but will transmit all KeyHandles
tied to the User Handle. Since a single User can register multiple Tokens with the same
Relying Party this is not limited to one KeyHandle. The Client checks the AppID and
contacts the Token to generate a Response to the Challenge. From this Response an
Authentication Response Message is generated and sent to the Relying Party. The
contained Response is checked by looking up the public key tied to the KeyHandle,
completing authentication[BEL16, 6].

9

5 TLS - Transport Layer Security
5.1 What is TLS?
The Transport Layer Security Protocol (TLS), as specified in RFC 5246, provides a
means to "establish a secure connection between two parties"[DR08, 6].
With the TLS protocol a secure connection between two partis, A and B, can be
established. Any data transmitted over this connection cannot be interpreted by any
other party C that intercepts any messages sent between A and B. This works by
encrypting the communication between A and B[DR08, 4].
The peers decide how sent data is to be en- and later decrypted, without letting C
know how to en- and decrypt said data[DR08, 4]. Once the negotiation, the so called
handshake, is done, transmission of encrypted data can start[DR08, 27]. After the data
exchange between A and B is finished and all pending data is sent the connection will
be closed[DR08, 29]. TLS encryption is a widely used mechanism in modern online
communication. For example every time a URL in a browser starts with https instead
of http TLS is used for encryption.

5.2 The components of TLS 1.2
TLS 1.2 works by sending messages between both parties, which all have a specific
message type.

The TLS Protocol consists of the following components:

• The Record Protocol
This is the base protocol, the foundation of the other protocols. It handles
transformation of application data to a transmittable format, so called records,
transmission to the destination and transformation back from the transmittable
state after arrival[DR08, 15f.].

• The Handshake Protocol
This protocol is used to first negotiate common security parameters between both
peers, when a TLS connection is about to be formed. These regulate how the
Record Protocol transforms the data before sending[DR08, 26f.].

• The Change Cipher Spec Protocol
During a handshake this protocol is used to change the current ciphering and
compression strategies (the current state) to new ones (the pending state)[DR08,
27f.].

• The Alert Protocol
This protocol specifies a type of transmitted data, a content type called alert
type. This is used to signal problems, some of which must cause the connection
to terminate immediately[DR08, 28f.].

10

5.3 The TLS Handshake
Before any application data can be sent from one peer to another both peers must know
how to treat the data, e.g. how to encrypt or decrypt it. Similar to other protocols
that form a connection, for example TCP, a process called handshake is executed, to
form a connection and prepare both peers for upcoming data exchange. Before that
handshake the data is neither encrypted nor compressed, as dictated by the initial
current state[DR08, 16].
The Handshake Protocol is invoked to send Hello messages and negotiate a so called ses-
sion between both peers[DR08, 16]. The information shared by this session negotiation
consists of the following components:

• session identifier
An arbitrarily chosen identifier, by which an active or resumable session can be
identified[DR08, 26f.].

• is resumable
An indicator wether or not a session can be resumed later. This will form a new
connection using the same security parameters[DR08, 26f.].

• peer certificate
An X.509v3 certificate to authenticate oneself against the other peer, this field
may be empty[DR08, 26f.].

• compression method
A proposed data compression and decompression method for transformation of
application data by the record protocol[DR08, 26f.].

• cipher spec
A proposed choice of algorithms and attributes for cryptographic transformation
of application data by the record protocol[DR08, 26f.].

• master secret
A shared secret of 48 Byte length, only known to the two peers. This value
will be calculated from a negotiated premaster secret and exchanged random
values[DR08, 26f.].

The negotiation begins with a ClientHello message from one peer to another, the former
will be called Client for this document, the latter Server[DR08, 34].
A ClientHello message contains the following fields:

• client_version
This field specifies what TLS version the Client wishes to negotiate with the
Server[DR08, 39ff.].

11

• random
This entry contains a 28 Byte random number and a current timestamp[DR08,
39ff.].

• session_id
This unencrypted value is an identifier for a previous session that can be used for
session resumption[DR08, 39ff.].

• cipher_suites
Here the Client transmits a list of combinations of cryptographic algorithms the
Client wants to use. The server must later pick one entry from this list, to form
a cryptographic context[DR08, 39ff.].

• compression_methods
Similarly a list of compression methods is conveyed[DR08, 39ff.].

• extensions
This entry is optional. It is used to tell the Server which extensions the Client
wishes to add[DR08, 39ff.].

The Server will reply with its own Hello message, the ServerHello message. Its contents
are:

• server_version
The highest TLS version the Server supports that is at the same time not higher
than the client_version entry from the ClientHello[DR08, 42f.].

• random
An own random, independently generated from the ClientHello random[DR08,
42f.].

• session_id
The identifier for the current session. This is the same as the ClientHello session_id
if a session was successfully resumed[DR08, 42f.].

• cipher_suite
A cipher suite picked from the ClientHello cipher_suites list[DR08, 42f.].

• compression_method
A compression method picked from the ClientHello compression_methods list[DR08,
42f.].

12

• extensions
If there is any need to respond to ClientHello extensions, the ServerHello will
respond with own extensions in this field[DR08, 42f.].

After the ServerHello message the Server will present an X.509v3 certificate in its
own Certificate message, if the negotiation is not anonymous[DR08, 47]. This may be
followed by a Server Key Exchange message, providing additional information for a
premaster secret exchange, in case no certificate is sent or if the sent certificate does
not provide enough data[DR08, 50ff.]. Usually for the premaster secret exchange RSA
encryption or the Diffie-Hellman Algorithm are used[DR08, 50].

The Server may also request a certificate from the Client, followed by signaling the
Server sided end of sending hello message associated information, the so called Server-
HelloDone message[DR08, 53,55].
Now the Client will, if asked to do so, itself present a certificate and transmit a Client
Key Exchange Message, after which a mutual premaster secret is set, from which the
master secret is computed[DR08, 57]. Once the master secret is derived, the premaster
secret is discarded[DR08, 64].
In order for the Record Protocol to transform and transmit data, it needs an envi-
ronment to work with, a so called state, consisting of a read and a write state. The
state which the Record Protocol uses at the time is called the current state. In order
to make any change to this environment a new state, the pending state, must be first
initialised, by usage of the negotiated session, and then changed to the new current
state using the Change Cipher Spec Protocol[DR08, 16].
Both peers send a ChangeCipherSpec message and signal the Record Protocol to copy
the write pending state to the write current state. Upon receiving the message the
same is done with the read-state[DR08, 27f.].
The handshake ends after transmission of a verifying Finished message by both peers.
This message is the last message sent by a peer in a handshake, it can however still
read messages sent by the other side before the handshake ends[DR08, 63f.].

5.4 The TLS Record Protocol
Once the handshake is done, a new current read and write state for the TLS Record
Protocol should have been established. The initial current state, which is initialised to
the usage of no compression, encryption or message Authentication code (MAC), will
have been replaced by a newly negotiated pending state, made current state by usage
of the Change Cipher Spec Protocol.

A pending state is generated by setting the following parameters:

• connection end
This specifies the role of the peer in the connection, possible values are Client
and Server[DR08, 16ff.].

13

• PRF algorithm
This specifies what pseudorandom function is used for generation of keys from
the master secret. PRFs for this purpose are generally constructed in a way that
does not allow reconstruction of the master secret from keys[DR08, 16ff.].

• bulk encryption algorithm
This contains information about what ciphering algorithm is used, if it is a block-,
stream- or AEAD ciphering algorithm, along with algorithm specific information,
like initialisation vector (IV) length or block size[DR08, 16ff.].

• MAC algorithm
This specifies what algorithm is used for message Authentication and the length
of the algorithm output value[DR08, 16ff.].

• compression algorithm
This specifies what algorithm is used for data compression along with all infor-
mation required by this algorithm[DR08, 16ff.].

• master secret
The master secret negotiated during the handshake. The length is 48 Byte[DR08,
16ff.].

• Client random
The random value generated by the Client during the handshake. The length is
32 Byte[DR08, 16ff.].

• Server random
The random value generated by the Server during the handshake. The length is
32 Byte[DR08, 16ff.].

The record protocol derives six values from this state, which are used in encryption and
MACing. For both Client and Server each a set of write MAC key, write encryption
key and write IV are generated[DR08, 18].
Once this is done the Change Cipher Spec protocol is used to instantiate the pending
state, making it the new current state[DR08, 16]. Now procession of Application Data
can start.
The connection state holds information over the current compression state, cipher
state, MAC key and a sequence number for reading and writing each. The sequence
numbers are initialised to zero. After each processed record the sequence number is
incremented, up to a maximum of 264 − 1. Further increment of the sequence number
makes a renegotiation necessary[DR08, 18f.].
The record protocol receives application data (appdata) from an application that uses
TLS for encrypted communication with another application on another machine. This
appdata will never be interpreted by the TLS protocol. Since the application can send

14

the data in blocks of arbitrary size they need to be split into a more manageable format.
This process is called fragmentation and is the first step of preparing the data for
transport. The record layer, which received the appdata, fragments it into blocks of no
more than 214 Bytes and packs them into TLSPlaintext records by adding information
about the fragment length, the used protocol version and the content type of the record
(e.g. application data, alert, handshake, change cipher spec). The length may only
be zero, if the content type is application data, which is used against traffic analysis
attempts[DR08, 19f.].
The TLSPlaintext blocks are now subject to compression, which transforms them into
TLSCompressed blocks. This is done by compressing the fragment using the specified
compression algorithm, which may be null (identity function, no change to the applica-
tion data), always provides lossless compression and does not increase the fragment
length by more than 1024 Byte. The values for content type and protocol version are
kept the same as in the TLSPlaintext block, the length is adjusted accordingly with an
upper limit of 214 + 1024 Byte[DR08, 20f].
Now the TLSCompressed block is encrypted and thereby transformed either into a
generic block cipher, generic stream cipher or generic AEAD cipher format.
Stream ciphering adds a MAC, authenticating the content of the TLSCompressed block
and sequence number, to the TLSCompressed block then encrypts both into stream
TLSCiphertext.
Block ciphering works similarly by adding a MAC, slicing the TLSCompressed into
blocks of a given block length and, if necessary, adding a padding to the last block to
ensure equal block length over all blocks. These are then encrypted using the block
cipher algorithm and are transmitted along with the IV used in the algorithm.
AEAD ciphering works by taking the TLSCompressed block, a nonce and "additional
data" which is defined as a concatenation of the sequence number, the content type, the
protocol version and the length taken from the TLSCompressed block, which is used in
the Authentication check and in ciphering it. It is now combined with the nonce[DR08,
21ff.].

After translation to a ciphered format the result is transmitted to the other peer,
then decrypted and authenticated, decompressed, reassembled to application data and
given to the receiving application.

5.5 The TLS Alert Protocol

One record type of TLS Records is the Alert Type. Along with the alert name and
number code the severity of the alert is transmitted, which can be a warning, a fatal alert
or alert 255. In case of a fatal alert, the current session is to be terminated immediately
and the session identifier invalidated, preventing resumption of this connection by reuse
of the security parameters. This does not terminate other connections using the same
security parameters that are already open. Alert records are compressed and encrypted
as specified by the connection state[DR08, 28f.].

15

5.6 End of a TLS connection
Unless a TLS connection gets terminated by a fatal alert it ends after both peers have
finished sending. Once a peer, called p1 for now, finishes sending it will send a close
notify. After this close notify is received by the other peer, called p2, said p2 will not
accept any data received from p1. The connection closure is initiated by that. After p2
sends his own close notify, data can still be sent from the p2 to p1. When both peers
have received close notifies the connection is closed[DR08, 29f.].

5.7 Extensions
Even though TLS 1.2 does not make as much use of extensions, as TLS 1.3 does, it is
necessary to take a closer look at some of them for this document. Generally speaking
an extension is an appendix to a message sent by Client or Server. In order for an
extension to be added to a message from the Server the Server must have just received
a message from the Client, containing an extension that makes this reply-extension
necessary. In TLS 1.2 the extensions are specified as Hello Extensions, meaning they
are added to Hello messages[DR08, 44f.].
Every extension consists of a type identifier and an extension data field with a maximum
length of 216−1 or 65535 Byte[DR08, 44]. For this specification the following extensions
are used, which can be found in RFC 6066.

• ServerNameList
This extension serves as a way for the Client to address its messages to a number
of Servers, that can be identified by Server names. This may become necessary
when a network address hosts multiple virtual servers, of which each could be
the target recipient. In order to forward the message that carries this extension
only to the right Servers, their Server names are listed in this extension.
If a Server receives a message with this extension and does not find its own server
name in the name list it should either continue with the handshake, or abort it. If
the Server decides to carry on, this mismatch will become apparent to the Client,
that can decide wether to carry on with the handshake, or to abort, as well.
The extension contains a list of ServerName entries, that hold a name type and
the name itself. In contrast to TLS 1.3 it is not explicitly stated if this extension
may be added to a ServerHello message as well, so I decided to refrain from that
in TLS 1.2[Eas11, 6f.].

• CertificateURL
During TLS handshakes certificates may get exchanged between the parties.
These tend to get large, making them an inefficient construct to send in a TLS
handshake. The CertificateURL extension contains information where certificates
can be found, in form of a URL. When a client sends this extension appended to a
ClientHello message the server can decide to respond with an own CertificateURL

16

extension, appended to the ServerHello, to indicate that it accepts certificate
URLs. This document will make use of this particular trait, repurposing the
extension.
This extension contains information about the certificate chain type and a list of
URLAndHash entries, each containing the URL itself, a padding and a SHA1
hash[Eas11, 9ff.].

These extensions are natively supported by TLS 1.2, as they are listed in the now
obsolete RFC 4366 draft 12, which used to be a work in progress that led to RFC
6066[DR08, 44]. All the extensions listed here originating from RFC 6066 are contained
in the 4366 draft 12 as well[Eas10, 2].

6 Changes in TLS 1.3
This document uses the IEFT tls13 Internet Draft 19 as basis for description. TLS 1.3
is still in development, but any changes to it are expected to be minor.
Among several changes from TLS 1.2, including the cease of support for some old and
outdated mechanisms, such as DSA encryption, the most important change for this
document is the rework of the handshake and its protocols[Res17, 6ff.].
Where TLS 1.2 took two round trips to shake hands, meaning a handshake took
messaging from the Client to the Server and back twice in a row, TLS 1.3 is capable of
using only one round trip, that is only one message cycle from Client to Server and
back, to perform a handshake in most cases[Res17, 21].

Another important change is the introduction of new message types and removal of
older ones, also changing which extensions may be added to which message types[Res17,
27,36f.]. For this document most important are the now removed Key Exchange messages
and the newly added EncryptedExtensions message. The conveying of key exchange
information has moved to extensions, while EncryptedExtensions was introduced as a
message type for sharing information that is not required for establishing cryptographic
parameters[Res17, 44f.,16].

6.1 Handshake in TLS 1.3
Probably the most important change from 1.2 to 1.3 is the rework that key sharing
has undergone. In TLS 1.3 sharing of key information has been moved to an extension
of the Client- and ServerHello messages.
In any first contact the Client starts with a ClientHello message[Res17, 29]. In TLS
1.3 the ClientHello contains the following fields:

• legacy_version
This entry has no use for TLS 1.3 and is kept for compatibility with TLS 1.2.
For this reason this value is set to 0x0303, which stands for TLS 1.2. The actual
supported versions have been moved to an extension[Res17, 30ff.].

17

• random
A 32 Byte random value[Res17, 30ff.].

• legacy_session_id
TLS 1.3 does not support session resumption anymore. This entry is set to a
length of zero[Res17, 30ff.].

• cipher_suites
This list contains the cipher suites supported by the Client and related data. This
usually includes the AEAD encryption algorithm and HKDF hash pairs. The
supported groups for the Ephemeral (Elliptic Curve) Diffie-Hellman algorithm
((EC)DHE), which is the TLS 1.3 key sharing algorithm, are shared in an extension,
if no pre shared keys are used instead of (EC)DHE[Res17, 30ff.].

• legacy_compression_methods
Since TLS 1.3 does not use compression methods this field has to be set to a
content of one Byte with the value of zero, which means no compression. This field,
which has a length of 1 to 255 Byte will be of special interest to us later[Res17,
30ff.].

• extensions
TLS 1.3 relies heavily on extensions. Any extension appended to a ClientHello
message finds room here. The ClientHello has to contain at least either a key_-
share extension or a pre_shared_key extension[Res17, 30ff.].

If everything is compliant and all lists offered contain acceptable entries the Server will
respond with a ServerHello message. Unknown extensions from the ClientHello will be
ignored[Res17, 32].

The ServerHello message contains the following fields:

• version
This version field corresponds with the current connection and specifies which
TLS version is used[Res17, 32f.].

• random
A 32 Byte random value, independently generated from the ClientHello random[Res17,
32f.].

• cipher_suite
The cipher suite chosen from the cipher_suites list from the ClientHello message[Res17,
32f.].

• extensions[Res17, 32f.]

18

Since the Server is only supposed to use extensions necessary for establishing the
cryptographic connection and currently only key-share and pre-shared-key are relevant
for this, the ServerHello will only contain one or both of these extensions. A part of
the random value is replaced by a value used for version downgrade protection, as
described in the TLS 1.3 specification[Res17, 32f.].
If the ClientHello contains acceptable parameters, but lacks sufficient information
necessary to carry on with the handshake, the Server sends a HelloRetryRequest mes-
sage: This message is structurally similar to a ServerHello, but without a random
field. If reception of this message by the Client does not trigger a ClientHello message
with the same cipher suite as the prior sent ClientHello, then instead of a ServerHello
an illegal parameter alert must be sent to the Server, aborting the handshake[Res17, 34].

TLS 1.3 no longer supports resuming a session and using it to form a connection
any more. Instead a mechanism called pre-shared keys is used for this purpose. After
a handshake a shared secret for the next connection can be established. This key is
tied to an identity which a Client can transmit to the Server with the pre_shared_key
extension to quickly authenticate itself without an elaborate handshake. If such a
pre-shared key is accepted by the Server then no full handshake is necessary. The Client
can transmit its data without having to wait for the ServerHello message, resulting in
a zero round trip connection setup[Res17, 50f.].

6.2 Extensions
In TLS 1.3 Extensions can be added to the ClientHello, ServerHello, Hello-Retry-
Request and EncryptedExtensions messages[Res17, 36].
They are generally built in a request-response fashion such that extensions added to
the messages originating from the Server, namely ServerHello, Hello-Retry-Request and
EncryptedExtensions, are sent in reaction to extensions previously sent in a ClientHello
message[Res17, 35].
If a Server needs to request a certificate from the Client it does so in a Certificate-
Request message, to which the Client may respond with a Certificate-Message. An
extension consists of an indicator of its extension type and an extension data field of
at most 216 − 1 = 65535 Byte length with no positive minimum length[Res17, 35].
We will take a closer look into a few selected extensions from the TLS 1.3 specification
draft. A full list of the native extensions to the TLS 1.3 protocol is listed in the TLS
1.3 specification draft[Res17, 36f.].

• Key-Share, appendable to ClientHello, ServerHello and Hello-Retry-Request
This extension conveys the offered and selected groups and related key-share
information for key negotiation between client and Server with (EC)DHE. If sent
by the Client a list of groups is offered that the Client supports, from which
the Server picks one. The Server responds with its own Key-Share extension
to either accept one group from the list (ServerHello) or pick one group and
request additional information (HelloRetryRequest). The initial list presented by

19

the Client may be empty. In this case the Server is prompted to present a list,
from which the Client will pick instead. This will expand the handshake by one
additional round trip[Res17, 44f.].

• Pre-Shared Key, appendable to ClientHello and ServerHello

• Pre-Shared Key exchange modes, appendable to ClientHello
These extensions must be used in conjunction. If used, the ClientHello contains
both the Pre-Shared Key extension and the Pre-Shared Key exchange modes
extension, to which the Server will reply with a Pre-Shared Key extension, if a
ServerHello message is sent in return. If a number of Pre-Shared Keys has been
established between Client and Server, the Pre-Shared Key extension indicates
which of these is used. Each of these Keys is tied to an identity.
The ClientHello Pre-Shared Key extension contains a list of the identities the
Client presents to the Server, the Pre-Shared Key exchange modes extension
specifies key exchange modes that are acceptable for exchanging a Pre-Shared
Key. This limits the choice of identities in the Pre-Shared Key extension. The
Server then picks one from this list that has to meet the requirements of the
Pre-Shared Key exchange modes extension. The Pre-Shared Key extension is
always the last extension, the order of any other extensions is not specified[Res17,
47ff.].

• Early Data Indication, appendable to ClientHello, Encrypted-Extension and
New-Session-Ticket
One of the new features of TLS 1.3 is the so called 0-RTT resumption. This
means that, given a valid Pre-Shared Key has already been shared, a Client can
send Application Data along with its ClientHello message. If this is done, the
Client sends this ClientHello with both Pre-Shared Key extension and Early Data
Indication extension. It is simply an indicator for the Server that the ClientHello
already contains Application Data[Res17, 47ff.].

• CertificateAuthorities, appendable to ClientHello and CertificateRequest
This extension consists of nothing more than a list of names, indicating the
certificate authorities supported by the sender. Due to being appendable to the
CertificateRequest and the lack of need for client certification in our specification,
this extension will be repurposed[Res17, 42].

7 ULS - U2F via TLS
7.1 What do we want?
Our goal is to make a modified version of TLS 1.2/1.3 capable of emulating the
capabilities of the U2F protocol all the while staying as conform to the standards
as possible. We can logically sort the communications in the U2F protocol into two

20

categories, one being the communication between Client and Relying Party, the other
being the communication between Client and Token. The Token-Client communication
can be handled by the libraries already present, which the Client side can simply call
from the TLS implementation. This leaves the communication between Client and
Relying Party.
We can logically split U2F into two different use cases with one being enrollment,
where a U2F Token is registered to a Relying Party, the other being Authentication,
where a Token is used to authenticate the Client against a Relying Party. The latter
is much more important to cover, since for every registered Token there are many
Authentications to be expected. Also the enrollment can simply be done once on a
machine capable of U2F without much additional effort. Since the goal is to keep the
U2F capabilities detached from application data at least the Authentication and, if
possible, the enrollment as well must take place in the interpreted code part of the
TLS protocol.
Most services still use a username/password-based Authentication, to which they might
add U2F. This information can still be transmitted as application data, which means
that the U2F exchange takes place before any username/password checks unrelated to
U2F occur. We can also not use any application data in the TLS protocol itself, as
this information is not interpreted by the layer in which TLS resides. The message
prompting the user to activate the Token should be trivial to implement, but is highly
dependent on the specific user interface, therefore it is not covered in this document.

7.2 U2F Authentication summarised
The Client-Relying Party communication during Authentication consists of two round
trips. The first one begins with the Client initiating the Authentication process. This
message must contain an indicator that the Client wishes to start Authentication and
a user ID, for this document called User Handle to identify the user to the Server.
For this User Handle I will use a SHA-256 hash of the username of the underlying login
process. Since SHA-256 produces a hash of 256 bit or 32 Byte length this is the length
of the hashed username data. If there is no login process tied to the Authentication any
other form of username hashed this way will suffice, as long as it is used in consistence
with a User Handle given during enrollment.

The Server will respond with all Key Handles tied to the User Handle, its own AppID, a
challenge, a version indicator and values for timeoutSeconds and requestID. The format
of the challenge seems not to be explicitly defined in the FIDO U2F specifications. As
the challenge is represented as a String in the Yubico U2F implementation libraries
and will be transmitted to the Token as part of a SHA-256 hashed object I specify the
maximum challenge length to be 32 Byte[Yub16].
Likewise the AppID will be given the same length for the same reason. The FIDO U2F
specification lists a maximum length of the Key Handle indicated by the Key Handle
length Byte, an unsigned int with the values of 0-255 without explicitly stating wether
this is bit or Byte[BEL16, 6]. Since the example Key Handle[BEL16, 9] is 64 Byte long

21

I will assume it is byte and set the maximum Key Handle length to 255 byte[BEL16, 8].
The version indicator will be formatted as in the example from the U2F Specification,
which means that 8 Byte should be enough, even for a two-digit version number. As
timeoutSeconds and requestID are unsigned long values they take 4 Byte each.

In the final transport step the Client sends the challenge, the signature and counter
given by the Token back to the Relying Party, where the signature is verified. The
requestID is added here as well. The counter is represented by a 4 Byte big endian
representation of the Token counter value in the FIDO specification[BEL16, 6].
The signature is created with Elliptic Curve DSA on P-256 over a String of up to 162
Byte[BEL16, 9]. This signature consists of two 256 bit Integers. These are encoded as
ASN.1 Integers, so the addition of a lenght and a type byte are needed. Also ASN.1
calls for an extra bit to indicate wether the number is positive or negative. This sums
up to a maximum of 35 Byte per Integer. These need to be capsuled in a structure
endcoded with length and type as well, which gives us a total length of 72 byte.
In summary we will have:
• The Authentication request:
32 Byte User Handle (if using the ULS extension)
sufficient space for RSA-OAEP encrypted User Handle, estimated under 1kiB (if
not using the ULS extension)
5 Byte for ".u2fa"/".u2fr"

• The Challenge message:
32 Byte Challenge
32 Byte AppID
x*255 Byte KeyHandle
8 Byte version
4 Byte requestID
4 Byte timeoutSeconds

• The Response message:
32 Byte Challenge
72 Byte Signature
4 Byte Counter
4 Byte requestID

With x being the number of KeyHandles associated with the identified user for this
Application.
Should any of these lengths turn out to be insufficient for an implementation they may
be extended up to the maximum length they can have while staying short enough to
be transported with the means specified in this document.

22

7.3 U2F Registration summarised
The Registration or Enrollment is similar to the Authentication in regards to the
transported information. An enrollment request message is sent by the Client, contain-
ing a User Handle for Client identification and an indication it wishes to register a Token.

The challenge message is identical in format to the one in the Authentication process
save for the Key Handle, as it is not constructed yet.

The only major difference is the response message. As in the Authentication response
a signature, requestID and challenge are transmitted. During enrollment the response
also contains the public key obtained from the Token, an attestation x.509 certificate
and the User Handle.
The public key length is 65 Byte, the length of the signature is described as "variable
length, 71-73 bytes"[BEL16, 5], so I will take it as 73 Byte.
In summary we have:

• The Registration request:
32 Byte User Handle
sufficient space for RSA-OAEP encrypted User Handle, estimated under 1kiB (if
not using the ULS extension)
5 Byte for ".u2fa"/".u2fr"

• The Challenge message
32 Byte Challenge
32 Byte AppID
8 Byte version
4 Byte requestID
4 Byte timeoutSeconds

• The Response message:
32 Byte Challenge
65 Byte Public Key
255 Byte KeyHandle
73 Byte Signature
4 Byte requestID
A x.509 certificate. As we will transmit this whole by other means the size is not
important.

In total 407 Byte plus indicators what type of message is sent are needed.

23

7.4 Quick vs. Clean, the solutions

Since our ultimate goal is to give U2F capabilities to the TLS 1.3 protocol there
is a simple and clean solution to our problem. If we add extensions to the TLS 1.3
protocol that alter the handshake and transport our information in messages specifically
designed for U2F over TLS 1.3 we can avoid many problems and pitfalls, that other
more unconventional solutions might bring.
Such an extension would have to be approved by the Internet Assigned Numbers Author-
ity IANA, which is a globally operating organisation, meaning a lot of administrative
barriers would have to be climbed for the extension to get approved. Therefore I specify
both an extension for U2F over TLS and in addition ways to add U2F capabilities to
TLS without adding new extensions. This is what some may call a ’dirty hack’ and
perhaps not good practice, but it might help in spreading the idea behind this thesis.
As we mostly use String containers for most of our data and we usually do not suffer
from any lack of space the given size requirements represent the bare minimum used
space and more will be used if you transmit the given values as plain strings. This
should not become problematic however, als we still stay in acceptable boundaries
when transmitting an RSA-OAEP ciphertext as a string.

8 ULS without new extensions

If we do not specify new transmission formats for the U2F data in the form of an
extension or message type we have to use existing message types and extensions to
transport the data. Therefore size is important for this method, as space might be
limited.
Since it is ill advised to change the TLS protocol too much, because maintaining
security and compatibility is vital, this specification aims at staying close to the original
handshake protocols.

8.1 TLS 1.2

TLS 1.2 uses a 2 round trip handshake by default, which seems convenient, since the
U2F protocol exchange also uses 2 round trips both for Authentication and Registration.
The TLS 1.2 basic handshake has the following form:

24

Client Server
ClientHello −→

ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*

←− ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished −→

[ChangeCipherSpec]
←− Finished

Application Data ←→ Application Data

Figure 1. Message flow for a full handshake
* Indicates optional or situation-dependent messages that are not always sent.[DR08, 36]

To make the ClientHello message capable of conveying a 32 Byte User Handle we have
to use an existing extension, since no data field in the ClientHello message we can use
is large enough. The ServerNameList extension (see 7.2) is described in RFC6066 as
an addition to TLS 1.2. This extension usually indicates to which Server or Servers a
Client wants to send, if the target network address hosts mutiple virtual Servers. The
extension provides a name field of sufficient size to convey the User Handle. Before
sending the User Handle must be encrypted.
Along with the User Handle the Client must tell the Server what kind of U2F action
it wishes to initiate. For this purpose the String ’.u2fa’ for authentication or ’.u2fr’
for registration is concatenated to the User Handle after encryption. Since the Server-
NameList extension is usually used to convey domain names we have to make sure our
input is consistent with domain name formats. If we use an encryption that produces
domain name compatible ciphertexts this wont be a problem.
All servers implementing ULS must recognise any ServerNames constructed in such
manner. As a Server which does not recognize the given ServerName may abort the
handshake but is not required to do so this cannot serve as a mechanism to ensure a
Server supports ULS. If a Server aborts the handshake after receiving an unrecognised
ServerName we can safely say it does not support ULS. If it does not abort we cannot
be sure if it supports ULS.
Since the first ClientHello is not encrypted it is advisable to encrypt the User Handle
before transmitting it, to hinder identification of a U2F Client by a third party during
Registration or Authentication. The User Handle is to be encrypted with RSA-OAEP
using the server’s public key obtained beforehand by any other means. This will lengthen
the User Handle significantly, but since we are using an entire extension for conveying
the ciphertext and auth/reg string there should be no space issue.

25

The ClientHello CipherSuite list must contain at least one algorithm for key exchange
that is also acceptable for TLS 1.3, to avoid deprecation. Since we cannot establish
a cryptographic context, until the Server has sent a ServerHelloDone message and is
thereby not able to send a Challenge to the Client anymore, we complete the Hand-
shake in the usual manner for TLS 1.2. The chosen key exchange algorithm must be
acceptable for TLS 1.3 as well for the aforementioned reason. This session will be closed
and resumed immediately afterwards, provoking a new, albeit shortened handshake.
This new handshake will be encrypted, as the current state of the resumed connection
is reused.

The new Client Hello of the rehandshake contains a CertificateURL extension. The
data in this extension is insignificant, but makes an answer by the Server that contains
this extension as well conform to the TLS 1.2 specification. By default this extension
data is empty, but may be filled with any value if there is a valid reason to do so.
The Server replies with a ServerHello message with an own CertificateURL extension.
This extension contains a url field with sufficient maximum length of 65535 Byte, which
is enough to convey the Challenge Request, unless more than 256 Key Handles are
associated with the given User Handle and Application. These values are submitted as
a plain text String, each separated by a ’.’ character.
The certificate chain type is initialised to individual_certs(0), the fields for padding
and hash are filled with zero Bytes.
The Server also asks for a Client Certificate, using the CertificateRequest message
you would normally find in a regular handshake. If any kind of certificate from the
Client had to be obtained for TLS security reasons that must already have happened
in the full handshake of the first connection. This CertificateRequest simply prompts
the Client to submit a certificate, which will be the container for the U2F response
information.

Before any finished messages are exchanged the Client sends a pseudocertificate to
the Server. This is simply a x.509 certificate with custom contained data. In case of
Registration an actual x.509 certificate is generated by the Token to be verified by the
Server. In this case the values for Challenge, Public Key, Key Handle, signature and
requestID are appended to the issuer field, separated by ’.’ characters from each other
and the original issuer entry.
In case of Authentication an empty certificate is used and the values written into
the issuer field in the same manner. During Registration the Server must abort the
handshake, if the Attestation Certificate could not be verified. Be sure to remove these
values from the transmitted certificate before handling verification. The rest of the
re-handshake takes place as described in RFC 5246.

The full U2F over TLS 1.2 without new extensions handshake has the following
form:

26

Client Server
ClientHello(+ServerNameList) −→

ServerHello
Certificate*
ServerKeyExchange
CertificateRequest*

←− ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished −→

[ChangeCipherSpec]
←− Finished

Close connection
Rehandshake:

Client Server
ClientHello(+certificateURL)

ServerHello(+certificateURL)
←− CertificateRequest

Certificate
Finished −→

Finished
Application Data ←→ Application Data

8.2 TLS 1.3

In contrast to TLS 1.2’s two round trip handshake TLS 1.3 uses only one round trip and
does not directly support session resumption any more. The TLS 1.3 basic handshake
has the following form:

27

Client Server
Key | ClientHello
Exch | + key_ share*

| + psk_ key_ exchange_
| modes*
| + pre_ shared_key* ——–>

ServerHello | Key
+ key_share* | Exch
+ pre_shared_key* |
{Encrypted | Server
Extensions} | Params
{Certificate |
Request*} |
{Certificate*} |
{CertificateVerify*} | Auth
{Finished} |

←− [Application Data*]
| { Certificate*}

Auth | { CertificateVerify*}
| { Finished} ——–>

[Application Data] ←→ [Application Data]
+ Indicates noteworthy extensions sent in the
previously noted message.

* Indicates optional or situation-dependent
messages/extensions that are not always sent.

{} Indicates messages protected using keys
derived from a [sender]_handshake_traffic_secret.

[] Indicates messages protected using keys
derived from traffic_secret_N

Figure 1: Message flow for full TLS Handshake[Res17, 15]

In TLS 1.3 we use the same way of treating and conveying the Request Message
as in TLS 1.2.
After the ClientHello has been received by the Server and it has sent a ServerHello
the rest of the handshake is covered by TLS encryption, so we do not have to worry
about secrecy of the transmitted data any longer. This means there is no need to
re-handshake in any way.
The Server must now send a CertificateRequest message with a CertificateAuthorities
extension appended to it. Since we already know the Client supports U2F and the
server will only send the message in the specified way if it does so too we do not need

28

actual Client certification during the U2F handshake. This means we can safely repur-
pose this extension. The data contained in the Challenge Message is simply written
in the authorities field in the CertificateAuthorities extension. With the exception
of the finished message, that must be delayed until the Client has responded to the
CertificateRequest, all other messages are sent as in regular TLS 1.3. The Client must
send a Certificate message, constructed in the same way, as in U2F over TLS 1.2
without new extensions. After the certificate has been received and, if needed, verified,
the handshake can finish in the usual manner.

The full U2F over TLS 1.3 without new extensions handshake has the following
form:

Client Server
Key | ClientHello
Exch| + key_share*

| + psk_key_
| exchange_modes*
| + pre_shared_
| key*

U2F| +server_name_list −→
Request|

ServerHello | Key
+ key_share* | Exch

+ pre_shared_key* |
{EncryptedExtensions} | Serverparams

{CertificateRequest} | U2F
+ CertificateAuthorities | chall

{Certificate*}
←− {CertificateVerify*}

U2F | {Certificate*}
response | {CertificateVerify*}

{Finished} −→
←− {Finished}

[Application Data] ←→ [Application Data]

9 The TLS 1.3 Extension for ULS
Since an extension has a maximum space of 65535 Byte for data, no problem in con-
taining the data for every U2F message should occur. I define the extension for U2F
data analogous to the extension definitions in the IEFT TLS 1.3 specification. Since
we have enough space I will provide length fields for every data entry that does not
have an explicitly stated length in the U2F specification. Lengths will be given in Byte.
The extensions are defined explicitly for TLS 1.3, since TLS 1.2 is widely implemented

29

and used already and any additions to it might not spread as easily as additions to the
relatively new TLS 1.3 protocol.
enum {
initiateAuthentication(0),
initiateRegistration(1),
authenticationRequest(2),
authenticationChallenge(3),
authenticationResponse(4),
registrationRequest(5),
registrationChallenge(6),
registrationResponse(7)
} U2FMessageType

struct {
U2FMessageType messageType;

uint userHandle;

uint challengeLength;
String challenge;

uint appIDLength;
String appID;

uint keyHandleLength;
String[] reqisteredKeys;

uint signatureLength;
String signature;

uint publicKeyLength;
String publicKey;

uint counter;

String version;

ulong timeoutSeconds;

ulong requestID;
} U2FExtension

This extension is appendable to ClientHello, ServerHello, EncryptedExtensions and
CertificateRequest.

30

If any type of data is not supposed to be transmitted in a message, the length field is
set to 0. Which messages are used for transmitting which types of data is covered in
the chapter U2F via TLS. The userHandle, counter, timeoutSeconds and requestID
values are set to 0, unless they are relevant in the current message. In the initiate
messages no data must be transmitted.
The U2F exchange begins with a ClientHello message containing a U2FExtension with
an initiate type. The accepting ServerHello message must contain a U2FExtension of
the same type and content.
By now cryptographic protection for the connection has been established. As with U2F
over TLS without new extensions we could transmit the User Handle in the ClientHello
message, but would lose the protection and forward secrecy of the TLS encryption,
leaving us vulnerable within the aforementioned limits. The method specified here
avoids that problem at the cost of an additional round trip. If that is not desirable
the ClientHello message can simply take over the role of the first EncryptedExtension
message instead. It is advisable to use encryption over RSA-OAEP if that route is
taken.
After this the transmission of actual U2F messages under the protection of TLS en-
cryption can start. For the transmission of U2F messages the EncryptedExtensions and
Certificate message types will be used, that convey nothing more than the extensions
themselves.
The Client begins with an EncryptedExtensions message with a request type exten-
sion, containing the User Handle. The Server responds with an EncryptedExtensions
message with a challenge type extension, containing the challenge, the AppID and, in
the Authentication case, the registeredKeys. The final message by the Client contains
a response type extension.
If it is an Authentication response, it is an EncryptedExtensions message and it contains
challenge, signature and counter. If it is a Registration response, the message type is
Certificate instead, which is how the x.509 certificate from the Token is transported,
and contains challenge, public key, Key Handle and signature in its U2FExtension. The
Key Handle is simply put in the first value of the registeredKeys array.
Once the signature has been verified by the Server it may send a finished message to
end the handshake, if no further messages need to be sent by the Server for the TLS
1.3 handshake itself.

These message types must be sent in order, any reception of a message containing
invalid information, like a public key in an Authentication response or a signature in
a challenge message, or message out of order must abort the handshake with a fatal
alert. A fitting and ideally unmistakeable alert description from the TLS 1.3 draft
must be chosen, I propose unexpected_message(10) for U2F messages out of order and
unsupported_extension(110) for invalid combinations of data and extension type. If
the server does not support the U2FExtension the Client has to abort the handshake.
Should the U2F Registration or Authentication itself fail the handshake must be aborted
with a fatal handshake_failure(40) alert.
The full U2F extended TLS 1.3 handshake has the following form:

31

Client Server
Key | ClientHello
Exch | + key_share*
U2F | + psk_key_exchange_modes*
init | + U2FExtension(init)

| + pre_shared_key* −→
ServerHello | Key

+ key_share* | Exch
+ U2FExtension(init) | U2Finit

←− + pre_shared_key* |
U2F | {EncryptedExtensions}
req | + U2FExtension(request) −→

{EncryptedExtensions} | U2F
+ U2FExtension(challenge) | challenge

{CertificateRequest} |Serverpar
{Certificate*} |

←− {CertificateVerify*} | Auth
| {Certificate*} |

U2F | +U2FExtension(response) |
resp | {EncryptedExtensions*} |
onse | +U2FExtension(response) |

| {Finished} −→ |
←− {Finished} |

[Application Data] ←→ [Application Data]

10 Summary
Embedding of U2F capabilities, as they are currently specified, into TLS will probably
always add round trips to the handshake, be it with a new extension or not. But this is
not necessarily a problem, since we usually authenticate ourselves against a service once
at login and then use it for a while without any need to periodically reauthenticate. It
is not given this will always stay the same, but I assume substantial change to this will
not happen before TLS 1.3 becomes outdated and obsolete anyway.
The usual trade-off between speed or practicability and security is hardly relevant in
our login use case, so there is probably little to lose and much to gain in terms of
additional security.
Of all presented methods for embedding U2F into TLS 1.3 the most promising is the
use of a custom-tailored extension, as this may prevent more unexpected problems and
odd behaviour of protocols based on the new specification, than repurposing structures
meant for different applications.

I do not expect this specification alone to have a large impact on online commu-

32

nication, but in order to make a difference, first the means must be provided. This
specification makes the use of two-factor Authentication easier to use, which, if not a
leap, is at least a step in the right direction. As often in internet security we have the
technology, it just needs to be used more.

11 Examples
For the following examples I will use the U2F Token data provided in the U2F
Raw Message Formats Documentation, namely the attestation certificate, public key,
signature and Key Handle[BEL16, 18ff.]. Furthermore there are no other Key Handles
stored before each example Registration and Authentication.
The following further example data is used:
User Handle: User1
with SHA256 Hash:

27a534a25cf745b6c985eb782079a6fe8641b00003dada14f392a2d01b9c790a

Be the RSA-OAEP-encrypted form:

1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742

Challenge: Challenge
with SHA256 Hash:

27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1

AppID: example.com
with SHA256 Hash:

a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947

U2F Version 1
No previous requests
1024 seconds timeout

33

11.1 ULS 1.2 Registration
Client to Server:
ClientHello as specified in RFC 5246 with ServerName Extension. The name field
contains the following String:

1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742.u2fr

Server to Client:
ServerHello, ServerKeyExchange and ServerHelloDone as specified.

Client to Server:
ClientKeyExchange, ChangeCipherSpec and Finished.

Server to Client:
ChangeCipherSpec, Finished, and close_notify(0).

Client to Server:
close_notify(0) and ClientHello with previous session_id and CertificateURL extension.

Server to Client:
ServerHello with CertificateURL extension. The url field contains the following String:

27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947.
0000000000000001.
00000000.
00000400

Then a Certificate Request.

Client to Server:
The following Certificate:

[
[
Version: V3

34

Subject: CN=PilotGnubby-0.4.1-47901280001155957352 Signature
Algorithm: SHA256withECDSA, OID = 1.2.840.10045.4.3.2

Key: EC Public Key
X:
8d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2fa Y:
3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101

Validity: [From: Tue Aug 14 11:29:32 PDT 2012, To: Wed Aug 14
11:29:32 PDT 2013]

Issuer: CN=Gnubby Pilot.
27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
04b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657
c1cc6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9.
2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925a6
019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25.
304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871.
00000000

SerialNumber: [47901280 00115595 7352]]

Algorithm: [SHA256withECDSA]
Signature:
0000: 30 44 02 20 60 CD B6 06 1E 9C 22 26 2D 1A AC 1D 0D. ‘....."&-...
0010: 96 D8 C7 08 29 B2 36 65 31 DD A2 68 83 2C B8 36).6e1..h.,.6
0020: BC D3 0D FA 02 20 63 1B 14 59 F0 9E 63 30 05 57 c..Y..c0.W
0030: 22 C8 D8 9B 7F 48 88 3B 90 89 B8 8D 60 D1 D9 79 "....H.;....‘..y
0040: 59 02 B3 04 10 DF Y.....
]

Followed by Finished.

Server to Client after verification:
Finished.

11.2 ULS 1.2 Authentication
Client to Server:
ClientHello as specified in RFC 5246 with ServerName Extension. The name field
contains the following String:

1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212

35

7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742.u2fa

Server to Client:
ServerHello, ServerKeyExchange and ServerHelloDone as specified.

Client to Server:
ClientKeyExchange, ChangeCipherSpec and Finished.

Server to Client:
ChangeCipherSpec, Finished, and close_notify(0).

Client to Server:
close_notify(0) and ClientHello with previous session_id and CertificateURL extension.

Server to Client:
ServerHello with CertificateURL extension. The url field contains the following String:

27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947.
2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925
a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25.
0000000000000001.
00000001.
00000400

Then a Certificate Request.

Client to Server:
The following Pseudocertificate:

[
[
Version:
Subject:
Algorithm:

Key:
X:

36

Y:

Validity:

Issuer:27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871.
00000000.
00000000

SerialNumber: [47901280 00115595 7352]]

Algorithm:
Signature:
]

Followed by Finished.

Server to Client after verification:
Finished.

11.3 ULS 1.3 Registration without Extension
Client to Server:
ClientHello with all necessary extensions for negotiating a TLS session and ServerName
Extension. The name field contains the following String:

1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742.u2fr

Server to Client:
ServerHello with all necessary extensions and followup messages for negotiating a TLS
session and a CertificateRequest with CertificateAuthorities extension. The Authorities
field contains the following String:

27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947.
0000000000000001.

37

00000000.
00000400

Client to Server:
The following Certificate:

[
[
Version: V3
Subject: CN=PilotGnubby-0.4.1-47901280001155957352 Signature
Algorithm: SHA256withECDSA, OID = 1.2.840.10045.4.3.2

Key: EC Public Key
X:
8d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2fa Y:
3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101

Validity: [From: Tue Aug 14 11:29:32 PDT 2012, To: Wed Aug 14
11:29:32 PDT 2013]

Issuer: CN=Gnubby Pilot.
27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
04b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657
c1cc6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9.
2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925a6
019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25.
304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871.
00000000

SerialNumber: [47901280 00115595 7352]]

Algorithm: [SHA256withECDSA]
Signature:
0000: 30 44 02 20 60 CD B6 06 1E 9C 22 26 2D 1A AC 1D 0D. ‘....."&-...
0010: 96 D8 C7 08 29 B2 36 65 31 DD A2 68 83 2C B8 36).6e1..h.,.6
0020: BC D3 0D FA 02 20 63 1B 14 59 F0 9E 63 30 05 57 c..Y..c0.W
0030: 22 C8 D8 9B 7F 48 88 3B 90 89 B8 8D 60 D1 D9 79 "....H.;....‘..y
0040: 59 02 B3 04 10 DF Y.....
]

Followed by Finished.

Server to Client after verification:
Finished.

38

11.4 ULS 1.3 Authentication without Extension
Client to Server:
ClientHello with all necessary extensions for negotiating a TLS session and ServerName
Extension. The name field contains the following String:

1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742.u2fa

Server to Client:
ServerHello with all necessary extensions and followup messages for negotiating a TLS
session and a CertificateRequest with CertificateAuthorities extension. The Authorities
field contains the following String:

27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.
a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947.
2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925
a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25.
0000000000000001.
00000001.
00000400

Client to Server:
The following Certificate:

[
[
Version:
Subject:
Algorithm:

Key:
X:
Y:

Validity:

Issuer:27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1.

39

304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871.
00000000.
00000000

SerialNumber: [47901280 00115595 7352]]

Algorithm:
Signature:
]

Followed by Finished.

Server to Client after verification:
Finished.

11.5 ULS Registration
Client to Server:
ClientHello with all necessary extensions for negotiating a TLS session and

U2FExtension{
U2FMessageType == 1;
userHandle == 0;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == null;
timeoutSeconds == 0;
requestID == 0;
}

Server to Client:
ServerHello with all necessary extensions for negotiating a TLS session and

U2FExtension{

40

U2FMessageType == 1;
userHandle == 0;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == null;
timeoutSeconds == 0;
requestID == 0;
}

Client to Server:
EncryptedExtensions message with

U2FExtension{
U2FMessageType == 5;
userHandleLength == 0;
userHandle ==
1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;

41

version == null;
timeoutSeconds == 0;
requestID == 0;
}

Server to Client:
EncryptedExtensions message with CertificateRequest and

U2FExtension{
U2FMessageType == 6;
userHandle == 0;
challengeLength == 64;
challenge == "27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1";
appIDLength == 64;
appID == "a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947";
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == "1";
timeoutSeconds == 1024;
requestID == 0;
}

Client to Server:
EncryptedExtensions message with

U2FExtension{
U2FMessageType == 7;
userHandle == 0;
challengeLength == 64;
challenge == "27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1";
appIDLength == 0;
appID == null;
keyHandleLength == 128;
registeredKeys == {"2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925a6
019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25"};
signatureLength == 142;
signature == "304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871";
publicKeyLength == 128;
publicKey == 04b174bc49c7ca254b70d2e5c207cee9cf174820ebd77ea3c65508c26da51b657

42

c1cc6b952f8621697936482da0a6d3d3826a59095daf6cd7c03e2e60385d2f6d9;
counter == 0;
version == null;
timeoutSeconds == 0;
requestID == 0;
}

and Certificate

[
[
Version: V3
Subject: CN=PilotGnubby-0.4.1-47901280001155957352 Signature
Algorithm: SHA256withECDSA, OID = 1.2.840.10045.4.3.2

Key: EC Public Key
X:
8d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2fa Y:
3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101

Validity: [From: Tue Aug 14 11:29:32 PDT 2012, To: Wed Aug 14
11:29:32 PDT 2013]

Issuer: CN=Gnubby Pilot

SerialNumber: [47901280 00115595 7352]]

Algorithm: [SHA256withECDSA]
Signature:
0000: 30 44 02 20 60 CD B6 06 1E 9C 22 26 2D 1A AC 1D 0D. ‘....."&-...
0010: 96 D8 C7 08 29 B2 36 65 31 DD A2 68 83 2C B8 36).6e1..h.,.6
0020: BC D3 0D FA 02 20 63 1B 14 59 F0 9E 63 30 05 57 c..Y..c0.W
0030: 22 C8 D8 9B 7F 48 88 3B 90 89 B8 8D 60 D1 D9 79 "....H.;....‘..y
0040: 59 02 B3 04 10 DF Y.....
]

Followed by regular proceeding of the TLS 1.3 handshake

11.6 ULS Authentication
Client to Server:
ClientHello with all necessary extensions for negotiating a TLS session and

U2FExtension{

43

U2FMessageType == 0;
userHandle == 0;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == "null";
timeoutSeconds == 0;
requestID == 0;
}

Server to Client:
ServerHello with all necessary extensions for negotiating a TLS session and

U2FExtension{
U2FMessageType == 0;
userHandle == 0;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == "null;
timeoutSeconds == 0;
requestID == 0;
}

Client to Server:
EncryptedExtensions message with

U2FExtension{
U2FMessageType == 2;

44

userHandleLength == 0;
userHandle ==
1209053012151961783890139770601822255121763998574744409288008819044040
2283799365510022448103244069551687505522862260067670284638231665643212
7905709722690341406254568724291003352410343563380958414349679624485469
5060517176312632724526085494868136234061960175918430761688341453813000
0880278225246293928859962695198089222810100354905640577437423559148052
2735004143079514020904037099513269880168003918480379760525532953647673
7083432567820409542765633450683520850642537427550934585801257530901799
2364090406488996717801628548765018175493972301008510384658735666956961
500121386424528828686567570538003156321008237064926093742;
challengeLength == 0;
challenge == null;
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == null;
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 0;
version == null;
timeoutSeconds == 0;
requestID == 0;
}

Server to Client:
EncryptedExtensions message with

U2FExtension{
U2FMessageType == 3;
userHandle == 0;
challengeLength == 64;
challenge == "27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1";
appIDLength == 64;
appID == "a379a6f6eeafb9a55e378c118034e2751e682fab9f2d30ab13d2125586ce1947";
keyHandleLength == 128;
registeredKeys == {"2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925a6
019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25"};
signatureLength == 0;
signature == null;
publicKeyLength == 0;
publicKey == null;
counter == 1;

45

version == "1";
timeoutSeconds == 400;
requestID == 1;
}

Client to Server:
EncryptedExtensions message with

U2FExtension{
U2FMessageType == 4;
userHandle == 0;
challengeLength == 64;
challenge == "27cf1792f7bb4da955117bb4a15cb33f4e4705984cacfac9055a2884b061e4e1";
appIDLength == 0;
appID == null;
keyHandleLength == 0;
registeredKeys == ;
signatureLength == 142;
signature == "304502201471899bcc3987e62e8202c9b39c33c19033f7340352dba80fcab017db9230e
402210082677d673d891933ade6f617e5dbde2e247e70423fd5ad7804a6d3d3961ef871";
publicKeyLength == 0;
publicKey == ;
counter == 1;
version == null;
timeoutSeconds == 0;
requestID == 1;
}

References
[Alj17] Global hacking attack infects 57,000 computers. Website, May

2017. Online at http://www.aljazeera.com/news/2017/05/
global-hack-attack-infects-57000-computers-170513005030798.
html; accessed on July 18th 2017.

[BBL16] Dirk Balfanz, Arnar Birgisson, and Juan Lang. FIDO U2F JavaScript API
- FIDO Alliance Implementation Draft 15. FIDOAlliance, September 2016.

[BEL16] Dirk Balfanz, Jakob Ehrensvard, and Juan Lang. FIDO U2F Raw Mes-
sage Formats - FIDO Alliance Implementation Draft 15. FIDOAlliance,
September 2016.

[DBN+01] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, James Foti,
Lawrence E. Bassham, E. Roback, and James F. Dray Jr. Advanced En-
cryption Standard (AES). NIST, November 2001.

46

http://www.aljazeera.com/news/2017/05/global-hack-attack-infects-57000-computers-170513005030798.html
http://www.aljazeera.com/news/2017/05/global-hack-attack-infects-57000-computers-170513005030798.html
http://www.aljazeera.com/news/2017/05/global-hack-attack-infects-57000-computers-170513005030798.html

[DBZ03] Robert H. Deng, Feng Bao, and Jianying Zhou. Information and Commu-
nications Security: 4th International Conference, ICICS 2002, Singapore,
December 9-12, 2002, Proceedings. Springer, 2003.

[DR08] T. Dierks and E. Rescorla. RFC 5246 - The Transport Layer Security (TLS)
Protocol Version 1.2. Internet Engineering Task Force, IEFT, Network
Working Group, August 2008.

[Eas10] Donald Eastlake 3rd. RFC 4366 - Transport Layer Security (TLS) Exten-
sions: Extension Definitions Draft 12. Internet Engineering Task Force,
IEFT, TLS Working Group, September 2010.

[Eas11] D. Eastlake 3rd. RFC 6066 - Transport Layer Security (TLS) Extensions:
Extension Definitions. Internet Engineering Task Force, IEFT, Network
Working Group, January 2011.

[Guc17] Darren Guccione. What the most common passwords of 2016 list
reveals. Website, March 2017. Online at https://blog.keepersecurity.
com/2017/01/13/most-common-passwords-of-2016-research-study/;
accessed on July 17th 2017.

[Her17] Alex Hern. Cyberattack on uk political party ’only
a matter of time’. Website, May 2017. Online at
https://www.theguardian.com/technology/2017/may/30/
hacking-uk-political-party-matter-time-us-expert-phishing/;
accessed on July 18th 2017.

[Lac16] Javier Lacort. Digital security: 5 alternatives to passwords. Web-
site, March 2016. Online at https://www.bbvaopenmind.com/en/
digital-security-5-alternatives-to-passwords/; accessed on July
18th 2017.

[MKJR16] Ed. K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. RFC 8017 - PKCS
#1: RSA Cryptography Specifications Version 2.2, November 2016.

[Pag12] Pierluigi Paganini. Malware, a cyber threat increas-
ingly difficult to contain. Website, August 2012. Online
at http://securityaffairs.co/wordpress/8202/malware/
malware-a-cyber-threat-increasingly-difficult-to-contain.
html; accessed on July 18th 2017.

[Res17] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3
- draft-ietf-tls-tls13-19. Internet Engineering Task Force, IEFT, Network
Working Group, draft 19 edition, March 2017.

[Ros16] Ben Rossi. Five years in information security what has changed?
Website, May 2016. Online at http://www.information-age.com/

47

https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://www.theguardian.com/technology/2017/may/30/hacking-uk-political-party-matter-time-us-expert-phishing/
https://www.theguardian.com/technology/2017/may/30/hacking-uk-political-party-matter-time-us-expert-phishing/
https://www.bbvaopenmind.com/en/digital-security-5-alternatives-to-passwords/
https://www.bbvaopenmind.com/en/digital-security-5-alternatives-to-passwords/
http://securityaffairs.co/wordpress/8202/malware/malware-a-cyber-threat-increasingly-difficult-to-contain.html
http://securityaffairs.co/wordpress/8202/malware/malware-a-cyber-threat-increasingly-difficult-to-contain.html
http://securityaffairs.co/wordpress/8202/malware/malware-a-cyber-threat-increasingly-difficult-to-contain.html
http://www.information-age.com/five-years-information-security-what-has-changed-123461477/
http://www.information-age.com/five-years-information-security-what-has-changed-123461477/

five-years-information-security-what-has-changed-123461477/;
accessed on July 18th 2017.

[San14] Password protection policy. PDF, June 2014. Online at
https://www.sans.org/security-resources/policies/general/
pdf/password-protection-policy; accessed on July 18th 2017.

[SBTC16] Sampath Srinivas, Dirk Balfanz, Eric Tiffany, and Alexei Czeskis. Universal
2nd Factor (U2F) Overview - FIDO Alliance Implementation Draft 15.
FIDOAlliance, September 2016.

[Ste15] Steam guard. Website, 2015. Online at https://support.steampowered.
com/kb_article.php?ref=4020-ALZM-5519; accessed on July 18th 2017.

[Whe17] Aaron Wherry. Threat of foreign election hacking examined by fed-
eral security agent. Website, May 2017. Online at http://www.cbc.
ca/news/politics/cse-hacking-election-1.4112445; accessed on July
18th 2017.

[Yub16] Client data (u2f core 0.16.0 api). PDF, 2016. Online at https:
//developers.yubico.com/java-u2flib-server/JavaDoc/; accessed on
July 18th 2017.

48

http://www.information-age.com/five-years-information-security-what-has-changed-123461477/
http://www.information-age.com/five-years-information-security-what-has-changed-123461477/
https://www.sans.org/security-resources/policies/general/pdf/password-protection-policy
https://www.sans.org/security-resources/policies/general/pdf/password-protection-policy
https://support.steampowered.com/kb_article.php?ref=4020-ALZM-5519
https://support.steampowered.com/kb_article.php?ref=4020-ALZM-5519
http://www.cbc.ca/news/politics/cse-hacking-election-1.4112445
http://www.cbc.ca/news/politics/cse-hacking-election-1.4112445
https://developers.yubico.com/java-u2flib-server/JavaDoc/
https://developers.yubico.com/java-u2flib-server/JavaDoc/

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den July 29, 2018

49

	Abstract
	Introduction
	Contents of this Thesis
	U2F - Universal Second Factor
	What is U2F?
	The Components of U2F
	Communication Client - Token
	The Registration Process
	The Authentication Process

	TLS - Transport Layer Security
	What is TLS?
	The components of TLS 1.2
	The TLS Handshake
	The TLS Record Protocol
	The TLS Alert Protocol
	End of a TLS connection
	Extensions

	Changes in TLS 1.3
	Handshake in TLS 1.3
	Extensions

	ULS - U2F via TLS
	What do we want?
	U2F Authentication summarised
	U2F Registration summarised
	Quick vs. Clean, the solutions

	ULS without new extensions
	TLS 1.2
	TLS 1.3

	The TLS 1.3 Extension for ULS
	Summary
	Examples
	ULS 1.2 Registration
	ULS 1.2 Authentication
	ULS 1.3 Registration without Extension
	ULS 1.3 Authentication without Extension
	ULS Registration
	ULS Authentication

