
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Model based fuzzing of the WPA3 Dragonfly
handshake
Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Nikolai Philipp Tschacher
geboren am:
geboren in:

Gutachter/innen: Prof. Dr. Jens-Peter Redlich
Prof. Dr. Björn Scheuermann

eingereicht am: verteidigt am:

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 2
1.3 WPA3 . 3
1.4 Fuzzing Methodology . 5

1.4.1 Fuzzing Strategy . 10
1.5 Related Work . 11

2 Cryptographic Fundamentals 14
2.1 Public-key Cryptosystems based on the Discrete Logarithm Problem . 14
2.2 Elliptic Curve Cryptosystems . 20

3 The SAE Handshake 23
3.1 SAE is a PAKE Scheme . 23
3.2 Dragonfly . 24
3.3 Deriving the Password Element . 28
3.4 Commit Exchange . 28
3.5 Confirm Exchange . 30
3.6 Security . 30
3.7 Practical Attacks against SAE . 31

4 Fuzzing Environment 36
4.1 Kernel 802.11 Architecture . 37
4.2 Using Virtualization and Emulation Software 37
4.3 Virtual Wi-Fi radios with mac80211_hwsim 42

4.3.1 WPA3-SAE with mac80211_hwsim 42
4.3.2 Connecting iwd to hostapd using WPA3-SAE 43

4.4 Remote Fuzzing . 44
4.4.1 Synology MR2200ac Router . 44

4.5 Chosen Environment . 46
4.5.1 Dragonfuzz . 46

5 WPA3-SAE Model 48
5.1 Vulnerability Taxonomy . 50
5.2 Fuzzing Policy . 50
5.3 WPA3-SAE Framing . 51

5.3.1 The Auth-Commit Frame . 53
5.3.2 The Auth-Confirm Frame . 57

5.4 Finite State Machine . 58
5.5 Fuzzing Test Cases . 61

6 Results 64
6.1 Dragonfuzz . 64

i

6.1.1 Tested Hardware and Software 65
6.1.2 Coverage-guided Greybox Fuzzing of iwd 66
6.1.3 Coverage-guided Greybox Fuzzing of hostapd 67

6.2 Denial of Service Vulnerability in iwd 69
6.3 Discussion . 72

6.3.1 Practical Obstacles . 72
6.3.2 Disadvantages of Remote Fuzzing 73
6.3.3 Limitations of the Fuzzing Approach 73
6.3.4 Symbolic Execution instead of Fuzzing 74

6.4 Conclusion . 75

ii

Abstract. In this master thesis, a model based fuzzing framework targeting the new
Simultaneous Authentication of Equals handshake (or Dragonfly) will be developed.
This handshake is the central part of the WPA3 certification program, that was
published in early 2018 by the non-profit organization named Wi-Fi Alliance [All19a].

This new handshake remedies two security limitations of the existing WPA/WPA2 4-way
handshake: Offline dictionary attacks following an active deauthentication attack are
ineffective, because Dragonfly allows only a single guess at the password by interacting
with the involved handshake participants. Furthermore, since Dragonfly establishes
each session a unique ephemeral Pairwise Master Key (PMK), perfect forward secrecy
will be guaranteed. In addition, protected management frames will be mandatory for
new devices in order to obtain WPA3 certified status by the Wi-Fi Alliance. This
makes offline dictionary attacks in general infeasible.

The Dragonfly exchange does not obsolete the 4-way handshake, it merely replaces
the WPA2 open system authentication in the authentication request phase with
four additional frames called the SAE-Commit and SAE-Confirm message. If the
confirmation token is valid, the association phase and 4-way handshake continues with
the derived high entropy PMK.

A primary goal of the thesis will be a model of the finite state machine of the SAE
handshake and a set of fuzzing heuristics. These are used to generate test cases designed
to uncover logical vulnerabilities within SAE handshake states. Those heuristics (or
rules) will tamper with the sequence of frames, the content of the frames and format
of frames. Another goal of the thesis will be a software implementation of the model
based test suite that will target soon to be expected WPA3 hardware.

Despite introducing additional security capabilities, a new version of a handshake often
introduces complexity and grounds for fresh security vulnerabilities. Additionally, new
hardware must coexist with old hardware during a transition period (which is often
long, as history has shown in the 802.11 industry). Those facts motivate a modern
model based fuzzing approach on emerging WPA3 devices and software.

Recent research has shown in the FREAK TLS/SSL downgrade vulnerability [Beu+15]
that a combination of state machine composition bugs and weak cipher suites such as
RSA_EXPORT lead to a new class of vulnerabilities. Similar methodological approaches
were successful in 802.11 networks, when Vonhoef et al. demonstrated key re-installation
attacks on the WPA2 4-way handshake [VP17]. Because WPA3-SAE predates the
discovery of the key re-installation attacks and relies on the same EAPOL 4-way
handshake, it cannot be excluded that future WPA3 devices are subject to the same
attack model [wla19].

SAE authentication is fully implemented in hostapd and wpa_supplicant since version
2.7. While these implementations will be primarily tested for deviant traces and logical
state flaws, a secondary focus will be cast on unsafe programming practices which
may lead to memory corruption issues such as stack overflows, heap overflows, integer
overflows, format string vulnerabilities, NULL pointer dereferences and so on.

iii

The model based fuzzer should be protocol aware, which means that it must be able to
execute tests as a function of the state of network participants within a 802.11 network.
In practice, this means that the fuzzer should be able to automatically cover the most
important state-combinations of the new SAE/Dragonfly protocol.

iv

1 Introduction

Wi-Fi Protected Access (WPA) is a set of security protocols and certifications
proposed by the Wi-Fi Alliance to secure IEEE 802.11 networks. WPA (2003) and
WPA2 (2004) were created in order to obsolete the insecure Wired Equivalent
Privacy (WEP) standard.

In 2018, the third revision of WPA was released to the public. The core ingredient
of WPA3 is an key-exchange handshake plugged in front of the old 4-way handshake.
This additional handshake, which was originally standardized in 2011 [Hie+10], adds
two security properties to Wi-Fi’s WPA:

1. Forward secrecy. Attackers cannot decrypt traffic with old keys, because the
negotiated keys are updated in every new instance of the handshake.

2. Offline dictionary attack resistance. Attackers can merely launch online
attacks against the handshake. Put differently, the number of guesses from a
brute force attack grows linearly with the number of authentication attempts,
which can easily be regulated by the authenticator.

The security of this Simultaneous Authentication of Equals (SAE) handshake, an
instance of the Dragonfly family, will be the focus of this master thesis. In particular,
the main objective is the development of a model based fuzzing framework targeting
WPA3 capable hardware and software.

1.1 Motivation

As soon as a new security standard is announced to the public, scientists and vulnera-
bility researchers often anticipate an initial decrease in overall security. The reason
is the introduction of untested software building blocks that frequently lead to new
programming mistakes. This initial decrease in security is assumed to be not different
in upcoming hardware and software with WPA3-SAE support.

Even though there is limited amount of hardware that speaks WPA3-SAE as of July
2019 [AVM19], it is still possible to test already existing software implementations of
WPA3-SAE in widely used open source projects such as hostapd, wpa_supplicant
and iwd.

It is straightforward to create a software access point with WPA3-SAE support and a
connecting supplicant that initiates the handshake. This makes it possible to develop
and test Wi-Fi fuzzers under laboratory conditions and later employ them in proprietary
hardware environments that support WPA3-SAE out of the box.

The Wi-Fi industry is assumed to introduce support for WPA3-SAE in hardware on
a large scale starting from 2019, because manufactures are pushed to adopt the new
WPA3-SAE certification for marketing reasons and to avoid negative valence. It is of

1

secondary nature that the old WPA2 certification is still considered to be secure from
a technical standpoint, as long as high-entropy passwords are used. Those reasons
motivate the development of a fuzzing framework that is capable of targeting the soon
to be expected WPA-SAE hardware over the radio.

Put differently, the main motivation to subject the WPA3-SAE handshake to a fuzzing
based security audit is the novelty of the protocol and the very likely widespread
hardware adoption in the near future.

1.2 Objectives

The contribution of this master thesis is twofold. One objective is to follow a systematic,
reproducible process of deriving a set of fuzzing test cases that target the WPA3-SAE
handshake. This process can be abstracted and applied to other Wi-Fi protocol
additions such as the Fast Initial Link Setup (FILS) handshake. The other objective
is a practical contribution in the form of a fuzzing framework that targets existing
WPA3-SAE software and hardware.

The security of WPA3-SAE implementations can be tested by in-process fuzzing and
remote fuzzing. While in-process fuzzing focuses on a single target of evaluation
and has a constant implementation overhead, it is the most effective strategy to fuzz
large open source WPA3-SAE software projects such as hostap or iwd.

WPA3 capable routers and modems emerging on the hardware market require a black-
box remote fuzzing strategy, because it cannot be guaranteed that information
about system internals can be obtained. For example, the only practical connection
to a Internet of things device might be via Wi-Fi radio. For those devices, blackbox
fuzzing over the radio is the only economically viable approach. It is simply not feasible
to submit a myriad of WPA3 devices to a whitebox security audit.

This motivates the dualistic fuzzing strategy employed throughout this thesis.
Additionally, at the time of writing (July 2019), there were simply not enough WPA3
capable devices on the hardware market to justify a solely remote blackbox fuzzing
based approach.

This master thesis should provide room for manual security research efforts. Put
differently, if a vulnerability is discovered during practical efforts of implementing the
fuzzing framework, it should be included in the results section of this thesis.

The remainder of this thesis is structured into the following chapters:

Various theoretical fuzzing approaches are introduced in the second part of this intro-
duction. Then, the related academic work is quickly outlined. In the next chapter,
cryptographic fundamentals such as the Discrete Logarithm Problem and Elliptic Curve
Cryptography are theoretically introduced.

2

In the third chapter, the WPA3-SAE handshake is thoroughly treated. The focus
lies on the logic behind the two messages in the handshake as well as cryptographic
aspects of the handshake. The chapter concludes with a quick summary of security
issues extracted from recent research.

In the fourth chapter, practical aspects of the fuzzing environment are presented.
The chapter’s main purpose is to give hands-on instructions on how to replicate the
laboratory setup that was used to obtain the results of this thesis.

The WPA3-SAE model is thoroughly examined in the fifth chapter. The message
framing of the SAE handshake is investigated in detail. The chapter concludes by
presenting a model of the SAE handshake and a table of the derived fuzzing test cases.

The last chapter presents the results obtained from the dualistic fuzzing strategy used
throughout this thesis. In the second part of the last chapter, a discussion is held
about the various problematic aspects of a fuzzing campaign conducted in previously
unchartered WPA3 territory.

1.3 WPA3

The key idea behind the development of WPA3 was to improve the security of the
WPA2-PSK handshake. However, the WPA3 development process was shielded from the
public, such that independent researchers could not peer-review the newly introduced
features [VR19]. Vanhoef et al. criticize that the security guarantees of the handshake
are unclear, because a close variant of the Dragonfly handshake received bad reviews
during the standardization [VR19].

WPA3 is a certification, which means that no new protocols are defined. WPA3 merely
mandates which existing protocols devices must support. WPA3 allows a transition
mode, where both WPA2 and WPA3 are simultaneously supported in order to guarantee
backwards compatibility [VR19]. Furthermore, WPA3 was designed for two distinct
types of networks: Normal home networks, where users authenticate with a pre-shared
password and enterprise networks with more advanced authentication methods such as
smart cards or certificates.

This thesis follows the notation of Vanhoef et al. and uses the term WPA3-SAE in
order to refer to home networks (WPA3-Personal). WPA3-SAE mandates support
for the Simultaneous Authentication of Equals handshake, which is a Password
Authentication Key Exchange (PAKE), meaning that authentication is performed
based on a password which is shared among all handshake participants [VR19].

The output of WPA3-SAE authentication is a high-entropy Pairwise Master Key
(PMK), which subsequently is used as input for the 4-way handshake to derive a
Pairwise Transient Key (PTK). Therefore, WPA3 always involves two handshakes:
The password authentication SAE handshake followed by the well established 4-way

3

handshake. By using the high entropy PMK, the 4-way handshake is not vulnerable
against dictionary attacks [VR19].

WPA3-SAE additionally enforces Management Frame Protection (MFP), which
is standardized in the IEEE 802.11w amendment. While WPA3 is still technically
vulnerable against an offline dictionary attack, the brute force of a cryptographically
random 32-byte PMK is practically not feasible. Furthermore, even if the PSK is
disclosed, WPA3-SAE guarantees that it is impossible to derive the PMK and thus
neutralize the encryption provided by the 4-way handshake. This security guarantee is
also known as forward secrecy. [VR19]

Existing 802.11 hardware may not receive support for SAE or MFP and thus cannot
obtain WPA3 certification. In order to still support those devices, the WPA3 certifica-
tion defined a solution where a network simultaneously supports WPA2 and WPA3.
In this transition mode, older WPA2 stations can connect using the 4-way handshake
without MFP and newer stations connect using the SAE handshake with MFP [VR19].

The Dragonfly handshake was first introduced by Daniel Harkins in 2008 and was added
to the 802.11 standard in 2011 [Har08]. Harkins published his reference implementation
of WPA3-SAE on sourceforge [Har19c]. Vanhoef et al. note that the term Dragonfly
refers to a complete family of PAKE handshakes, whereas SAE refers to the concrete
handshake exclusively used in WPA3 and standardized in IEEE 802.11 Std 2016 [IEE16].

The SAE handshake supports Finite Field Cryptography (FFC) using multiplicative
groups modulo a prime p as well as Elliptic Curve Cryptography (ECC) using elliptic
curve groups modulo a prime p. The 802.11 standard enforces the support of elliptic
curve NIST P-256, when SAE support is advertised [VR19]. However, support for
multiplicative groups is not obligatory, as a consequence most implementations only
implement elliptic curves [VR19].

At the beginning of the WPA3-SAE handshake, the user’s password is encoded into a
group element. In the case of ECC, the password is transformed with a hash-to-curve
algorithm into a so-called password element. The handshake includes the exchange of
two messages: A commit frame and a confirm frame. The handshake can be initiated
by both participants simultaneously. In infrastructure mode, the supplicant will initiate
the handshake by sending its commit frame. Then the supplicant waits for the commit
and confirm frame of the authenticator. Finally, the client will send its confirm frame,
thus completing the handshake.

In the commit phase, each client picks two random numbers and computes a public
group element based on this number. This group element and the sum of the two
random numbers are exchanged between the participants. In the confirm phase, each
participant computes the shared secret and takes the x-coordinate of the resulting
point. In a final step, a HMAC is calculated over all relevant handshake parameters.
The result of this hash is exchanged between the participants. Upon reception of this
confirm token, the recipient verifies its value, which must be possible because each

4

party knows all relevant parameters. If the confirm frame is not verified, the handshake
eventually times out. [VR19]

The WPA3-SAE handshake uses a try-and-increment method to derive a valid curve
point from the pre-shared password, MAC address of all participants and counter. The
hash of those inputs is used as a x-coordinate and it is tested if there is a solution for
y over the elliptic curve equation (An introduction into elliptic curve cryptography is
given in section 2.2)

y2 = x3 + ax+ b mod p

If a solution exists, the point (x, y) becomes the password element, if not, the counter
is increased and another attempt is made. If the algorithm stops the iteration after
a valid point was discovered, attackers could remotely measure the runtime of the
handshake and conclude which program path was taken based on different response
times. To prevent such side-channel attacks, a static number of iterations is used in
the password element derivation algorithm (k = 40).

Recent research by Vanhoef et al. has shown that timing side-channel attacks were
very successful against the SAE handshake. Vanhoef et al. note that the exclusion of
the MAC address from the hash-to-curve algorithm would have enabled to generate
the curve point in offline fashion, such that the password element can be reused among
connection attempts. Without this costly derivation of the password element at the
beginning of each handshake, there would be diminished attack surface for DoS attacks
without losing any provided security guarantees. Furthermore, the MAC addresses are
not necessary for entropy reasons and thus redundant, because random numbers are
used in the hash-to-curve algorithm. [VR19]

1.4 Fuzzing Methodology

In the following section, various fuzzing methods and strategies are introduced. The
section concludes with a selection of fuzzing methods used throughout this thesis.

Software testing is a well known and often employed strategy in software engineering to
develop robust programs. There exist different classes of testing: Unit tests, where the
fundamental components of the software such as functions and classes are undergoing
testing scenarios. Integration tests examine the functionality of a collection of units
in their interaction. Integration tests usually build on top of unit tests and make
a statement about the correctness of the tested units in interaction. Functional
tests take the advertised functionality of the software as a template and confirm its
correctness. Functional tests verify the requirements of the end user and unit tests
check the correctness of low level software units such as functions and classes. [AO16]

Fuzzing however is a testing strategy whose intention is to uncover security vulnera-
bilities in the software under test. It is the process of "repeatedly running a program

5

with generated inputs that may be syntactically or semantically malformed" [Man+18].
A possible definition of fuzzing as Valentin at al. understands it is "the execution of
the program under test using inputs sampled from an input space that protrudes the
expected input space of the program under test" [Man+18]. It follows that a fuzzer is a
program that performs fuzzing in software under test [Man+18].

One of the first mentions of fuzzing (fuzz) in academia was a university class taught
by Barton Miller in 1988 after discovering that UNIX programs frequently crashed
when they were fed random, unexpected inputs [MFS90]. The lab assignment was to
"create random inputs, and see if they break things" [MFS90]. Their efforts revealed
that one third of all UNIX utilities had issues dealing with random, unexpected inputs.
[Zel+19a].

Fuzzing is an automated process intended to uncover programming mistakes in programs
written in memory unsafe languages such as C or C++. Examples for programming
mistakes are memory leaks, segmentation faults, stack and heap overflows, off-by-one
errors, integer overflows, format string vulnerabilities and so on. While many memory
safe programming languages have been proposed such as Rust, Go or Haskell, most
software in widespread use is still developed in C and C++. Examples for large software
projects written in C and C++ are the chromium browser, the Linux kernel, many
daemons and servers used in the Internet such as apache2, nginx or bind9. Translating
this huge codebase to memory safe languages is an unfeasible task in the foreseeable
future. For this reason, intelligent fuzzing is one of the most lucrative strategies to
uncover security vulnerabilities in an automated manner.

The intuitive strategy in fuzzing is to create inputs that are structured enough to reach
a large code coverage of the program under test, while simultaneously being deviant
enough from a valid message to trigger crashes.

Modern Fuzzing The taxonomy of most modern fuzzing engines is composed of three
groups: Blackbox fuzzing, coverage-guided greybox-fuzzing and symbolic execution-
based whitebox fuzzing.

In blackbox fuzzing, the logic and internal behavior of the fuzzed program is largely
unknown. A blackbox fuzzer merely observes the input/output behavior of the program
under test, thus treating the targeted software as blackbox [Man+18]. An example
for black-box fuzzing test is the generation of a large corpus of fuzzed jpeg files and
uploading them to an arbitrary web jpeg compression service and observing if the
service crashes in an unexpected way, typically revealed by 500 internal server error
responses [BPR17]. Most traditional fuzzers have been blackbox fuzzers [Man+18].

Coverage-guided greybox-fuzzing (CGF) uses lightweight binary program in-
strumentation to trace the code coverage reached by fuzzed input mutations [Clu19].
Greybox fuzzers typically obtain limited information about the internals and semantics
of the program under test, such as performing lightweight static analysis or collect-

6

ing dynamic information about code coverage by instrumenting the code at compile
time[Man+18].

In order to instrument programs, greybox fuzzing engines inject few code instructions
right after every conditional jump. Those code instructions are called trampolines and
their purpose is to assign a unique identifier to the current branch and increment a
coarse counter belonging to the branch. The counter is implemented as probabilistic
data structure such as a count-min sketch or Bloom filter. This instrumentation enables
the fuzzer to keep track of what branches are how often executed. The instrumentation
is applied at compile-time to the program under evaluation. [Zel+19b]

When the greybox fuzzing engine learns that a specifically mutated seed input explored
previously unknown code paths, it adds the modified seed to an growing seed corpus
[Zel+19b]. In other words, greybox fuzzers leverage coverage feedback information to
find new inputs that reach deeper into the program [Zel+19b]. CGF does not require
manual program analysis, thus being more scalable and parallelizable compared to other
whitebox fuzzing strategies [BPR17]. Put differently, CGF fuzzing engines combine
various powerful concepts to yield efficient fuzzing campaigns. Table 1 explains those
powerful characteristics of greybox fuzzing in-depth.

Keyword Concept Description

Code coverage Code coverage is the strategy of keeping track which
statements/code blocks or branches of the program under
test have been executed by the fuzzing engine. [Zel+19b]

Mutations CGF fuzzing engines fuzz programs using a corpus of
valid input data that the program under test accepts.
The engine mutates random bytes in the input corpus
and retains the mutations leading to an increased code
coverage. The engine is said to be guided by increasing
code coverage. Examples for mutations is the randomized
swapping of bytes, deletion and insertion of a random
byte and so on. [Zel+19b]

Greybox Greybox refers to the hybrid strategy of combining black-
box and whitebox fuzzing techniques. The whitebox part
encompasses the collection of code coverage information
of the program under test. The mutated inputs that
achieve the greatest code coverage are added to the seed
corpus. CGF fuzzing engines have also aspects of blackbox
fuzzing, because it is highly unlikely that every statement
and internal state is tested, as it is the case with concolic
execution and symbolic execution in whitebox fuzzing.
[Zel+19b]

7

Keyword Concept Description

Power Schedules A well known limitation in coverage-guided greybox
fuzzers is the exercise of certain paths with high frequency
which limits overall path discovery. Power schedules dis-
tribute fuzzing time among the seeds in the fuzzing popu-
lation [Zel+19b]. The goal is to maximize the time spent
fuzzing seeds that lead to increased coverage in shorter
time. The likelihood with which a seed is chosen from
the population is the seeds energy. The fuzzers power
schedule determines the seeds energy. A common cho-
sen strategy is to use a exponential power schedule, that
assigns the seeds energy E(s) as

E(s) = 1
F (s, p)a

where F is the number of times the path p was exercised
with inputs generated from s. a is a parameterized expo-
nent. Under a exponential power schedule, most energy
is assigned to the seed that exercises the lowest-frequency
path. [Zel+19b]
AFLFast for example assigns low energy to seeds that
exercise high-frequency paths, whereas seeds that exercise
low-frequency paths are assigned high energy. Power
schedules are therefore an instrument that prioritizes seeds
in order of their likely progressiveness in terms of code
coverage, allowing to search the best seeds early on. This
improves the efficiency of the fuzzing engine, not it’s
effectiveness. [BPR17]

Directed Directed greybox fuzzing is the idea of directing the
fuzzing engine towards an assumed problematic code
block, thus cutting off uninteresting branches. The di-
rectedness of the fuzzing engine is achieved by gradually
assigning more energy to fuzzing seeds that are closer
to the code block of interest. Despite directedness being
usually a characteristic of symbolic whitebox fuzzers such
as KLEE [CDE+08], Boehme et al. showed that grey-
box fuzzing engines can outperform symbolic execution
engines. [Böh+17]

Sanitizers The program under test is instrumented with various low
level sanitizers that detect programming errors. Sanitizers
are applied during compilation and linking of the program.
For example, libFuzzer may be compiled with Address-
Sanitizer and MemorySanitizer as part of the LLVM com-
piler toolchain.

Table 1: Key concepts of coverage guided greybox fuzzing as implemented in AFL or
libFuzzer.

Symbolic execution-based whitebox fuzzing is the process of symbolically exe-

8

cuting a program under test to automatically generate test inputs [CDE+08]. The
symbolic input is initially allowed to be anything. Program variables are replaced
by symbolic values and concrete program operations are substituted with ones which
modify symbolic values [CDE+08]. Whenever a program branches based on a condition,
the symbolic execution engine follows both branches and creates a path constraint
named path condition. The path condition is the manifestation of the symbolic values
that lead to a certain point in the program. If the symbolic execution encounters a bug,
a test case is automatically generated using a SMT solver by solving the path condition
and obtaining concrete values that trigger the bug. Symbolic execution engines work
under the assumption that the code in question is deterministic. [CDE+08]

In general, white box fuzzing generate test cases by analyzing the internal state of
the program under test, which makes the overhead of whitebox fuzzing much higher
compared to blackbox fuzzing [Man+18].

There exist many different open source fuzzing engines for the different fuzzing strategies
introduced above. Examples for modern coverage-guided greybox fuzzing engines are
AFL (american fuzzy lop)1 and libFuzzer (part of the LLVM toolchain)2. AFL
and libFuzzer use genetic algorithms to mutate inputs in order to increase code
coverage. The LLVM toolchain with the C compiler clang is used to compile the fuzzing
target and to add a wide range of sanitizers such as AddressSanitizer, LeakSanitizer,
MemorySanitizer or UndefinedBehaviorSanitizer for detection of different classes of
programming mistakes [Clu19]3.

AddressSanitizer is responsible for detecting various memory errors such as use after
free (dangling pointer) bugs, heap/stack/global buffer overflows. MemorySanitizer
detects the reading of uninitialized memory in C/C++ software, before the memory
was written. UndefinedBehaviorSanitizer4 detects a wide range of undefined behavior in
the C/C++ programming language family such as performing pointer arithmetic that
overflows, signed integer overflows, where the result of a signed integer computation
cannot be represented in its type and even unsigned integer overflows, which often
occur unintentionally as the DoS vulnerability in section 6.2 demonstrates.

LLVM also provides the functionality for coverage instrumentation that grey-box fuzzers
require [Clu19]. This in-process fuzzing strategy can be combined with a initial input
corpus which increases the likelihood that a large code coverage is reached quickly.

An example for a symbolic execution built on top of the LLVM compiler toolchain is
KLEE5, initially developed by Stanford scientist and published in a widely regarded
paper about the symbolic execution of GNU coreutils [CDE+08].

1AFL, accessed on 4th August 2019, http://lcamtuf.coredump.cx/afl/
2libFuzzer, accessed on 4th August 2019, http://llvm.org/docs/LibFuzzer.html
3Sanitizers, accessed on 7th August 2019, https://github.com/google/sanitizers
4UndefinedBehaviorSanitizer, accessed on 7th August 2019, https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html
5KLEE, accessed on 4th August 2019, http://klee.github.io/

9

The company Google continuously fuzzes large open source software projects with
its cloud based fuzzing infrastructure (mainly with the fuzzing engine libFuzzer)
OSS-Fuzz [OSS19]. Google provides monetary incentives for software maintainers to
integrate their libraries into the cloud fuzzing architecture. Over 11 thousand bugs
have been found as of August 2018 [Clu19].

For example, fuzzing a proprietary 802.11 router over the air is considered black-box
fuzzing, whereas the compilation of a image parsing C library with the LLVM toolchain
including libFuzzer and AddressSanitizer is grey-box fuzzing.

1.4.1 Fuzzing Strategy

The title of this thesis advertises a model based fuzzing approach. Model based
fuzzing as this thesis understands it, is protocol and state aware fuzzing. It is an
improvement over dumb blackbox fuzzing techniques, where the system of interest is
fed randomly generated input mutations without being aware of the internal state of
the target.

A traditional black-box fuzzing approach has many downsides. For example, when
the fuzzer creates an Auth-Commit frame in the WPA3-SAE handshake and choses a
randomly fuzzed value for the public group element, the probability of selecting a valid
group element is extremely low. Therefore, the if statement that confirms the validity
of the element prevents the frame from reaching a potentially vulnerable section.

There are two fundamentally different fuzzing strategies employed during this thesis.
Remote fuzzing and in-process (in-memory) fuzzing. Remote fuzzing refers to
the process of manufacturing fuzzed frames, sending them over the air to the targeted
802.11 station and observing potential effects.

In-process fuzzing on the other side targets a suitable single function in the program un-
der test, compiling it using a coverage guided greybox fuzzing engine such as libFuzzer,
creating a corpus and then running the fuzzer with the corpus as input.

During this thesis, both fuzzing strategies will be used. An advantage of in-process
fuzzing is the speed and availability of mature open source toolchains (such as AFL and
libFuzzer). An disadvantage is that only a selected function is targeted. Additionally,
in complex Wi-Fi software, it is often not easy to identify a fuzzable function that
handles a broad range of tainted data. Put differently, greybox fuzzing comes with the
practical problem of finding a single function that accepts remotely controllable data.
The setup of such a fuzzing driver requires constant work overhead for each fuzzed
function interface. The implementation of such fuzzing drivers is complex, because the
internal state of the software needs to be replicated. Due to such practical difficulties,
the Google launched OSS-Fuzz project rewards large open source projects up to $20,000
for ideal integration into the distributed cloud fuzzing architecture [Cha+19].

An advantage of remote fuzzing is the fact that the complex interplay of 802.11 software

10

as a whole is not lost. Often, security vulnerabilities manifest exactly in this interplay
of different layers of abstraction. Once a remote fuzzer is functional, applying it to
new proprietary supplicants does not produce additional work.

1.5 Related Work

In order to uncover security vulnerabilities in upcoming devices with WPA3-SAE
capabilities, it is crucial to understand the most recent research about 802.11 security
and previous fuzzing attempts.

A large part of the motivation to use a model based approach in this thesis was Vanhoef’s
Paper Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based
Testing [VSP17] and Beurdouche et al. paper A Messy State of the Union: Taming
the Composite State Machines of TLS [Beu+15]. Their research about vulnerabilities
in the WPA 4-way handshake and TLS handshake inspired the model based fuzzing
approach of the SAE handshake in this thesis.

A main effort of this thesis will be the understanding of previous work of 802.11 fuzzing
attempts. Major contributions have been made by Keil/Kolbitsch [KK07], Butti [BT08],
Mendonça [MN08]. Especially Butti with his open source model based fuzzer wifuzzit6

was very successful in uncovering many low level programming security vulnerabilities
and served as inspiration for the creation of dragonfuzz.py contributed by this thesis.

There was an explosion in research regarding Wi-Fi fuzzers in the years from 2006 to
2008. After that, not many researches followed a solely fuzzed based approach. An
exception is Vanhoef (2017) who used symbolic execution to fuzz the 4-way handshake
[VP18b]. Another fuzzing based security research was used by Chen et al. in their
work on fuzzing IoT devices with the corresponding IoT app as a fuzzing entry point
[Che+18]. A big advantage of using the official app as an fuzzing entry point is the
saved time that would otherwise go in reverse engineering the protocol or firmware.

However, most security research in the 802.11 field focused on more manual research
techniques, such as the key reinstallation attack that exploits implementation flaws in
cryptographic key handling during the 4-way handshake [VP17] and a follow up paper
that shows the existence of similar attacks in the Fast Initial Link Setup (FILS) and
Tunneled directlink setup PeerKey (TPK) handshakes [VP18a].

Interestingly enough, the research that lead to the heavily publicized key reinstallation
vulnerability was inspired by general work on paper that researches logical vulnerabilities
in the 4-way handshake [VSP17].

Vanhoef et al. follow a model based technique that generates a set of representative test
cases which cover all states of the 802.11 handshake. The test cases cover various edge
cases in each state [VSP17]. If the test case triggered an anomaly is verified manually.

6wifuzzit, accessed on 4th August 2019, https://github.com/0xd012/wifuzzit

11

The work from Vanhoef et al. is inspired by [DP15]. Beurdouche et al. constructed a
simplified model of the TLS handshake. Based on this model, they constructed so-called
deviant traces. Traces are sequences of messages that should not be accepted by a
secure implementation of TLS [VSP17]. This technique is commonly called protocol
state fuzzing and was used to find logical vulnerabilities in TLS [Adr+15] [Beu+15]
[DP15]

Vanhoef et al. apply test generation rules from a model of the 802.11 handshake to
generate a set of test cases. "A test case is essentially a sequence of messages to be
transmitted to the authenticator, the expected replies, and a method to determine whether
this exchange resulted in a successful connection or not." [VSP17]. Vanhoef states
that the step of defining appropriate set of test generation rules is the crucial point of
their analysis. Their test generation rules are more or less similar to protocol aware
fuzzing, with the exception that the overall space of sets is much smaller compared
to traditional fuzzing and that no random numbers are used which makes test cases
deterministic. [VSP17]

This transition in research indicates a general development in the security field. As
long as no thorough black box fuzzing was applied to the software in question, it is
relatively easy to find low hanging programming mistakes. On the other hand, creating
a model aware 802.11 fuzzer that ventures deep into code paths without indefinite
resources is nearly impossible.

As the research indicates, there are several hard to overcome limitations in black-box
fuzzing:

1. As soon as protocols become stateful and more complex through authentication
and assocation, it is very hard to draw conclusions when and where something
went wrong.

2. It is hard to setup a hardware environment for fuzzing. This struggle may be
somewhat mediated with virtual machines / simulation software.

3. It is practically impossible to trigger logical programming mistakes with dull
blackbox fuzzing techniques.

4. It is hard to assemble a diverse enough collection of devices with many different
chipsets and 802.11 firmware to obtain an large testing corpus.

A recent paper from Vanhoef and Ronen published in April 2019 stands out among
other papers, because it directly relates to the topic of this thesis: Dragonblood: A
Security Analysis of WPA3’s SAE Handshake [VR19]. The most profound contributions
from their work will be covered here and the parts that advance this thesis will be
highlighted.

Vanhoef et al. state in their research that the SAE handshake is affected by several
different design flaws, such as a password partitioning attack that makes use of timing
and cache-based side-channel leaks. Those cache-based side-channel attacks ex-

12

ploit the hash-to-curve algorithm of SAE (referred to as hunting an pecking technique
in the Dragonfly RFC [Har15]). Vanhoef et al. state that brute forcing all 8-character
lowercase passwords takes less than 125$ of Amazon computing resources. Therefore,
the attack circumvents exactly the purpose of Dragonfly: The intractability to launch
an offline dictionary attack.

One novelty of WPA3 is a transition mode, where WPA2 and WPA3 are simultaneously
supported for backward compatibility [VR19]. Vanhoef et al. demonstrate the following
issues in WPA3:

1. The anti-clogging mechanism of WPA3-SAE is not able to prevent denial-of-
service attacks. The authors show a way to overload the CPU of a professional
access point.

2. When operating in transition mode, a dictionary attack against WPA3 is possible
by downgrading clients to WPA2. Even though the 4-way handshake detects the
downgrade and aborts, the frames exchanged during the aborted 4-way handshake
are sufficient to launch on offline dictionary attack.

3. They also present a novel micro-architectural cache-based side channel attack
against the SAE handshake that leaks information about the password used, even
though the hash-to-curve algorithm already included countermeasures against
such attacks.

4. They furthermore demonstrate how the recovered timing and cache info is used
to perform an offline password partitioning attack.

[VR19]

13

2 Cryptographic Fundamentals

The introduction to relevant cryptographic primitives used in WPA3 will be discussed
in this chapter. This cryptographic intro is primarily based on the book Understanding
Cryptography: A Textbook for Students and Practitioners [PP09] and Introduction to
modern cryptography [LK14]. In order to create a powerful WPA3 fuzzing framework,
the required cryptographic primitives must be correctly implemented and theoretically
introduced.

The cryptographic primitives used in the WPA3 SAE handshake are mainly based
on Finite Field Cryptography (FFC) using multiplicative groups modulo a prime and
Elliptic Curve Cryptography (ECC) using elliptic curve groups modulo a prime [Har15].
Both primitives are based on the discrete logarithm problem, on top of which the public
key cryptosystems are constructed. 802.11 stations that advertise support for SAE
must implement the elliptic curve NIST P-256, whereas support for other groups is
optional. Put differently, this means that there is no mandated support for MODP
groups [VR19]. Therefore, most SAE implementations support only elliptic curves
[VR19].

The WPA3 SAE handshake is a balanced Password Authentication Key Exchange
(PAKE) protocol. PAKE protocols provide strong security using weak passwords. This
property is obtained by allowing guesses at the password only during direct interaction.
Typically, the input for a PAKE protocol is a pre-shared secret and the output is a
Pairwise Master Key (PMK). [HR10]

2.1 Public-key Cryptosystems based on the Discrete Logarithm Problem

A well known public-key scheme is RSA, which is based on the hardness of factoring
large integers. The factorization of large integers is the one-way function on top of
which RSA is constructed. A function is said to be one-way, if it is computationally
easy to compute f(x) = y but hard to find the inverse f−1(y) = x.

SAE builds on top of another widely used one-way function that can be used to
build asymmetric crypto schemes: The discrete logarithm problem (DLP). Many
cryptographic schemes rely on the computational intractability of solving discrete
logarithms. The Diffie-Hellman key exchange is probably the first protocol that comes
to mind when the DLP is introduced. Another protocol that uses the DLP internally is
the Digital Signature Algorithm (DSA), a signature algorithm that is widely deployed
in Public Key Infrastructure. [PP09]

In the following sections, the Diffie-Hellman protocol is presented as well as the algebraic
structures behind the DLP: Cyclic multiplicative groups. Then, the most common
ideas behind popular attacks on the DLP are introduced. The motivation for this
cryptographic introduction is the fact that the SAE handshake is more or less a modified

14

Diffie-Hellman key exchange. Having a solid understanding of the primitives will help
finding potential security issues in WPA3.

Diffie-Hellman Key Exchange The Diffie-Hellman Key Exchange (DHKE) was pro-
posed by Whitfield Diffie and Martin Hellman in 1976 and was the first published
asymmetric crypto scheme [PP09]. The Diffie-Hellman Key Exchange solves the well
known problem of sharing a secret key between two parties by communicating over
an insecure channel. The DHKE is widely used in many important cryptographic
protocols such as SSH, TLS and IPSec [PP09].

The fundamental idea behind the DHKE is that exponentiation in Z∗p with p prime is
a commutative one-way function [PP09].

k = (αx)y ≡ (αy)x mod p

When the key k is computed according to the equation above, k can be used as a
session key between the two handshake participants.

The DHKE consists of two protocols, the set-up protocol and the main protocol. The
task of the set-up protocol is to choose domain parameters. Each party chooses a large
prime p, an integer α ∈ {2, 3, ..., p− 2} and proceeds to publish p and α.

As soon as both parties (referred to as Alice and Bob, as it is convention in cryptography)
have established their domain parameters, they can generate a joint secret key k with
the following key-exchange protocol:

Alice chooses a private key a and computes a public key A as follows:

a ∈ {2, ..., p− 2}
A ≡ αa mod p

Bob generates his private key b and public key B in a similar fashion. Then Alice sends
her private key A to Bob and Bob conversely sends his public key B to Alice. In a
final step, both parties derive the shared secret k. To do so, Alice computes

k ≡ Ba mod p

and Bob computes

k ≡ Ab mod p

Therefore, by generating four values in total, from which two are kept secret, the two
parties are capable of agreeing on a session key k that is impossible to derive by merely
intercepting the public keys A and B. Why is it the case that both parties compute
the identical key k?

The proof that both parties compute the same session key k can be seen easily, when

15

basic algebraic rules are applied. Alice computes

Ba ≡ (αb)a ≡ αab mod p

and Bob computes

Ab ≡ (αa)b ≡ αab mod p

which is equivalent.

Therefore, both parties share the same key. The shared key can be used to establish a
secure communication between Alice and Bob with a symmetric encryption scheme
such as AES. [PP09]

p must be a prime with at least 1024 bit size and is generated with a probabilistic
prime-finding algorithm. The integer α is a primitive element (generator) in the cyclic
group. The private keys a and b should originate from a cryptographically strong
random number generator, such that no attacker can guess them. The public keys
are computed using the square-and-multiply algorithm and are usually precomputed.
[PP09]

Abstract Algebraic Fundamentals In this section, the algebraic basics that are nec-
essary to understand the discrete logarithm problem are introduced. This sections
contents are strongly influenced by [PP09].

A group is a set of elements G with an operation ◦ that combines two elements of G.
Groups have the following properties:

1. The group operation ◦ is closed. The result of a ◦ operation is again in G.

2. ◦ is associative. That means that a ◦ (b ◦ c) = (a ◦ b) ◦ c

3. There is an neutral/identity element 1 ∈ G such that ∀a ∈ G, a ◦ 1 = 1 ◦ a

4. ∀a ∈ G there is an inverse element a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = 1

5. The group is called abelian or commutative if additionally ∀a, b ∈ G, a ◦ b = b ◦ a

[PP09]

For example, (Z,+) is a group. This can be confirmed by checking each of the above
group properties.

For cryptographic purposes, groups with a finite number of elements are required. The
group Z∗n is considered, which consists of integers 0, 1, n − 1 for which gcd(i, n) = 1.
The cardinality of Z∗n is |Z∗n| = n, therefore the group is finite. Z∗n forms an abelian
group under multiplication modulo n. The identity element is 1.

In relation to the DLP, so called cyclic groups are of interest. A cyclic group G is said
to be cyclic if it contains an element α with maximum order ord(α) = |G|. The order

16

ord(a) of an element a of a group (G, ◦) is the smallest positive integer k such that

ak = a ◦ a ◦ ... ◦ a = 1

Therefore, forG to be cyclic, there must be at least one element α ∈ G with ord(α) = |G|.
Such elements with maximum order are called primitive or generators. [PP09]

For example |Z∗11| has an primitive element a = 2, because ord(2) = |Z∗11| = 6.

It’s a fundamental theorem that for every prime p, (Z∗p , ·) is an abelian cyclic group.
[PP09]

There are more properties to finite cyclic groups G.

1. The number of primitive elements of G is φ(|G|) where φ is Euler’s totient
function.

2. And if |G| is prime, then all elements a 6= 1 ∈ G are primitive.

[PP09]

Any element of a cyclic group is the generator of a subgroup, which in turn is also
cyclic [PP09]. If (G, ◦) is a cyclic group, then every element a ∈ G with ord(a) = s is
the primitive element of a cyclic subgroup with s elements.

Lagrange’s theorem states that if H is a subgroup of G, then |H| divides |G|.

Furthermore, let G be a finite cyclic group of order n and let α be an generator of G.
For each integer k which divides n, there exists exactly one cyclic subgroup H of G
of order k. This subgroup is generated by αn/k. H consists exactly of the elements
a ∈ G which satisfy the condition ak = 1. There are no other subgroups. This allows
the construction of a subgroup from a given cyclic group, if the cardinality |G| and a
generator α of G is known. [PP09]

The Discrete Logarithm Problem In the previous sections, sufficient abstract alge-
braic fundamentals have been defined to introduce the DLP in Z∗p .

Let Z∗p be a finite cyclic group of order p − 1 and a generator α ∈ Z∗p and another
element β ∈ Z∗p . The Discrete Logarithm Problem is the computational infeasibility of
determining the integer 1 ≤ x ≤ p− 1 such that:

αx ≡ β mod p

There must exists such an integer x, since α is a generator and each group element can
be expressed as a power of any primitive element.

x is the discrete logarithm of β to the base α:

x = logαβ mod p

17

Computing the discrete logarithm modulo a prime is a computationally hard problem,
as long as the parameters are sufficiently large [PP09]. Exponentiation, αx ≡ β mod p
is the inverse function and can be performed in polynomial time (for example with the
square and multiply algorithm).

The discrete logarithm is often used in groups with cardinality of a prime number in
order to prevent certain attacks. Because |Z∗p | = p− 1 has not prime cardinality, the
discrete logarithm is used in subgroups of Z∗p . [PP09]

Because this thesis researches the WPA3 Dragonfly handshake and most implementa-
tions merely support the discrete logarithm problem in elliptic curves (opposed to mul-
tiplicative groups Z∗p), the Generalized Discrete Logarithm Problem (GDLP)
is introduced.

Given a finite cyclic group G and a group operation ◦ and cardinality n. The GDLP is
the computationally hard problem of finding the integer x, such that 1 ≤ x ≤ n and
β = αx. Such an integer x must exist, because α is a primitive element and in one
cycle, each element of the group is generated exactly once. There exists a range of
different mathematical groups that have been used in practice for the GDLP.

1. Multiplicative group Z∗p or a subgroup of it. This group was discussed in this
brief introduction. DSA for example builds on top of it.

2. Cyclic groups from elliptic curves or hyperellipitic curves or algebraic varieties of
it. Elliptic curves will be introduced in the next section.

3. The multiplicative group of a Galois field GF (2m) or a subgroup of it can be
used to construct the DLP. GF (2m) will not be covered in this cryptographic
introduction.

[PP09]

Attacks against the Discrete Logarithm Problem Since SAE makes use of a
modified Diffie-Hellman Key Exchange, it is interesting to briefly list the existing
(theoretical) attacks against the Discrete Logarithm Problem. The intractability of
the DLP is based on the hardness of computing x for a given α and β in G such that
β = αx.

Paar et al. state in their book (2009) that nobody really knows if there is an efficient
algorithm to solve the GDLP, similar to the lack of knowledge of an efficient factorization
method for the one-way function behind RSA [PP09].

There are Generic Discrete Logarithm Algorithms that make use of the group
operation and no other algebraic structure of the group. They can be applied on any
cyclic group. The running time of generic algorithms either depend on the size of the
cyclic group or the size of the prime factors of the group order. [PP09]

18

The Brute Force Search is the easiest attack against the DLP. An attacker simply
consecutively iterates over powers 1 ≤ x ≤ |G| and tests if αx = β. The complexity of
this algorithm is thus O(|G|).

The Baby-Step Giant-Step Algorithm is a time-memory tradeoff algorithm. The
basic idea is a divide and conquer approach, where x = logαβ is rewritten as x =
xgm+ xb for 0 ≤ xg, xb < m and m is chosen as m =

√
|G|. By rewriting the discrete

logarithm, xg and xb can be searched separately. The baby-step giant-step algorithm
requires computational runtime and memory capacity of O(

√
|G|). [PP09]

The Pollard’s Rho Method is a probabilistic algorithm with similar runtime as the
baby-step giant-step method but almost no memory complexity [PP09]. The algorithm
builds on top of the birthday paradox by pseudorandomly generating group elements
of the form αi · βj by walking randomly through the group. This process is repeated
as long as no collision of two elements is obtained:

αi1 · βj1 = αi2 · βj2

where i1 6= i2 and j1 6= j2 with i1,2, j1,2 ∈ {1, p− 1}

As soon as such a collision has been found, the discrete logarithm x can be easily
computed. Pollard’s rho algorithm is currently the best known attack to compute
discrete logarithms in elliptic curve groups with an attack complexity of O(

√
|G|).

Therefore, the size of elliptic curve cryptosystems is required to be at least 2256. [PP09;
BSI19]

The Pohlig-Hellman Algorithm is based on the Chinese Remainder Theorem and
exploits the factorization of the order of a group. This divide-and-conquer algorithm
computes smaller discrete logarithms in the subgroups and then reconstructs x by using
the Chinese Remainder Theorem. The individual subgroup discrete logarithms can
be computed with Pollard’s rho method. The runtime of Pholing-Hellman Algorithm
depends on the prime factors of the group order. To use this attack, the prime
factorization of the group order is required. [PP09]

One of the non-generic attack algorithms against the DLP is the Index-Calculus
algorithm that specifically targets Z∗p and GF (2m)∗. The index-calculus method is
very efficient with subexponential running time. For example, in order to obtain a
security of 280, the primer number p of the DLP in Z∗p should be at least 2048 bits.
Due to the powerful nature of the Index-Calculus method, when using Z∗p for the
Diffie-Hellman Key Exchange, the prime p should have a minimal size of 2048 bits, or
even 3072 bits to achieve better long term security. The German Federal Office for
Information Security suggest at least 2048 bits until the year 2022, after that at least
3072 bits. [BSI19; PP09]

19

2.2 Elliptic Curve Cryptosystems

In this section Elliptic Curve Cryptography (ECC) is introduced, because WPA3-SAE
mainly uses ECC in their implementations. hostapd 2.8 for instance is configured to
support only ECC out-of the box in the Dragonfly handshake. To enable multiplicative
groups, the configuration must be explicitly changed.

Elliptic Curve Cryptography was invented in 1986-1987 by Neal Koblitz and Victor
Miller. In the 1990s, it was not completely obvious that elliptic curves could be used to
build asymmetric cryptosystems. However, after standardizations in banking standards
in 1999 and 2001 and adoption in the IPsec protocol and TLS, they are nowadays
considered to be secure [PP09].

ECC offers the same security guarantees as RSA or cryptosystems based on the DLP
in Z∗p and GF (2m)∗, by using much shorter bitlengths. As of 2019, the bitlengths
considered to be secure were at least 256 bits in ECC and at least 2048 bits in Z∗p and
GF (2m)∗ [BSI19]. ECC is based on the generalized discrete logarithm problem, which
means that elliptic curves need to have a cyclic group where the discrete logarithm
problem is computationally intractable. [PP09]

Paar et al. define elliptic curves as follows:

An elliptic curve E over Zp, p > 3 with p prime is the set of all pairs (x, y) ∈ Zp such
that

E : y2 ≡ x3 + ax+ b mod p

with an imaginary point at infinity O and a, b ∈ Zp. Furthermore, the inequality
4a3 + 27b2 6= 0 mod p most hold. This inequality condition ensures that that curve
plot has no self-intersections. [PP09]

The group operation in elliptic curves is point addition and point doubling. Both
operations have a distinct meaning from a geometric point of view. In this quick
introduction, the algebraic definition is of primary interest: [PP09]

P +Q = R⇐⇒ (x1, y1) + (x2, y2) = (x3, y3)

where

x3 = s2 − x1 − x2 mod p
y3 = s(x1 − x3)− y1 mod p

20

and the slope s is defined as

if P 6= Q (point addition) s = y2 − y1
x2 − x1

mod p

if P = Q (point doubling) s = 3x2
1 + a

2y1
mod p

The neutral element O is an abstract point at infinity such that

P + O = P

Furthermore, an inverse element is required to fulfill the definition of a group G. The
inverse of an group element P is −P , such that P + (−P) = O. The inverse −P is the
point reflected on the x-axis:

−P = (xp, p− yp)

The points on an elliptic curve together with O have cyclic subgroups. When certain
conditions are met, all points on a elliptic curve form a cyclic group [PP09]. No proof
or further elaboration on the above statement is given, because the insight gained is of
no importance in this thesis.

In order to make statements about the security of a elliptic curve, the order of the
group is needed. Hasse’s theorem gives a range to the number of points Z of an elliptic
curve E modulo p:

p+ 1− 2√p ≤ Z ≤ p+ 1 + 2√p

From the above statement it follows that the number of points is more or less in the
range of the prime p [PP09].

The discrete logarithm for an elliptic curve E can now be defined as follows. Let P be
an primitive element and T be another element of the curve. The discrete logarithm
problem is finding the integer d, such that 1 ≤ d ≤ Z with Z being the number of
points on E, such that:

P + P + ...+ P = dP = T

[PP09] d is an integer and the private key in cryptosystems. For an attacker to break
the elliptic curve cryptosystem, he has to figure how many times he needs to perform
a point addition with P to reach the curve point T . The public key T is a point on
the curve T = (xT , yT). Multiplying the private key d with P is not directly possible,
instead a repeated point addition is performed.

In order to perform point multiplication for elliptic curves, the Double-and-Add al-
gorithm is used which is the counterpart of the Square-and-Multiply algorithm for
multiplicative groups Z∗p . This algorithm enables the computation of efficient point

21

multiplications in elliptic curves. Now, sufficient concepts about elliptic curves and
the discrete logarithm problem have been introduced in order to construct the Diffie-
Hellman key exchange using elliptic curves (ECDH). [PP09]

The domain parameters for the elliptic curve Diffie-Hellman key exchange is a prime p
and the elliptic curve E

E : y2 ≡ x3 + ax+ b mod p

The primitive element P = (xp, yp) is selected. The chosen curve E with its coefficients
a, b and the prime p and the primitive element P are the domain parameters. Not every
curve is suitable to build an computationally intractable discrete logarithm problem.
However, the actual Diffie-Hellman Key Exchange is very similar to the DLP in the
multiplicative group Z∗p . [PP09]

First each party (Alice or Bob) choses a private key a, b ∈ {2, 3, Z − 1} and computes
their corresponding public key A = aP and B = bP . Then Alice sends A to Bob and
Bob in return sends B to Alice. Then both parties compute a joint secrete key T .
Alice computes T = aB = a(bP) and Bob computes T = bA = b(aP) and since point
addition is associative, both parties obtain the same key T . Paar et al. notes that in
practical protocols, only the x-coordinate of the resulting key T is used. [PP09]

But why do real world implementations of WPA3-SAE such as hostapd use elliptic
curves instead of other mathematical structures such as Z∗p . The reason is that the
most powerful algorithms for attacking the discrete logarithm problem in elliptic curves
are not applicable, especially the Index-Calculus method. Merely the Baby-Step-
Giant-Step algorithm and Pollard’s Rho remain, which both reduce the attack
complexity to

√
|G|. In practice, elliptic curves with group order of at least 2256 should

be used [BSI19]. It is not easy to find a cryptographically strong elliptic curve with
prime order, therefore they are often standardized by organizations such as the National
Institute of Standards and Technology (NIST) [PP09].

22

3 The SAE Handshake

3.1 SAE is a PAKE Scheme

The Simultaneous Authentication of Equals (SAE) handshake is essentially a Password
Authenticated Key Exchange (PAKE) scheme. PAKE addresses a practical security
problem: How can two parties with a shared secret establish secure, authenticated
communication without relying on a Public Key Infrastructure (PKI)? [HR10]

PAKE schemes are authenticated key exchanges. Two parties have a shared secret
and deterministically establish a high entropy password using zero-knowledge proofs of
the authenticated password. PAKE schemes build on top of public key cryptography
which consists of mathematical building blocks that provide a cryptographic one-way
function that is hard to compute in one direction, but is efficiently computed in the
opposite direction. One of the first public key exchange mechanism invented was
the unauthenticated Diffie-Hellman key exchange. However, the Diffie-Hellman key
exchange is vulnerable against man-in-the-middle attacks.

A man-in-the-middle attacker can completely break the security of the standard Diffie-
Hellman key exchange by intercepting the public values of the involved participants
and substituting them with the attackers public key value. Both parties thus agree to a
shared secret with the attacker. The man-in-the-middle attacker then simply decrypts
all messages exchanged between the two parties and reads and modifies them at will
and re-encrypts the messages with the previously negotiated key, before transmitting
it back to the other party. This attack is possible because the key exchange is not
authenticated. [PP09]

PAKE schemes on the other side provide mutual authentication through an common
secret that was established in a out-of-band mechanism. An eavesdropping attacker
cannot obtain any information about the password while observing the exchange. She
is merely capable of making an online guess at the password during the handshake
execution. [HR10]

PAKE schemes make use of zero-knowledge proofs. A zero-knowledge proof (ZKP) is a
method to authenticate two parties without exchanging the actual passwords, therefore
not creating a possibility of password disclosure. A ZKP allows a participant to prove
knowledge over a secret without actually revealing it. [HR10]

Many PAKE techniques such as EKE (Patent [BM19]) and SPEKE (Patent [Jab19])
are patented and could not be used in the development of new PAKE schemes such as
Dragonfly. Nowadays, those patents have long been expired as of 2019 [HR10]. Legal
issues originating from patents were the main motivation for Dragonfly’s designers to
obfuscate the immanent Diffie-Hellman key exchange included in PAKE schemes with
a random mask [Per19]. Hao et al. note that patenting issues are "arguably one of the
biggest brakes in deploying PAKE solutions in practice" [HR10].

23

The security properties that a PAKE protocol provides are the following:

1. Offline dictionary attack resistance - A passive or active attacker cannot
collect sufficient key exchange material in order to launch an offline brute force
attack against the password.

2. Perfect forward secrecy - The negotiated keys are secure in the face of a
future disclosure of passwords.

3. Known session security - A disclosed session does not affect the security of
other established session keys.

4. Online dictionary attack resistance - Only one password guess per protocol
execution is possible.

[HR10]

Schemes holding the above properties are known as balanced PAKE schemes.

Hao et al. note that there is an extra security requirement called server compromise
resistance that makes a PAKE scheme an augmented PAKE scheme if "an attacker
should not be able to impersonate users to a server after he has stolen the password
verification files stored on that server, but has not performed dictionary attacks to
recover the passwords" [HR10]. Furthermore, Hao et al. question the necessity of the
resistance against server compromise by arguing that the all passwords would need to
be revoked in the case of server takeover in either case. Additionally, they note that a
balanced PAKE could hash and salt the passwords which renders any advantages from
the server compromise resistance redundant [HR10].

3.2 Dragonfly

The Simultaneous Authentication of Equals (SAE) handshake was proposed
by Daniel Harkins in 2008 [Har08]. The IEEE 802.11s amendment for wireless mesh
networks made first use of the SAE handshake [VR19]. The name Dragonfly refers to
the architectural identical handshake defined in RFC 7664 by Daniel Harkins [Har15].
Clarke et al. also notice the similarity of the two handshakes in their cryptanalysis of
Dragonfly [CH14].

The terms SAE and Dragonfly are used somewhat interchangeably during this thesis.
The IEEE 802.11 standard of 2016 defines SAE as a variant of the Dragonfly family
[IEE16]. Maty Vanhoef et al. note that there exist several minor variants of the
SAE handshake and the family of those handshake is referred to as Dragonfly. Dan
Harkins also proposed a TLS-PWD authenticated key exchange named Secure Password
Ciphersuites for Transport Layer Security (TLS) in RFC 8492 that can be ascribed to
the Dragonfly family [Har19a].

Throughout this thesis, the names SAE,Dragonfly,WPA3-SAE orWPA3-Personal

24

refer to the same password authenticated key exchange defined in RFC 7664 as a can-
didate for general Internet use [Har15]. The Dragonfly handshake is certified by the
Internet Engineering Task Force as WPA3-Personal and standardized in the IEEE
Standard 802.11 Std 2016 [IEE16].

SAE guarantees the following security properties:

1. After successful completion of the SAE handshake, the handshake participants
share a high entropy pairwise master key (PMK)

2. No attacker who passively or actively intercepts and manipulates the handshake
may obtain the password or the resulting PMK

3. Only one guess at the password per execution of the handshake is possible.
Therefore, no offline dictionary attacks are feasible

4. Knowing the PMK from a previous execution of the handshake doesn’t give an
attacker an advantage in future executions

5. The revealing of the password cannot be leveraged to decrypt past traffic or
reconstructing past PMK’s

[IEE16]

Dragonfly is a symmetric peer-to-peer protocol that allows two parties to bootstrap a
secure symmetric key from a low-entropy shared secret over insecure public channels
[CH14]. The two participants are mutually authenticated based on whether they have
identical passwords [CH14].

Both sides can initiate the handshake simultaneously. Dragonfly can be used in a
traditional client-server architecture, but also in peer-to-peer applications where either
side may initiate the handshake [Har15]. Therefore, there are no clear supplicant and
authenticator roles, the participating parties are equals.

Dragonfly is based on discrete logarithm cryptography build on elliptic curves (ECC)
or finite fields (FFC) using multiplicative groups module a prime p. There are two
message exchanges in the Dragonfly protocol: The commit and confirm exchange.

A party can commit at any time. But only after both parties proceeded with the commit
exchange, the confirm exchange is possible. The purpose of the commit exchange is to
force each participant to a single guess at the password [IEE16]. The confirm message
exchange on the other hand is used to prove the correctness of this prior password guess.
Authentication is accepted as soon as a peer confirms and the protocol successfully
terminates after both parties confirmed [Har15]. The commit step can happen at
any time, confirmation however is only allowed after both participants committed. A
participant accepts the authentication after a peer has successfully confirmed. When
both peers accept, the handshake successfully terminates. [IEE16]

A full state machine of the handshake is introduced in section 5.4. A high level overview
of the cryptographic operations in the SAE handshake is given in figure 1.

25

The 802.11 standard requires SAE implementations to support the elliptic curve NIST
P-256 as a minimum [VR19]. Vanhoef et al. remark that support for other groups is
optional and that there exists no requirement to support multiplicative groups [VR19].
In the remainder of this chapter, only Dragonfly for elliptic curve cryptography is
covered, because all relevant open source implementations prefer SAE with ECC [Jou19;
Int19].

In the Dragonfly handshake, all elliptic curves are defined over the equation

y2 = x3 + ax+ b mod p

where p is a prime that determines a prime field GF (p). The cryptographic group is
a subgroup of the full elliptic curve group that consists of the elliptic curve’s points
with the point at infinity O, which is the identity element of the group [Har15]. The
elements a, b ∈ GF (p) define the curve’s equation. The elliptic curve has a point G,
that serves as a generator of the group with sufficiently large order q = |G|. The order
q is prime and should generate a sufficiently large subgroup that is considered secure
[Har15].

The standard mentions that only ECC groups defined over an odd prime finite field with
a cofactor of 1 should be used [IEE16]. The element operation is defined as addition of
two points on the curve, resulting in a third point on the curve. The scalar operation
is the multiplication of a point on the curve by a scalar, resulting in a new point on
the curve. The inverse operation is inversion of a point on the curve, resulting in a
second point on the curve. [IEE16]

RFC 7664 also lists some assumptions about the Dragonfly protocol. The most impor-
tant ones being that the Dragonfly peers should be able to produce cryptographically
strong random numbers and that the discrete logarithm problem for the chosen group
must be hard [Har15]. This means that given an ECC group E with an generator G,
and the result of the scalar operation Y = x · G, it is computationally infeasible to
determine x [Har15].

In the remainder of the chapter, the two participants of the protocol are referred to
as supplicant (station) and authenticator (access point). Even though the Dragonfly
handshake may be initiated simultaneously by both participants, the typical suppli-
cant/authenticator configuration is of interest during this thesis. An example for such
an configuration is an Android smartphone trying to establish a connection to a router
via WPA3-Personal. In this case, the Android phone (supplicant) initiates the Dragon-
fly handshake by sending an Auth-Commit frame. The authenticator (home router)
replies with an Auth-Commit and Auth-Confirm frame. The Android smartphone
finalizes the handshake by sending an Auth-Confirm frame.

26

Supplicant Authenticator

Initialization: EC Group G and primes p, q, password π

Choose random rsup and msup

ssup = (rsup +msup) mod q
Esup = −msup · PWE

Choose random rauth and mauth

sauth = (rauth +mauth) mod q
Eauth = −mauth · PWE

check if Eauth is on curve
check if sauth is valid

K = rsup · (sauth · PWE + Eauth)
κ = H(Kx)

csup = Hκ(ssup, Esup, sauth, Eauth,MAC sup)

check if Esup is on curve
check if ssup is valid

K = rauth · (ssup · PWE + Esup)
κ = H(Kx)

cauth = Hκ(sauth, Eauth, ssup, Esup,MAC auth)

Auth-Commit: GroupID, Esup, ssup

Auth-Commit: GroupID, Eauth, sauth

Auth-Confirm: csup

Auth-Confirm: cauth

verify csupverify cauth

Figure 1: High-level overview of the SAE commit and confirm handshake [LŠ15]. In
this figure, the variable names scalar, Element and mask are abbreviated
as s, E and m. Hκ is a cryptographic hash function with key κ and is usually
implemented as SHA256-HMAC. Kx is the x-coordinate of the elliptic curve
point K.

27

3.3 Deriving the Password Element

In the beginning of the Dragonfly key exchange, the shared password π is chosen at
random and given to the supplicant and authenticator in a secure out-of-bounds process
(for example shouting from door to door in a office space). Then both parties compute
a base password element PWE using a hunting-and-pecking technique that repeatedly
creates a seed

SHA256 (MAC sup,MAC auth, π, c)

with a counter c that is incremented each round in a loop. The resulting hash digest is
translated into a potential x-coordinate of an elliptic curve point with a standardized
key derivation function. [Har15]

The key derivation function KDF-n is defined as a function that takes a key k to stretch,
a label to bind to the key and a desired output length n [Har15]. In RFC 7664, the
KDF is not defined. In hostapd 2.8, the KDF-n is a SHA256-HMAC which uses the
seed as key [Har15].

The x-coordinate is plugged into the curve equation (y2 = x3 + ax + b mod p) and
it is confirmed whether the result of the equation is a quadratic residue modulo p.
If this holds, the password element PWE has been found, otherwise the counter is
incremented and a new seed is generated [Har15].

This quadratic residue modulo p test is done with the Legendre function [VR19]. To
prevent timing attacks, all possible loop iterations (k = 40) are always performed, even
if a valid point was found earlier.

The check whether a value is a quadratic residue modulo a prime can leak information
about the value in a side-channel attack [Har15]. For this reason, the residuosity check
is blinded with a random value. The core idea is that all cryptographic functions need
to be computed in constant time, independent from a specific cryptographic outcome
[Har15; VR19]. Otherwise, timing attacks would be eligible.

3.4 Commit Exchange

In the commit exchange, both parties exchange scalars and elements and generate a
shared secret K as a result. They commit to a single guess of the password [Har15].

The supplicant generates two random numbers

1 < rsup < q

1 < masksup < q

28

and the authenticator generates respectively

1 < rauth < q

1 < maskauth < q

The sum of r and mask must also lie in the same range 1 < scalarsup|auth < q.

Both participants compute the public scalars and elements based on their private random
numbers. After this step, the mask is no longer needed and must be irretrievably
destroyed [Har15].

scalarsup = (rsup +masksup) mod q

Elementsup = −masksup · PWE

and the authenticator computes equivalently

scalarauth = (rauth +maskauth) mod q

Elementauth = −maskauth · PWE

Figure 1 illustrates a high level overview of the SAE handshake. In this figure, the
variable names scalar, Element and mask are abbreviated as s, E and m. H refers
to the hash function in use, which is HMAC-SHA256.

After both participants exchange their scalars and elements in a Auth-Commit authen-
tication frame, they both verify the correctness of the scalars (2 < scalar < q) and
elements. A valid element must consist of coordinates that are non-negative integers
and less than the prime p [IEE16]. The element cannot be the point at infinity and
should be a valid point on the curve [IEE16]. If the peer has sent an identical scalar and
element, it is considered to be a reflection attack and the handshake must be aborted
[Har15].

Otherwise the participants compute the shared secret K. The supplicant computes

K = rsup · (scalarauth · PWE + Elementauth)

and the authenticator computes

K = rauth · (scalarsup · PWE + Elementsup)

If the shared secret K is the point-at-infinity, the participants shall reject the authenti-
cation [IEE16]. The x-coordinate of the shared key K is fed into a hash function to
derive the key κ:

κ = Hash(Kx)

Usually κ is stretched into two subkeys for cryptographic hygiene. One subkey is used
as a key confirmation key (KCK) for the computation of the confirm token, the other

29

subkey (PMK) is used as input to the subsequent 4-way handshake. Each subkey
must be at least the length of the prime used in the selected group, enforcing the key
derivation function to have a output of at least n = len(p) · 2 which is usually 512
bits [Har15]. Both subkeys thus have a size of 256 bits, which is sufficient considering
the suggestions about key lengths from the Federal Office for Information Security of
Germany (As of 2019) [BSI19; IEE16].

3.5 Confirm Exchange

In the confirm exchange, both parties verify that they derived the same secret κ and
therefore possess the same password π. The confirm token consists of a HMAC-SHA256
digest created with the key κ with the handshake summary as input.

The supplicant computes:

csup = HMAC-SHA256κ(scalarsup, Elementsup, scalarauth, Elementauth,MAC sup)

and the authenticator computes accordingly her confirm token

cauth = HMAC-SHA256κ(scalarauth, Elementauth, scalarsup, Elementsup,MAC auth)

Then both the supplicant and authenticator exchange their tokens and verify the other
tokens. This verification is possible because all necessary elements were exchanged
previously and are known to all participants. If the verification succeeds, the handshake
completes and the subkey κ is used as a PMK. Otherwise, the handshake times out
and the authentication fails.

3.6 Security

The core security idea underlying the Dragonfly handshake is that the adversarial
advantage grows through interaction and not through computation. No information
other than the knowledge whether a single guess at the password was correct, is leaked.

The security of the scheme is based on the computational Diffie-Hellman assumption
(CDH) which states the computational intractability of computing the value gab given
(g, ga, gb) where g is a randomly chosen generator of the cyclic group G of order q and
a, b ∈ {0, ..., q − 1}. If the computation of the discrete logarithm to the base g was
computationally feasible, then the CDH problem could be solved by computing a by
taking the discrete logarithm of ga and then deriving gab by exponentiation of (gb)a.
[Har19b; LŠ15]

This computational Diffie-Hellman assumption exists analogously in Dragonfly. It’s

30

computationally intractable to compute the value PWErsup·rauth given

(rsup +masksup,PWE−masksup , rauth +maskauth,PWE−maskauth ,PWE)

where PWE is a generator of the cyclic group G of order q,
rsup, rauth,masksup,maskauth ∈ {1, ..., q − 1} and the sum r + mask ∈ {1, ..., q − 1}.
If the computation of the discrete logarithm to the base PWE was possible, then
the security of the Dragonfly protocol could be broken by computing the discrete
logarithm of PWE−masksup|auth thus obtaining −masksup|auth, taking its inverse and
finding rsup|auth by subtraction:

rsup|auth = scalarsup|auth −masksup|auth

which enables the computation of the value PWErsup·rauth by exponentiation. [Har19b]

Security Proof of Dragonfly A major point of criticism of Dragonfly was the lack of
a security proof for the handshake. This changed when Lancrenon et al. published
their paper On the Provable Security of the Dragonfly Protocol in 2015 which proves a
close variant of Dragonfly to be secure in the random oracle model [LŠ15].

The paper proves that the core mathematical structure of Dragonfly - a Diffie-Hellman
variant with a password-derived base - is secure in the random oracle model [LŠ15].
The security of Dragonfly is based on the Computational Diffie-Hellamn (CDH) and
Decisional Inverted-Additive Diffie-Hellman (DIDH) assumptions. The authors orient
their work on existing proofs of older PAKE protocols.

For the objectives of this thesis, the internals of a cryptographic proof are of secondary
nature, because the main goal is to find programming flaws by fuzzing frames and not
breaking the underlying cryptographic scheme.

3.7 Practical Attacks against SAE

RFC 7664 mentions that salting of passwords is redundant, because salted password are
merely new passwords used for authentication. If an attacker is capable of obtaining
the salted password, she can authenticate herself to the other participant [Har15].

RFC 7664 also suggests to limit the number of online guesses at the password by
refusing authentication after a certain number of failed attempts in order to prevent
brute force attacks [Har15]. Furthermore, the RFC recommends to use a minimal
number of k = 40 iterations to reduce the probability that no suitable password seed
was found to roughly one in a trillion [Har15].

Vanhoef et al. presented a variety of attacks in the paper Dragonblood: A Security
Analysis of WPA3’s SAE Handshake against practical Dragonfly implementations
[VR19].

31

Dragonfly used to be susceptible to side-channel leaks in its password derivation
algorithm. The first implementation stopped the loop execution as soon as a valid
quadratic residue modulo p was found. This vulnerability was fixed in 2011, when 40
iterations were introduced regardless of whether a valid point was found in an earlier
iteration [VR19].

Another fix was the introduction of quadratic residue blinding that prevents leaking
information of the Legendre Function, which basically implements the Double-And-Add
Algorithm. Vanhoef et al. wondered why the MAC address was added to the seed in the
password derivation algorithm. They authors explain that the algorithm doesn’t need
to be executed before every handshake execution and that without MAC addresses as
inputs, the password element could be computed offline. This would also reduce the
susceptibility to DoS attacks [VR19].

Targeting SAE’s Anti-Clogging mechanism The SAE handshake added defenses
against side-channel leaks that are caused by the password derivation function. Vanhoef
et al. demonstrate how those defensive mechanisms can be abused in a DoS attack.
[VR19]

The anti-clogging mechanism is necessary because access points perform computational
expensive operations when receiving a SAE commit frame. This can be abused by
flooding an access point with spoofed commit frames with random MAC addresses.
The defenses against side-channel leaks further increase the computational costs for
such a commit frame, because each password derivation execution requires constant
amount of work. [VR19]

The anti-clogging mechanism consists of a reflection of a cookie that the authenticator
generates for each supplicant. The cookie itself is a hash over the connection id, initiator
id and a random sequence of bytes generated by the access point. Those tokens are
concatenated and hashed with SHA256 and must be reflected by the client in order to
continue with the computationally expensive processing of the commit frame. This
procedure prevents the client from creating new connections with spoofed connection
ids. In the case of the Dragonfly handshake, the connection id is simply the MAC
address. It is trivial to spoof MAC addresses, because the attacker can capture all
anti-clogging tokens that are broadcasted in a 802.11 network and reflect the secret
cookies. After the attacker acknowledged the anti-clogging frames, the access point
agrees to process the commit frame. [VR19]

Vanhoef et al. targeted a non-disclosed professional access point and was capable of
completely exhausting the resources of the CPU by sending 70 commit exchanges per
second. By using the elliptic curve P-521, the impact was even more catastrophic
[VR19].

Anti-clogging tokens have a timeout. In order to prevent those tokens from timing
out, access point implementations either renew the anti-clogging tokens after a certain

32

threshold or after a timeout.

According to Vanhoef et al., a possible countermeasure is the costly derivation of the
password element in a low-priority background thread. This ensures that network
functionality is not impacted, even though legitimate clients won’t be able to connect to
it. Vanhoef et al. suggest that the reason for the DoS attack is the online computation
of the password element. If it would be possible to compute the token offline, the
password element could be derived only once at startup of the station. [VR19]

Downgrade and Dictionary attack against WPA3 in transition mode Vanhoef et
al. present a downgrade attack against WPA3-SAE transition mode. When an man-in-
the-middle attacker tries to downgrade a client to use WPA2 instead of WPA3, even if
the access point is capable of using WPA3, the downgrade attempt will be recognized in
message 3 of WPA2’s 4-way handshake. The attacker only needs a single authenticated
4-way handshake message to carry out a offline dictionary attack. It isn’t necessary to
use an man-in-the-middle attack, a rouge network may be alternatively used. In order
to attack clients that use WPA3 in transition mode, many clients tried to autoconnect
to the rouge WPA2 network. Because message 2 of the 4-way handshake is already
authenticated, a offline dictionary attack can be launched. [VR19]

When sending a commit frame to an access point, the client has to choose a elliptic
curve or multiplicative group. If the access point doesn’t support the group, he will
reply with the appropriate status code. This process continues until both participants
agree on a group. Now an attacker can jam or forge channel-switch announcements in
order to indicate to the access point that the client doesn’t support this group. By
doing so, a less secure group can be used. The reverse process is also possible, which
might be interesting for Denial of Service attacks [VR19].

Timing attacks against WPA3’s SAE groups Although elliptic curves are the default
cryptographic structure for the Dragonfly handshake, multiplicative groups Z∗p are also
supported. Vanhoef et al. demonstrate that there are no side-channel defenses against
Dragonfly with multiplicative groups. The general idea of this specific attack can be
summarized as follows: Vanhoef et al. modified a tool on top of aircrack-ng to spoof
commit frames and measure the time it takes to receive the corresponding commit reply.
They proceeded by sending a deauthentication packet to the access point in order to
clear the state related to the spoofed MAC address. This process was repeated hundreds
of times and the average response times for different MAC addresses and different
multiplicative groups were collected. Based on timing differences, they concluded the
number of iterations the password derivation algorithm must have used. This attack
was possible, because there were no side-channel defenses against multiplicative groups
in the Dragonfly handshake [VR19].

33

Cache-based side channel attacks against SAE Vanhoef et al. tried to figure out
if the quadratic residue test in the password derivation algorithm succeeded in the
first iteration. The elliptic curve version of hostapd and wpa_supplicant has defenses
against timing attacks in the form of constant time computations that do not leak
any information about internal states of cryptographic computations. However, the
password derivation algorithm might still be vulnerable to a micro-architectural side-
channel attack. Those attacks abuse capabilities of modern processors to optimize their
behavior based on past computations. [VR19]

With the Flush+Reload attack, an attacker flushes a memory location from the cache
and waits for a specific time interval before reloading the flushed location. When the
victim accesses the memory location, it will be cached and the reload time will be much
shorter. By repeating those steps, an attacker can trace the victims memory locations
[VR19].

Vanhoef et al. were able recognize with high certainty that the password element was
found in the first iteration using cache-based side channel attacks. They monitored
the access to the quadratic residue test by finding a branch in the iteration loop that
resulted in two separate cache lines. With the help of the cache line that was executed
in every iteration of the loop, they managed to create a synchronization clock. By
using a linear classifier, Vanhoef et al. were able to make a probabilistic statement
whether the password was found in the first iteration. [VR19]

Offline password partitioning attack Vanhoef et al. managed to perform password
partitioning attacks with information learned in cache-based side channel attacks.
They created a dictionary and tried to recover the password from it. They repeatedly
partitioned the dictionary into correct and incorrect password candidates. When the
dictionary became empty, the password could not have been in it. If only one password
remained after the partitioning steps, it was with high probability the correct password.
Vanhoefs algorithm used a set of element tests and their result and the MAC address
of the target as input to partition the dictionary by removing passwords that lead to a
different result for the element test compared to the result that was obtained by the
timing or cache-based attack. The attack could be launched offline. [VR19]

On average, Vanhoef et al. needed to perform 24.3 timing measurements to obtain
35 element tests for the MODP group 22. For the elliptic curve P-256, an adversary
required 29 element test results to uniquely recover the password with a probability
above 95%. In order to launch an offline brute force attack against all possible 8-
character lowercase passwords, 38.38 element tests for multiplicative group 22 and
38.92 for elliptic curve P-256 were required. In order to launch an successful offline
dictionary attack on Amazon EC2 instances, an attacker needed to spend on average
$125 dollars for elliptic curves and $10 dollars for multiplicative groups [VR19].

34

Conclusion Vanhoef et al. concluded that a simple change to the password encoding
mechanism could have prevented almost all attacks. By excluding the peer’s MAC
address from the password encoding algorithm, it would be possible to compute the
password element offline such that an attacker can no longer trigger costly executions
of the password encoding mechanism. Furthermore, the execution time of the password
encoding method would have been identical, such that no side-channel information can
leak. [VR19]

35

4 Fuzzing Environment

The 802.11 Wi-Fi ecosystem is a collection of complex standards and certifications
[IEE16]. Due to the unreliable and error prone nature of wireless protocols over radio
frequencies, one first milestone of this thesis will be a practical guide on how to set up
a laboratory environment where fuzzing tests against the WPA3-SAE handshake can
be tested. As it turned out, finding a suitable 802.11 environment is not a trivial task.
This chapter gives readers a practical guide, such that they are capable to reproduce
the obtained results.

The operating systems used were Ubuntu 18.04 (with kernel 4.15.0-39-generic)
and the Kali Linux release 2019.1/2019.2 distribution.

Besides the built in wireless network card of the working machine used throughout
this thesis (Wireless card Intel Centrino Advanced-N 6235 with mac80211 driver
iwlwifi), the following Wi-Fi cards have been used:

1. Panda Wireless Stick, Model: PAU07 with driver rt2800usb

2. AWUS036ACH Wireless Stick with driver rtl8812au v5.3.4

The central goal of this thesis is the fuzzing of authentication management frames in
the WPA3 handshake. As figure 8 illustrates, the whole WPA3-Personal connection
establishment includes beacon frames, probe request/response frames, authentication
request and response frames, association request and response and the finalizing EAPOL
4-way handshake. Only authentication frames are targeted in the fuzzing framework.

The laboratory setup plays a major role in determining the effects of the fuzzing tests.
The most important questions related to the testing environment are the following:

1. How costly is the setup of the fuzzing environment? Is additional hardware
needed? Is the management of multiple operating systems in virtual environments
necessary? Is the entire environment easily programmatically controllable?

2. How easy is it to measure the effects of fuzzing tests? Is it possible to see which
fuzzed frame caused a crash in the targeted device?

3. Are software internals of the fuzzing target known? If no, a blackbox fuzzing
approach is used, otherwise, a greybox strategy is applied.

First the different Linux 802.11 kernel subsystems are introduced to provide an overview
of the Wi-Fi kernel architecture. Then various fuzzing architectures are outlined in the
following sections and the chapter is concluded by choosing a suitable laboratory setup
for this thesis.

36

4.1 Kernel 802.11 Architecture

The Linux Kernel 802.11 subsystem consists of three layers. The user-space layer with
Wi-Fi applications such as iw, wpa_supplicant and hostapd forms the first layer.
Then the interface between user-space and kernel is the nl80211 netlink-based protocol
that specifies how wireless devices are configured and managed. The kernel side of
configuration management for wireless devices is cfg80211. Then there is the mac80211
driver API that describes the interface for SoftMAC wireless cards.

A distinction can be made between SoftMAC and FullMAC wireless cards. In
FullMAC wireless cards, the Media Access Control (MAC) Sublayer Manage-
ment Entity (MLME) is managed completely in the NIC’s hardware, whereas the
MLME in SoftMAC wireless drivers resides on the main CPU and is implemented
in net/mac80211/mlme.c within the Linux kernel source tree. The MLME is the
management entity where the physical layer (PHY) of the MAC state machine is
implemented. Therefore, the MLME is responsible for reaching relevant states in
authentication/deauthentication and association/deassociation and beacon frames7.
Put differently, in FullMAC Wi-Fi chips, the MLME including the MAC and PHY
layers are fully placed in the firmware, whereas in SoftMAC devices, the MLME resides
on the main CPU of the host machine. [wir19]

If the MLME is placed on the chip, the host processor may offload 802.11 functionality
on the NIC processor in order to save memory and power. For this reason, mobile
phones and IoT devices follow usually have a FullMAC architecture [Kav19]. Broadcom
chips are FullMAC wireless drivers, such as the brcm firmware implemented in mobile
phones. An example for mac80211 driver usage are laptops with Intel Wi-Fi chips that
are powered by the SoftMAC iwlwifi driver. Illustration 2 gives a visual overview of
the Linux 802.11 architecture with examples for each type of 802.11 driver.

Usually, WPA3-SAE authentication is handled in user-space software such as wpa_supplicant.
However, the Linux kernel supports SAE authentication offloading, such that the SAE
handshake may be implemented in 802.11 chipsets (Compare section 6.3.2).

4.2 Using Virtualization and Emulation Software

The wireless supplicant implementation of Intel named iwd incorporates a testing
framework that runs within QEMU [Bel19]. QEMU is software that allows to emulate
processors and complete hardware of computers. Processor instructions of the guest
processor are translated into CPU instructions of the host processor.

There are other virtualization solutions such as Oracles VirtualBox or VMware Work-
station. Such virtualization software makes it possible to launch complete operating
systems in a virtual environment and assign a Wi-Fi device directly to the virtual

7The MLME implementation of SoftMAC drivers within the mac80211, accessed on 30th July 2019,
https://github.com/torvalds/linux/blob/master/net/mac80211/mlme.c

37

Figure 2: MAC subsystem of modern Linux kernels. [htt19]

38

machine. With such a setup, it is possible to run software such as hostapd in the
virtual machine with a dedicated Wi-Fi device assigned and treat it logically as access
point. An additional 802.11 device on the host machine is used as a fuzzing supplicant
which targets the access point. The reverse scenario is also possible, where the AP is
on the host machine and the fuzzing supplicant is created on the virtual machine.

The advantages are obvious: Virtual machines can be halted and freezed. Instructions
and memory can be inspected after crashes and logging can be enabled. In simulators,
time is discrete and may be stopped. Such a setup allows to keep full control over the
targeted access point without the risk of losing any information after a crash caused by
a fuzzing engine.

Using virtual machines allows programmatic control over the whole testing environment,
even though additional 802.11 hardware is used. The virtual machine is usually on
the same machine as the testing environment. The costs of the setup are moderate.
However, the cognitive overhead when switching between host and virtual machine
cannot be neglected.

Example: WPA3-SAE Access Point on Kali Linux VMWare Player 15.0.4 and the
Kali Linux 2019.1 VMWare Image will be used as operating systems. Then hostapd
2.8 is compiled with SAE support on the Kali Linux operating system. In order to
use VMWare and a OS image, secure boot needs to be disabled on the host computer.

On the host computer, wpa_supplicant 2.8 will be setup and compiled with SAE
support. Then a Wi-Fi network with key management SAE is launched by connecting
the supplicant with the authenticator. If the connection is successful, a basic WPA3
network is obtained, even if protected management frames are not supported. In such
a setup, both the access point and the supplicant are under the control of the fuzzer,
which allows to write fuzzing tests targeting the WPA3-SAE handshake comfortably.

Instructions in the Kali Linux 2019.1 virtual machine Download and unpack hostapd
2.8 with the instructions:
wget https://w1.fi/releases/hostapd-2.8.tar.gz
tar xzvf hostapd-2.8.tar.gz
cd hostapd-2.8/hostapd

After downloading the sources, several packages/libraries that are necessary to compile
hostapd and the supplicant are installed.
apt install pkg-config
apt install libnl-3-dev
apt install libssl-dev
apt install libnl-genl-3-dev

Then the line CONFIG_SAE=y is appended at the end of the defconfig file located in
hostapd-2.8/hostapd.

39

Now hostapd-2.8/hostapd can be compiled with the following instructions:
cp defconfig .config
make -j 2
cd ..

The compilation yields a fresh hostapd binary with SAE key management support.
The next step is to configure hostapd-2.8/hostapd to use WPA3-SAE.

A configuration file named wpa3.conf is created with the following contents:
interface=wlan0
ssid=WPA3-Network
hw_mode=g
channel=1
wpa=2
wpa_passphrase=abcdefgh
wpa_key_mgmt=SAE
rsn_pairwise=CCMP
#ieee80211w=2

The crucial line wpa_key_mgmt=SAE instructs hostapd to use SAE as key management
protocol. Before starting hostapd, it is necessary to kill all programs that might
interfere with it. A bash script named prepare.sh is created for this task, which is
depicted in code listing 3.

#!/bin/bash
if [-z "$1"]
then

echo "please specify interface as first arg";
else

use airmon to stop interfering processes
sudo airmon-ng check kill
then stop network manager
because airmon doesn't do a good job
sudo service network-manager stop
rfkill unblock wifi
Optionally kill other Wi-Fi clients the brute-for way:
sudo pkill wpa_supplicant
Put the interface in monitor mode the old fashioned way
sudo ifconfig $1 down
sudo iwconfig $1 mode monitor
sudo ifconfig $1 up

fi

Figure 3: Bash script that kills potentially interfering processes with hostapd.

After executing script 3 with the command ./prepare.sh wlan0, the freshly compiled
binary hostapd is launched with
./hostapd ../../wpa3.conf -dd -K

This command should create the WPA3 network using the device that was connected

40

to the virtual machine. In this case, it was necessary to connect the network adapter
Ralink Technology, Corp. RT5572 Wireless Adapter in bridged mode, such that
the virtual machine guest operating system (Kali Linux) is able to directly access the
physical device. It can be confirmed that the network is visible from remote supplicants
by searching for the SSID WPA3-Network via an external Wi-Fi capable device such
as a smartphone.

Instructions on the host: Connect to the Network via wpa_supplicant Now that
the WPA3 access point is running in the virtual machine, a connection with wpa_supplicant
is made. First wpa_supplicant needs to be compiled similar to the compilation in-
structions for hostapd.

wget https://w1.fi/releases/wpa_supplicant-2.8.tar.gz
tar xzvf wpa_supplicant-2.8.tar.gz
cd wpa_supplicant-2.8/wpa_supplicant

The line CONFIG_SAE=y needs to be appended to the file defconfig. Then wpa_supplicant
is compiled with the commands

cp defconfig .config
make -j 2
cd ..

Then a WPA3-SAE capable configuration file supplicant.conf for the supplicant is
created

network={
ssid="WPA3-Network"
psk="abcdefgh"
key_mgmt=SAE
#ieee80211w=2

}

All interfering processes must be terminated with the prepare.sh script depicted in
figure 3. Then wpa_supplicant is started with the command

sudo ./wpa_supplicant -D nl80211 -i wlan0 -c supplicant.conf -K -dd

As can be verified from stdout, a successful SAE handshake is followed by association
requests and responses and the 4-way handshake. The successful connection can be
confirmed by checking the outputs from iwconfig on the host operating system:

iwconfig
wlan0 IEEE 802.11 ESSID:"WPA3-Network"

Mode:Managed Frequency:2.412 GHz Access Point: 9E:0B:AE:5D:6D:A2
Bit Rate=1 Mb/s Tx-Power=15 dBm
Retry short limit:7 RTS thr:off Fragment thr:off
Power Management:on
Link Quality=70/70 Signal level=-25 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:97 Missed beacon:0

41

4.3 Virtual Wi-Fi radios with mac80211_hwsim

To simulate virtual Wi-Fi devices, the Linux driver mac80211_hwsim may be used.
The kernel module can be enabled with the command modprobe mac80211_hwsim and
simulates an arbitrary number of 802.11 radio stations. Running user-space software
such as hostapd or iwd with simulated interfaces from mac80211_hwsim does not differ
significantly from hardware interfaces, because user-space programs cannot distinguish
the simulated nl80211 and mac80211 kernel side implementation from a real one.

One major advantage of using modprobe mac80211_hwsim for fuzzing is the capability of
programmatically creating 802.11 radios. From a practical standpoint, the possibility to
launch and tear down Wi-Fi interfaces quickly saves a lot of time, which is indispensable
when developing and debugging fuzzers. Even the configuration of hardware properties
of the virtual 802.11 devices is possible. For example, its possible to enable support for
protected management frames.

4.3.1 WPA3-SAE with mac80211_hwsim

First wpa_supplicant 2.8 and hostapd 2.8 must be installed as demonstrated in
section 4.2. Then, the virtual 802.11 radio interfaces are created with the command
modprobe mac80211_hwsim.
kill all interfering daemons such as network-manager
sudo service network-manager stop
sudo pkill wpa_supplicant
create 2 virtual 802.11 radios named wlan1, wlan2
sudo modprobe mac80211_hwsim radios=2
rfkill unblock wifi
To monitor traffic in wireshark you can execute
sudo ifconfig hwsim0 up
Set the channel of the radios to the same freq
sudo iwconfig wlan1 channel 1
sudo iwconfig wlan2 channel 1

The configuration files used for wpa_supplicant 2.8 and hostapd 2.8 are illustrated
in figure 4a and 4b.

network={
ssid="WPA3-Network"
psk="abcdefgh"
key_mgmt=SAE
ieee80211w=2

}

(a) wpa_supplicant config file.

interface=wlan1
ssid=WPA3-Network
hw_mode=g
channel=1
wpa=2
wpa_passphrase=abcdefgh
wpa_key_mgmt=SAE
rsn_pairwise=CCMP
ieee80211w=2
sae_anti_clogging_threshold=0

(b) hostapd config file.

42

After the configuration files have been created, the WPA3 network is launched by
executing the following commands in their respective directories:
Open a new terminal, and in the hostapd directory execute:
sudo ./hostapd hostapd_wpa3.conf -dd -K
Open another terminal, and in the directory wpa_supplicant execute:
sudo ./wpa_supplicant -D nl80211 -i wlan1 -c supp_wpa3.conf -dd -K

By executing the command sudo ifconfig hwsim0 up, traffic monitoring is enabled.
This allows the observation of the complete WPA3-SAE handshake with a packet
capturing tool such as Wireshark on the interface hwsim0. To filter the SAE au-
thentication frames, the wireshark filter wlan.fc.type_subtype==0x0b can be used.
Or even better, all frames except beacon frames can be displayed with the filter
wlan.fc.type_subtype!=0x08.

4.3.2 Connecting iwd to hostapd using WPA3-SAE

In the following section, instructions how to connect the Intel Wireless daemon to
hostapd are provided. iwd v0.188 is used as a supplicant and hostapd v2.89 is used
as an authenticator/access point [Jou19; Int19]. Virtual radio interfaces must be
created as was shown in section 4.3.1. This section assumes that hostapd uses the
virtual interface wlan3 and iwd used wlan1. The hostapd configuration that was used
is depicted in figure 5. It uses the sae_password configuration variable instead of the
wpa_passphrase variable as shown in section 4.3.1.

hw_mode=g
channel=1
ssid=ssidSAE
wpa=2
wpa_key_mgmt=SAE
wpa_pairwise=CCMP
sae_password=secret123|mac=ff:ff:ff:ff:ff:ff
ieee80211w=2
SAE threshold for anti-clogging mechanism (dot11RSNASAEAntiCloggingThreshold)
This parameter defines how many open SAE instances can be in progress at the
same time before the anti-clogging mechanism is taken into use.
sae_anti_clogging_threshold=0

Figure 5: WPA3-SAE configuration file for hostapd when connected to iwd.

Then the following commands need to be executed to start hostapd, iwd and iwctl.
TTY1: start hostapd with the above configuration
sudo ./hostapd/hostapd sae.conf -i wlan3 -K
TTY2: launch iwd daemon with the correct physical interface

8iwd 0.18, accessed on 3th August 2019, git://git.kernel.org/pub/scm/network/wireless/iwd.
git

9hostapd 2.8, accessed on 3th August 2019, https://w1.fi/releases/hostapd-2.8.tar.gz

43

phy1 belongs to wlan1
sudo ./src/iwd --debug -p phy1
TTY3: now start the iwd client
./client/iwctl
use the following commands in iwctl CLI
to connect to the "ssidSAE" network
>>> station list
>>> station wlan1 show
>>> station wlan1 disconnect
>>> station wlan1 scan
>>> station wlan1 get-networks
>>> station wlan1 connect ssidSAE

After having executed the above commands, iwd should have established a WPA3-SAE
connection with the hostapd authenticator as can be verified in the respective terminal
windows.

4.4 Remote Fuzzing

If the working machine is used as fuzzer and Synology MR2200ac Router as fuzzee,
a real-world attack environment is obtained. The development of a fuzzer in such a
environment has many drawbacks, since debugging access to proprietary routers is
usually limited. Luckily, with the Synology MR2200ac Router, it is possible to login
as root user to the BusyBox Linux operating system installed on the router.

4.4.1 Synology MR2200ac Router

The only router with WPA3-SAE support that was tested during this thesis, was the
Synology MR2200ac Router with serial number 1910QLRHMA2HS. This router supports
WPA3-Personal and WPA3-Transition mode as well as WPA2 and WPA.

After establishing a wired connection via Ethernet, a SSH daemon with an user account
with administrative login was created. A quick search revealed that the router uses
hostapd 2.7 and not the most recent version 2.8.

SynologyRouter> hostapd -v
hostapd v2.7-devel
[...]

It was not tested if the router automatically updates the firmware after connecting to
the Internet. If this is not the case, then the Synology MR2200ac Router would be
vulnerable against all the security vulnerabilities that have been published in Vanhoefs
dragonblood paper. [VR19]

After configuring the router to use WPA3-Personal with the SSID synologyWPA3, the
corresponding hostapd configuration file can be seen in figure 6.

44

SynologyRouter> cat /etc/hostapd/hostapd-wlan0-host.conf
interface=wlan0
driver=atheros
ssid=synologyWPA3
ignore_broadcast_ssid=0
ctrl_interface=/var/run/hostapd
max_num_sta=128
channel=1
wmm_enabled=1
preamble=1
bridge=lbr0
wpa_group_rekey=3600
hw_mode=g
ieee80211n=1
ht_capab=[SHORT-GI-20][DELAYED-BA][SHORT-GI-40][MAX-AMSDU-7935][HT40+]
auth_algs=1
wpa=2
wpa_key_mgmt=SAE
sae_password=letmein1234
wpa_pairwise=CCMP
ieee80211w=2
macaddr_acl=0
deny_mac_file=/etc/hostapd/hostapd-mac.list
uuid=c9a32f4e-d849-463f-ad62-e04c324274bf
wps_state=2
config_methods=label virtual_display virtual_push_button physical_push_button keypad
wps_rf_bands=ag
eap_server=1
upnp_iface=lbr0
friendly_name=Synology Router

Figure 6: Generated hostapd configuration for WPA3-Personal taken from the
Synology MR2200ac Router.

The interfaces that are used by hostapd 2.7 to establish the WPA3-Personal network
are listed in figure 7. The interface listings have been obtained with the iwconfig
command.

wlan0 IEEE 802.11ng ESSID:"synologyWPA3"
Mode:Master Frequency:2.412 GHz Access Point: 00:11:32:A5:36:E5
Bit Rate:192 Mb/s Tx-Power:16 dBm
RTS thr:off Fragment thr:off
Encryption key:590F-4C04-1BC4-ED1E-247C-B967-171C-1107 [2] Security mode:restricted
Power Management:off
Link Quality=94/94 Signal level=-97 dBm Noise level=-95 dBm
Rx invalid nwid:137 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Figure 7: The Wi-Fi interfaces powering the WPA3-Personal networks in the Synology
MR2200ac Router

45

Elaborate logging is enabled in the router. This means that it can be easily checked
which code paths of hostapd 2.7 were reached. However, the standard loglevel
includes no debugging information. Therefore, the upstart /etc/init/hostap.conf
configuration file was updated to include the flags -dd and -K to increase the logging
level and print cryptographic keys. Then the daemon was restarted with the command
restart hostap IFACE=wlan0 and increased debugging messages in the logfile could
be obtained.

After this configuration modification of the Synology MR2200ac Router, dragonfuzz.c
was launched against the router and all potential crashes were monitored via a separate
SSH connection over Ethernet. The monitoring includes observations of the hostapd
daemon, a kernel log and all restarts of related daemons.

4.5 Chosen Environment

In order to productively develop a fuzzing framework, a fuzzing environment with full
control of the access point is indispensable. Controlling the access point allows to
debug programs more efficiently and find bugs in reasonable time.

This can be done by launching a virtual software access point using hostapd. It is
reasonable to use hostapd as an access point, since most professional routers either
use hostapd directly or at least develop their own branch on top of it. In this thesis,
hostapd 2.8 was compiled on Ubuntu 18.04 and configured as WPA3-SAE access
point as was shown in section 4.3. Protected management frames were not important,
because they require support on the driver level. Furthermore, management frame
encryption affects messages merely after a successful 4-way handshake.

4.5.1 Dragonfuzz

This thesis profited immensely from the research conducted in the paper Dragonblood:
A Security Analysis of WPA3’s SAE Handshake from Vanhoef et al. [VR19]. In their
paper, Vanhoef et al. developed a tool named dragondrain [Van19] which implements
a DoS attack by abusing the anti-clogging functionality implemented in SAE. A fuzzer
named dragonfuzz.c on top of Vanhoef’s GNU licensed source code was contributed
in this thesis [Tsc19a]. Dragondrain and dragonfuzz.c are both implemented within
the aircrack-ng framework, whose main purpose is to provide appropriate radiotap
headers.

dragonfuzz.c is capable of a normal WPA3-SAE authentication exchange, including
processing beacon frames from the targeted authenticator and sending a association
request after the successful authentication. The first milestone in the development was
to negotiate a correct WPA3-SAE authentication handshake. After this, it is possible
to create stateful fuzzing tests that deliberately deviate from the correct handshake in
the hope to trigger security vulnerabilities.

46

Limitations of dragonfuzz.c are:

1. The fuzzing program only implements WPA3-SAE with elliptic curves, because
multiplicative groups are not activated by default in most WPA3-SAE implemen-
tations [VR19; Jou19].

2. The subsequent 4-way handshake is not fuzzed, because such work has already
been exhaustively done by [VP18b] [VSP17] and others. The reason is that the 4-
way handshake is not modified on a framing level when using SAE authentication,
only the input PMK has higher entropy.

47

5 WPA3-SAE Model

In order to write fuzzing tests for the WPA3-SAE handshake, a model of the handshake
needs to be derived from existing literature and standards.

The approach to derive the model follows a hybrid strategy. Tutorials and introductions
in published papers such as [VSP17] and [VR19] are considered. Furthermore, existing
standards such as the Dragonfly RFC [Har15] and even IEEE discussions in Internet
forums10 are parsed for relevant information. Unfortunately, the official IEEE Std
802.11 Wi-Fi standard [IEE16] is not open for public review and must be purchased
for around 1.100 USD11. Luckily, the relevant parts of the standard could be obtained
without purchasing the full product (For example from source code comments found
in hostapd [Jou19]). Security research would greatly benefit from a more accessible
standard.

As a further source of information, the WPA3 reference implementation in wpa_supplicant
and hostapd and iwd are analyzed. The code analysis yields a state machine of the
possible authentication frames exchanged during the WPA3-SAE handshake. It was
decided to only consider the authentication frames of the Wi-Fi connection establish-
ment process in WPA3-Personal. This means that the fuzzing framework will focus
merely on the Auth-Commit and Auth-Confirm frame.

In a first step, a general classification of vulnerability types is introduced. The chapter
concludes with a collection of fuzzing test cases that are considered to be interesting
for further investigation.

As can be seen in the sequence diagram in figure 8, a Wi-Fi station initializes the
WPA3-SAE handshake by sending an Auth-Commit frame to another station. If the
frame is valid, the station replies with an Auth-Commit frame and an Auth-Confirm
frame. If the exchange so far was correct, the station proceeds with an Auth-Confirm
frame and the WPA3-SAE authentication handshake is completed. At this stage, both
the station and access point share a common pairwise master key (PMK).

After the WPA3-SAE authentication, the station sends an association request with the
cipher that was advertised in the preceding beacon frames and probe response frames
(which are depicted in the beginning of the sequence diagram of figure 8).

After a successful association, the 4-way handshake follows. The PMK derived in the
WPA3-SAE authentication exchange is used as input to the 4-Way handshake (instead
of the PSK, which usually is a low entropy shared password). Because the PMK is
a high entropy string and is updated every time a new WPA3-SAE authentication is
performed, the 4-way handshake is immune against offline dictionary attacks and has
10IEEE 802.11 discussion about SAE, accessed on 21th August 2019, https://mentor.ieee.org/802.

11/documents?is_dcn=SAE
11See prizing for 802.11 standard, accessed on 21th August 2019, https://www.techstreet.com/ieee/

standards/ieee-802-11-2016?product_id=1867583

48

perfect forward secrecy.

WPA3-SAE is a protocol that may be initiated by both participants at the same time,
as the name Simultaneous Authentication of Equals implies. However, in this thesis,
only the common scenario where a 802.11 station connects to an 802.11 access point is
considered. In this configuration, the station sends an initial Auth-Commit frame and
receives the commit and confirm frame from the access point at the same time. This
infrastructure resembles more a client-server architecture instead of a mesh architecture.
[VR19]

5.1 Vulnerability Taxonomy

In this section, various important vulnerability classes that could affect the WPA3-SAE
handshake are presented.

1. Programming errors that lead to memory corruption vulnerabilities such as stack
and heap overflows, signed and unsigned integer overflows, null dereference errors,
format string vulnerabilities, off-by-one errors and so on

2. Timing attacks or side channel attacks

3. Cryptographic implementation mistakes

4. Denial of service attacks

5. Other logical mistakes

A model based fuzzer will most likely not be able to trigger logical vulnerabilities such
as timing attacks or side channel attacks. Usually, a fuzzing engine triggers memory
corruption vulnerabilities caused by programming errors in low level C/C++ code.
From a fuzzing strategy, all frames that have variable length fields or optional values
require complex parsing logic that may lead to implemention mistakes causing memory
corruption vulnerabilities.

5.2 Fuzzing Policy

A classic blackbox fuzzer does not care about specific protocols or protocol states. It
rather modifies frame contents according to predefined heuristics and observes if the
program crashes. An advantages is the straightforward implementation. Blackbox
fuzzers are not protocol aware and development resources are thus relatively low.

However, such as blackbox approach brings a few disadvantages with it: The generated
frames won’t pass the first rudimentary checks in the parsing functions, resulting in low
code coverage reached by the fuzzed inputs. The probability that randomly generated
frames are in the correct format is tiny. Furthermore, no state awareness is possible.

50

Therefore, a better approach is to create a protocol aware fuzzer that only modifies one
field at the time, while keeping all other frame fields static. If such an modification
triggers an error, it is obvious which alteration caused it. This fuzzing policy allows to
systematically fuzz all relevant program paths.

5.3 WPA3-SAE Framing

Figure 9: Format of a generic 802.11 management frame [Gas05].

802.11 authentication frames are a subtype of 802.11 management frames. The format
of a generic management frame is illustrated in figure 9. There exist roughly a dozen
different management frames used in the 802.11 standard to manage and control Wi-Fi
networks. The actual data is sent in 802.11 data frames. In figure 10, an overview of
different management frames is given without explicitly elaborating each frame type in
detail.

/* 802.11-2016, Table 9-1 "Valid type and subtype combinations" */
enum mpdu_management_subtype {

MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_REQUEST = 0x0,
MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_RESPONSE = 0x1,
MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_REQUEST = 0x2,
MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_RESPONSE = 0x3,
MPDU_MANAGEMENT_SUBTYPE_PROBE_REQUEST = 0x4,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE = 0x5,
MPDU_MANAGEMENT_SUBTYPE_TIMING_ADVERTISEMENT = 0x6,
MPDU_MANAGEMENT_SUBTYPE_BEACON = 0x8,
MPDU_MANAGEMENT_SUBTYPE_ATIM = 0x9,
MPDU_MANAGEMENT_SUBTYPE_DISASSOCIATION = 0xA,
MPDU_MANAGEMENT_SUBTYPE_AUTHENTICATION = 0xB,
MPDU_MANAGEMENT_SUBTYPE_DEAUTHENTICATION = 0xC,
MPDU_MANAGEMENT_SUBTYPE_ACTION = 0xD,
MPDU_MANAGEMENT_SUBTYPE_ACTION_NO_ACK = 0xE,

};

Figure 10: An overview of management frame types and their identifiers as defined in
iwd v0.18. [Int19]

The generic frame format of authentication frames is depicted in figure 11.

51

Figure 11: Format of a 802.11 authentication frame [Gas05].

The frame control field in the MAC header specifies the type of management frame. In
the case of authentication frames, the allotment of the frame control field is illustrated in
figure 12. The radiotap header is not included, since its display is merely an analytical
help provided by the mac80211 sublayer and 802.11 drivers for packet inspection tools
such as Wireshark. Furthermore, the MAC addresses in figure 12 are artificial and
originate from a hwsim simulated network as described in section 4.3.

IEEE 802.11 Authentication, Flags:
Type/Subtype: Authentication (0x000b)
Frame Control Field: 0xb000

.... ..00 = Version: 0

.... 00.. = Type: Management frame (0)
1011 = Subtype: 11
Flags: 0x00

.... ..00 = DS status: Not leaving DS or network is
operating in AD-HOC mode (To DS: 0 From DS: 0) (0x0)

.... .0.. = More Fragments: This is the last fragment

.... 0... = Retry: Frame is not being retransmitted

...0 = PWR MGT: STA will stay up

..0. = More Data: No data buffered

.0.. = Protected flag: Data is not protected
0... = Order flag: Not strictly ordered

.000 0001 0011 1010 = Duration: 314 microseconds
Receiver address: 02:00:00:00:03:00 (02:00:00:00:03:00)
Destination address: 02:00:00:00:03:00 (02:00:00:00:03:00)
Transmitter address: 02:00:00:00:00:00 (02:00:00:00:00:00)
Source address: 02:00:00:00:00:00 (02:00:00:00:00:00)
BSS Id: 02:00:00:00:03:00 (02:00:00:00:03:00)
.... 0000 = Fragment number: 0
0000 0000 0001 = Sequence number: 1

Figure 12: The MAC header of a authentication frame taken from a Wireshark packet
capture. The Wi-Fi network was created as described in section 4.3.

The authentication process usually involves a number of steps that depend on the
specific authentication algorithm. The sequence number in authentication frames orders
the steps of the authentication exchange. The status code and challenge text are used
in different ways corresponding to the authentication algorithm used [Gas05].

It is crucial to understand that there are two sequence numbers of two octets size in
an authentication management frame: One sequence number in the MAC header that

52

increases with every 802.11 frame sent and one authentication sequence number in the
frame body that specifies the current step in the authentication exchange.

The WPA3-SAE authentication algorithm uses a status code number 3. The authenti-
cation sequence number is 1 if its an Auth-Commit frame and 2 if it is a Auth-Confirm
frame. The status code of the authentication frame depends on the sequence number.
A status code of 0 indicates success. There exist a number of different status codes
for WPA3-SAE authentication and an overview is given in figure 13 for iwd 0.18 and
wpa_supplicant 2.8.

It is particularly noteworthy that the status code UNKNOWN_PASSWORD_IDENTIFIER
defined in hostapd is left undefined in iwd. This potentially indicates a difference
in frame parsing and thus room for potential vulnerabilities. The status code that
specifies a failed verified confirm message is named CHALLENGE_FAILURE.

/*
* Program: iwd 0.18
* Source: iwd/src/mpdu.h
* 802.11-2016, Section 9.4.1.9 Status Code field
*/

enum mmpdu_status_code {
MMPDU_STATUS_CODE_SUCCESS = 0,
MMPDU_REASON_CODE_UNSPECIFIED = 1,
MMPDU_STATUS_CODE_ANTI_CLOGGING_TOKEN_REQ = 76,
MMPDU_STATUS_CODE_UNSUPP_FINITE_CYCLIC_GROUP = 77,

};
/*
* Program: hostapd 2.8
* Source: src/common/ieee802_11_defs.h
* Status codes (IEEE Std 802.11-2016, 9.4.1.9, Table 9-46) */

define WLAN_STATUS_SUCCESS 0
define WLAN_STATUS_ANTI_CLOGGING_TOKEN_REQ 76
define WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED 77
define WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER 123

Figure 13: SAE-Authentication status codes from iwd and hostapd [Int19; Jou19].

5.3.1 The Auth-Commit Frame

The structure of a Auth-Commit frame depends on various factors. As of June 2019,
there is a ongoing discussion on frame formats in IEEE working groups, such as the
group TGm12.

For example, the document from Daniel Harkins uploaded on the 13th March 2019
with the document number 38713 addresses various issues regarding a lack of clarity of
12TGm IEEE group discussion, accessed on 15th August 2019, https://mentor.ieee.org/802.11/

documents?is_dcn=sae
13Document number 387, accessed on 15th August 2019, https://mentor.ieee.org/802.11/dcn/19/

53

the standard. The document with the title Fixing some SAE issues contains a similarly
interesting discussion14.

From the discussion of those documents, it is obvious that the programmers that
implement the SAE protocol do not fully understand how Auth-Commit and Auth-
Confirm frames are constructed and parsed. This discussion is very interesting to the
matter of this thesis, because it allows the derivation of fuzzing tests based on expressed
ambiguities. Especially when considering the fact that there are already routers that
support WPA3-SAE released to the market months before this discussion (Example:
Synology Mesh Router MR2200ac), it is questionable whether vendors implemented
the standard in a consistent and correct manner.

The most important ambiguities occurring in the documents are quoted in the following
paragraphs:

CID 2590 states that "The Password Identifier element is included in the unprotected
authentication frame. It may violate the privacy of users (household). For example, it
exposes a group of devices and number of devices that are sharing the same password.
Particularly, when these devices belongs to the same household (apartment) in an
apartment building, it violates the privacy of users/residents." [Har19d]

and CID 2690 informs that "In SAE when Password Identifier is used, STA sends
Password Identifier in the clear in auth frame. Since the Password Identifier is typically
the identifier of a long-term password, the same Password Identifier would be sent each
time a STA performs SAE authentication with a given network, and this could be used
by bad actors to track a user’s location with privacy implications." [Har19d] with the
proposal of the authors to "during each SAE auth/assoc procedure, the AP can securely
provision STA with a randomly-generated pseudonym for the SAE Password Identifier
which the STA uses on the next SAE auth/assoc with that AP." [Har19d]

SAE allows the usage of an Password Identifier (PI) that maps a confidential
password to an unconfidential identifier. The idea is to provide the authentication
algorithm with an clear text identity, such that the authenticator knows which entity
attempts to authenticate. The key idea is that Wi-Fi stations only need to send the
identifier and both the authenticator and supplicant immediately know which password
should be used in the password derivation algorithm and subsequent handshake.

The concerns revolving around the PI are of privacy nature. An passive observer can
learn what devices belong to which person, when he observes that the authentication uses
the same password identifier among different devices. Furthermore, the geographical
movements of an user may be tracked when the user authenticates with PIs [Har19d].

Daniel Harkins rejects the issue with the remark that the MAC address of the stations
carries the same information regarding assignability and that no new attack vectors

11-19-0387-02-000m-addressing-some-sae-comments.docx
14Document number 733, accessed on 15th August 2019, https://mentor.ieee.org/802.11/dcn/19/

11-19-0733-00-000m-fixing-some-sae-issues.docx

54

would be opened [Har19d]. Furthermore, he strictly rejects the removal of the PI
functionality, because "it is not mandatory to use" and it is an "useful feature" [Har19d].
However, Harkin endorses the idea of obfuscating the password identifier in CID 2690,
but notes that there might be issues managing the pseudonyms when the number of
users grows that share the same PI [Har19d].

There is another request in document CID 2546 that proposes to transform the scalar,
elements and anti-clogging token into information elements, such that parsing follows
the type-length-value logic and does not depend on fixed sizes. Harkins rejects the
issue with the remark that "parsing is based on the length of components and not their
contents" [Har19d]. However, the last part of his statement is not entirely true in
practical implementations, because the parsing of the password identifier is based on
the contents of the three first bytes of the password identifier, as the code listing from
hostapd in figure 14 proves.

static int sae_is_password_id_elem(const u8 *pos, const u8 *end)
{

return end - pos >= 3 &&
pos[0] == WLAN_EID_EXTENSION &&
pos[1] >= 1 &&
end - pos - 2 >= pos[1] &&
pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER;

}

Figure 14: Source code of the parsing of password identifiers in hostapd 2.8. [Jou19]

The framing format of a Auth-Commit frame is depicted in table 2.

Auth Algorithm No (2 Bytes) Auth Transaction Seq No (2 Bytes) Status Code (2 Bytes)
Group Id (2 Bytes) Scalar (32 Bytes)
Element X-coordinate (32 bytes) Element Y-coordinate (32 bytes)

Table 2: Auth-Commit frame without anti-clogging token and password identifier.

By inspecting the code of hostapd 2.8 and especially the function
sae_parse_commit_token(), an optional password identifier can be located after the
scalar and element or after the scalar and element and anti-clogging token, if a optional
anti-clogging token is present. The anti-clogging token in hostapd 2.8 is usually 32
octets long, which is the length of a HMAC_SHA256 digest.

Furthermore, when multiplicative groups mod p are used instead of ECC, the length of
the scalar and element is 2 · |p| instead of 3 · |p|, because in ECC, the element consists of
an point with two coordinates. Therefore, |p| is different among ECC and multiplicative
gropus, where the former is usually up to 10 times smaller [PP09].

55

In table 3 below, a commit frame with a optional anti-clogging token and an optional
password identifier is illustrated. The password identifier may be located before or
after the anti-clogging token.

Auth Algorithm No (2 Bytes) Auth Trans Seq (2 Bytes) Status Code (2 Bytes)
Group Id (2 Bytes) Scalar (32 Bytes)
Element X-coordinate (32 bytes) Element Y-coordinate (32 bytes)

Optional Password Identifier (1 to 254 Bytes)
Anti-Clogging-Token (32 to 256 Bytes)

Optional Password Identifier (1 to 254 Bytes)

Table 3: Auth-Commit frame with optional anti-clogging token and optional password
identifier present. The password identifier can be located before or after the
anti-clogging token.

The password identifier must have a preamble with size of three octets, where the first
octet is set to WLAN_EID_EXTENSION with value 255, the second octet is a length value
that must be at least 1 and maximally 254, and the third octet is set to
WLAN_EID_EXT_PASSWORD_IDENTIFIER with value 33.

Request Anti-Clogging Token Frame A special commit message is constructed when
the access point has anti-clogging tokens enabled as defense mechanism against DoS
attacks. If a station sends an Auth-Commit frame to an access point and this access
point has anti-clogging tokens enabled, the access point will answer with an anti-clogging
token in a Auth-Commit frame with a format as illustrated in figure 4. The status
code must be set to WLAN_STATUS_ANTI_CLOGGING_TOKEN_REQ.

Auth Algorithm No (2 Bytes) Auth Trans Seq (2 Bytes) Status Code (2 Bytes)
Group Id (2 Bytes) Anti-Clogging-Token (32 to 256 Bytes)

Table 4: Frame format when an access point requests an anti-clogging token from the
supplicant.

Invalid Group Commit Frame An authenticator shall reject commit frames when the
supplicant initiates with an unsupported group id. This is achieved by replying to an
Auth-Commit frame with another Auth-Commit frame with status
WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED. This request-response cycle
continues as long as the authenticator does not run out of alternative groups.

56

5.3.2 The Auth-Confirm Frame

The Auth-Confirm frame is much simpler than the Auth-Commit frame. It consists of
two fields: A send confirm number of two octets size and a confirm token that is 32
octets long. In the confirm exchange, both authentication participants confirm that
they derived the same secret and are in possession of the same password [Har15].

Auth Algorithm No (2 Bytes) Auth Trans Seq (2 Bytes) Status Code (2 Bytes)
Send Confirm (2 Bytes) Confirm Token (32 Bytes)

Table 5: The message structure of an Auth-Confirm frame.

The confirm token consists of a HMAC-SHA256 hash using the key confirmation key
(kck) as hashing key and the send confirm number, the own scalar and own element
followed by the peer scalar and peer element as concatenated input message. In order
to verify the Auth-Confirm token of an authenticator, the supplicant uses the send
confirm number of the authenticator, the authenticator’s scalar and element and its
own scalar and element as inputs for the hash construction. The resulting hash is also
called a verifier. The computation of the confirm token is illustrated in figure 15 as
comment from hostapd [Jou19].

/* Confirm

* CN(key, X, Y, Z, ...) =
* HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)

* confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
* peer-commit-scalar, PEER-COMMIT-ELEMENT)
* verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
* PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
*/

Figure 15: Computation of the Auth-Confirm token as conducted in hostapd. [Jou19]

What exactly is the purpose of two octet long send confirm number that is part of the
confirm frame?

The send confirm number in the confirm exchange is a counter that tracks the number
of confirm frames being sent. Every time a SAE authentication participant transmits
a confirm frame, the send confirm number is incremented. When checking a confirm
frame, the value of the send confirm number is compared against the received confirm
number. The received confirm frame is verified only if the send confirm number is set
to 216 − 1 and a own send confirm frame has been sent. This logic can be verified
in source code listing 16. Each participant has a variable for the own send confirm
number and the peer send confirm number.

57

sc = l_get_le16(frame);

/*
* ... the value of send-confirm shall be checked. If the value is not
* greater than Rc or is equal to 2^16 - 1, the received frame shall be
* silently discarded.
*/
if (sc <= sm->rc || sc == 0xffff)

return false;

/*
* If the verification fails, the received frame shall be silently
* discarded.
*/
if (!sae_verify_confirm(sm, frame))

return false;

/*
* If the verification succeeds, the Rc variable shall be set to the
* send-confirm portion of the frame, the Sync shall be incremented and
* a new SAE Confirm message shall be constructed (with Sc set to
* 2^16 - 1) and sent to the peer.
*/
sm->sync++;
sm->sc = 0xffff;

sae_send_confirm(sm);

Figure 16: The send confirm number is set to 216 − 1 when the received confirm frame
was successfully verified, source code obtained from iwd. [Int19]

5.4 Finite State Machine

Now that the framing of the WPA3-SAE authentication has been introduced, a finite
state machine of all possible state transitions as described in the standard IEEE Std
802.11-2016 can be derived [IEE16]. Those state transitions give valuable insight and
attacking points for potential fuzzing strategies.

The states in WPA3-SAE model are the following [IEE16]:

1. Nothing: The initial state of a new protocol execution.

2. Committed: In this state, the finite state machine has sent an Auth-Commit
frame and is waiting for an Auth-Commit frame and Auth-Confirm frame from
the peer.

3. Confirmed: The finite state machine sent an Auth-Commit and Auth-Confirm
frame and is waiting for the Auth-Confirm frame of the peer.

4. Accepted: The protocol execution has been successfully terminated after receiv-
ing an Auth-Commit and Auth-Confirm frame.

58

Based on the standard, a state transition table for the SAE finite state machine may
be created. According to the standard, implementations need to take care of those 22
possible states referenced in table 6 [IEE16].

The left most column of table 6 specifies the state transition. The middle column defines
the events and conditions that trigger the state transition. The right column defines
the action and consequences that a standard compliant WPA3-SAE implementation
should implement.

SAE implementations have a retransmission timer for WPA3-SAE frames and a PMK
expiration timer. When the PMK expiration timer times out, a new handshake execution
is initiated. A timeout for the retransmission timer causes a retransmission for the
frame in question. Furthermore, implementations manage three counter variables. A
sync variable that keeps track of all resynchronizations that have occurred. A send
confirm and receive confirm counter that keep track of the number of confirm frames
sent to the station itself and the peer. [IEE16]

Furthermore, the executing SAE process maintains a database of protocol instances
[IEE16], secrets for anti-clogging tokens and counters for committed and confirmed
states for the individual protocol instances. [IEE16]

State Transition Events / Conditions Behavior

Nothing → Nothing Recv commit frame with
bad group

Reply with commit frame with status
77, delete protocol state

Nothing → Nothing Recv commit frame with
status 76 or 77

Delete protocol state

Nothing → Committed SAE authentication initi-
ated by user or program

Set sync to 0, set send confirm to 0, set
recv confirm to 0, send commit frame
with success status, reset retransmis-
sion timer

Nothing → Confirmed Recv commit frame with
status 0 and valid group

Set sync to 0, set send confirm to 0, set
recv confirm to 0, increment send con-
firm, send commit frame with success
status, send confirm frame with success
status, reset retransmission timer

Committed → Committed Recv commit frame with
invalid group, the num-
ber of state synchroniza-
tions have not exceeded
the threshold

Reply with commit frame with sta-
tus 77, increment the synchronization
counter, reset retransmission timer

Committed → Committed Recv commit frame with
rejected group, but there
are more groups to chose
from

Set the synchronization counter to 0,
reply with commit frame with success
status, reset retransmission timer

59

State Transition Events / Conditions Behavior

Committed → Committed Recv confirm frame with
rejected group, the num-
ber of state synchroniza-
tions have not exceeded
the threshold

Increment the synchronization counter,
reply with commit with success status,
reset retransmission timer

Committed → Committed Retransmission timer
fired and the number of
state synchronizations
have not exceeded the
threshold

Increment the synchronization counter,
reply with commit with success status,
reset retransmission timer

Committed → Committed Recv commit frame with
a supported group that
differs from the one of-
fered, peer has a numer-
ically smaller MAC ad-
dress

Reply with commit frame with success
status, reset retransmission timer

Committed → Committed Recv commit with invalid
anti-clogging token

Set the synchronization counter to 0,
reply with commit with success status,
reset retransmission timer

Committed → Confirmed Recv commit frame with
valid group and a group
that was offered

Increment the send confirm counter, re-
ply with confirm frame with status suc-
cess, reset retransmission timer

Committed → Confirmed Recv commit with valid
group that differs from
the group proposed, peer
has numerically higher
MAC address

Set the synchronization counter to 0, in-
crement the send confirm counter, reply
with commit frame with status success,
then send confirm frame with success
status, reset the retransmission timer

Confirmed → Nothing Synchronization counter
is too large

Delete protocol state

Confirmed → Confirmed Recv commit frame and
synchronization counter is
not too large

Increment the send confirm number, in-
crement synchronization counter, send
commit frame with success status, send
confirm frame, reset the retransmission
timer

Confirmed → Confirmed Recv commit frame with
invalid anti-clogging to-
ken

Reset retransmission timer

Confirmed → Confirmed Retransmission timer
fired, synchronization
counter is not too large

Increment the send confirm number, in-
crement synchronization counter, reply
with confirm frame, reset the retrans-
mission timer

Confirmed → Accepted Recv confirm frame and
the confirm token is valid

Reset the PMK expiration timer

60

State Transition Events / Conditions Behavior

Accepted → Accepted Recv confirm frame, the
recv confirm number is
not too large, synchroniza-
tion counter is not too
large

Increment synchronization counter, re-
ply with confirm frame

Accepted → Accepted Recv confirm frame, au-
thentication is valid, syn-
chronization counter is
not too large

Increment synchronization counter, re-
ply with confirm frame

Accepted → Nothing PMK expiration timer
timed out

Delete protocol state

Accepted → Nothing Synchronization counter
is too large

Delete protocol state

Table 6: The state transition table of WPA3-SAE. States have been inferred from the
IEEE Std 802.11 2016 standard [IEE16].

5.5 Fuzzing Test Cases

In the previous sections, the framing of the WPA3-SAE authentication exchange has
been treated in-depth, such that fuzzing strategies can be proposed now. Broadly
speaking, fuzzing tests will either target the processing and parsing functionality of the
Auth-Commit or Auth-Confirm frame. Furthermore, all fuzzing test cases are executed
within a supplicant/authenticator infrastructure: The fuzzer is the supplicant, the
fuzzee is the authenticator.

Even though the DoS vulnerability in iwd 0.18 was discovered during a manual code
audit (Compare section 6.2), it could have been easily found by a fuzzer that creates
anti-clogging token commit frames with variable sized anti-clogging tokens. Therefore,
one common fuzzing strategy is to alter the size of one field and keep all other fields of
static size.

An complete overview of all implemented fuzzing test cases and their test case descrip-
tions are presented in table 7. Most fuzzing test cases target the initial Auth-Commit
frame and test a single path of failure in access point implementations. This helps
enormously with the tracing of potentially triggered memory corruption errors. Only
three of all fuzzing cases are stateful. However, the number of possible fuzzing mutations
is large and amounts for all interesting corner cases.

The implementation of the fuzzing test cases illustrated in table 7 can be obtained
from [Tsc19a] and [Tsc19c].

61

Fuzzing Test Name Fuzzing Test Description

FUZZ AUTHENTICATION
FRAME

Create a authentication frame were only the authentication
method is set to 3 (SAE). The status and sequence authen-
tication fields are fuzzable. Add a random fuzzable payload of
data. The recipient is expected to ignore or reject the frame.

INVALID ELEMENTS
AND SCALARS

Create a Auth-Commit frame with a scalar and elements set to
all zero. Use a element that is the point at infinity in the ECC
group. Use scalars and elements that are outside the allowed
ranges.

REFLECT SCALAR AND
ELEMENT

Upon receiving a Auth-Commit frame, reflect the scalar and
element that were received from the peer. Peer is expected to
abort the handshake.

RANDOM GROUP Pick a random, but valid group in a otherwise valid Auth-Commit
frame. The commit frame is expected to be rejected if the group
is not supported.

RANDOM SCALAR Fuzz a random but valid scalar in a otherwise correct Auth-
Commit frame. The handshake is expected to fail after checking
the confirm token.

RANDOM ELEMENT Fuzz a random but valid element in a otherwise correct Auth-
Commit frame. The handshake is expected to fail after checking
the confirm token.

INVALID LENGTH Inject a random sized blob of bytes after a otherwise valid Auth-
Commit frame. The authentication is expected to either proceed
without errors (because implementations ignore excess bytes) or
fail.

RANDOM TOKEN Add a random anti-clogging token without receiving a prior
anti-clogging token request. The token check is expected to be
ignored.

INVALID ELEMENT Add random bytes as the element in the Auth-Commit frame.
The construction of an group element is expected to fail on the
receiving side.

RANDOM PASSWORD IE Inject a random fixed sized password identifier at the end of a
otherwise valid Auth-Commit frame. The password identifier is
expected to be rejected.

VARIABLE TOKEN Inject a commit frame with variable sized anti-clogging token
from length 0 to 500.

VARIABLE PASS IDENTI-
FIER

Inject a Auth-Commit frame with random and variable sized
password identifier with length between 0 to 255. Inject multiple
password identifiers at different locations.

ALL STATUS CODES Inject a valid Auth-Commit frame and enumerate all authen-
tication status codes while the authentication algorithm field
remains SAE (3) and sequence number 1 (Auth-Commit). Add
a random sized payload with random data after a valid group,
scalar and elements. The Auth-Commit frame is expected to be
rejected, because the status code is nonzero (no success)

62

Fuzzing Test Name Fuzzing Test Description

SEND INITIAL CONFIRM
FRAME

Send a valid Auth-Confirm frame instead of beginning the authen-
tication with a Auth-Commit frame. The recipient is expected
to reject the Auth-Confirm frame.

TRIGGER ANTI-
CLOGGING, DIFFERENT
SCALAR/ELEMENTS

Stateful fuzzing. Trigger anti-clogging threshold at the access
point. Then reply with a Auth-Commit frame with correct anti-
clogging token set, but then continue fuzzing the group, elements,
scalar and password identifier. The recipient is expected to reject
the Auth-Commit frame.

VALID AUTH-COMMIT,
FUZZED AUTH-CONFIRM
PAYLOAD

Stateful fuzzing. Send a valid Auth-Commit frame and wait
for the Auth-Commit response from the peer. Then fuzz all
fields in the corresponding Auth-Confirm frame. The recipient is
expected to reject the Auth-Confirm frame.

VALID AUTH-COMMIT,
FUZZED SAE AUTHENTI-
CATION FRAME

Stateful fuzzing. Send a valid Auth-Commit frame and wait
for the Auth-Commit response from the peer. Then fuzz the
status and sequence fields in the authentication frame body. Set
the authentication algorithm to 3 (SAE). Add a fuzzable random
blob of data at the end.

Table 7: Fuzzing test cases implemented in the Dragonfuzz Framework. Not all fuzzing
test cases are stateful. The Dragonfuzz Framework implementation can be
obtained from [Tsc19a].

63

6 Results

6.1 Dragonfuzz

The hybrid strategy of this thesis yielded three different fuzzing approaches that together
form the Dragonfuzz Framework [Nik19]. Summarized, a C program was created
that allows to fuzz selected states in the SAE handshake (The fuzzing test cases can be
inspected in table 7). Additionally, a Python program was developed that fuzzes the
Auth-Commit frame using the boofuzz fuzzing framework. Furthermore, the greybox
fuzzing engine libFuzzer was used to target selected functionality in the open source
projects hostapd and iwd [Jou19; Int19]. The detailed instructions how to replicate
the results from the Dragonfuzz Framework can be obtained from their respective Git
repositories [Nik19].

The first result is the development of a blackbox fuzzing program named dragonfuzz.c15

that is capable of remotely fuzzing access points with WPA3-Personal support [Tsc19a].
dragonfuzz.c runs on top of the aircrack-ng framework and makes use of boilerplate
code that Vanhoef et al. contributed in the Dragonblood paper [VR19]. Cryptography
support is provided by the open source library OpenSSL. dragonfuzz.c is capable of
executing a complete WPA3-SAE authentication exchange with full ECC cryptography
support, similar to a proper supplicant such as wpa_supplicant or iwd. Therefore,
dragonfuzz.c is a fuzzing test case generator that targets selected states and config-
urations in the WPA3-SAE handshake. The software is written in C and consists of
around 2500 lines of source code with comments included.

Furthermore, a Python fuzzing script named dragonfuzz.py16 was developed on
top of the boofuzz17 fuzzing framework [Tsc19c]. Boofuzz is the successor of the
famous sulley network fuzzing engine [Boo19] and can be considered a blackbox
network-fuzzing framework. dragonfuzz.py complements the functionality provided
by dragonfuzz.c: All fuzzing test cases that don’t need complicated stateful be-
havior such as password derivation and cryptographic verification are handled by
dragonfuzz.py. Using the modern boofuzz fuzzing framework enables quick blackbox
fuzzing development without spending time reinventing a basic fuzzy string mutation
engine. While dragonfuzz.c can be considered a test case generator for single, stateful
fuzzing tests that all need to be implemented individually in a time consuming pro-
cess, dragonfuzz.py follows a more traditional fuzzing strategy that aims to uncover
low-hanging programming mistakes.

Put differently, dragonfuzz.c can fuzz individual states in the SAE handshake be-
cause it implements all necessary functionality to simulate a complete handshake.
dragonfuzz.py on the other hand cannot derive a password element and only fuzzes
the initial Auth-Commit frame. dragonfuzz.py never reaches all code paths in the
15dragonfuzz.c, accessed on 5th August 2019, https://gitlab.com/NikolaiT/dragonfuzz/
16dragonfuzz.py, accessed on 5th August 2019, https://github.com/NikolaiT/dragonfuzz/
17boofuzz, accessed on 20th August 2019, https://boofuzz.readthedocs.io/en/latest/

64

Auth-Confirm step, because it lacks cryptography support that is necessary to derive
the password element. However, from a fuzzing coverage standpoint, the Auth-Confirm
frame has limited relevance, because there are only two static sized fields in the
Auth-Confirm frame that include potentially vulnerable parsing logic.

The third part of the Dragonfuzz Framework contains a greybox fuzzing campaign
targeting two functions in the open source software hostapd and iwd which are
responsible for parsing 802.11 authentication frames such as the Auth-Commit and
Auth-Confirm frame [Nik19].

6.1.1 Tested Hardware and Software

Unfortunately, at the time of writing in August 2019, there was a sparse amount of
hardware that actually supports WPA3-SAE [All19b]. Even though the WPA3-Personal
certification was released in early 2018, the Wi-Fi industry manufacturing hardware has
not yet adopted the new standard on a broad scale [AVM19]. Therefore, Dragonfuzz
could only be tested against one WPA3 capable device and against one access point
implementation with WPA3-SAE support. Vanhoef et al. tested another WPA3 capable
device, but could not release the product name for confidentiality reasons [VR19].

Target of Evaluation Fuzzing Test Result

Synology MR2200ac Router All vulnerabilities from the Dragonblood paper apply
[VR19], because the router uses hostapd 2.7 if not up-
dated manually. No additional vulnerabilities have been
found with a remote fuzzing test with the Dragonfuzz
Framework.

hostapd 2.8 / wpa_supplicant
2.8

No new vulnerabilities found when remotely tested with
the blackbox fuzzing framework dragonfuzz.py and
dragonfuzz.c.

iwd 0.18 located in iwd/src/sae.c
[Int19]

A DoS vulnerability was found in the handling of anti-
clogging tokens during a manual code review. A detailed
description can be found in section 6.2.

sae_rx_authenticate() located in
iwd/src/sae.c in iwd 0.18 [Int19]

Extensive fuzzing with libFuzzer and AddressSanitizer,
MemorySanitizer and UndefinedBehaviorSanitizer. The
fuzzing tests revealed a unsigned integer overflow. De-
tailed explanation of the approach in section 6.1.2.

ieee802_11_mgmt() located in
hostap/src/ap/ieee802_11.c in
hostapd v2.9-devel [Jou19]

Extensive fuzzing with libFuzzer and AddressSanitizer,
MemorySanitizer and UndefinedBehaviorSanitizer and a
large WPA3-SAE frame corpus. Detailed explanation of
the approach in section 6.1.3. No critical vulnerabilities
have been found.

Table 8: Overview of the fuzzedWPA3-Personal capable software and hardware. [Nik19]

As table 8 illustrates, the only WPA3-SAE hardware device tested was the Synology

65

#!/bin/bash

export CC='clang-8'
export CXX='clang++-8'

autoreconf -i

./configure CFLAGS='-O1 -fno-omit-frame-pointer
-g -ggdb3 -fsanitize=address,fuzzer-no-link

-fsanitize=integer' --prefix=/usr CC=clang-8
--enable-tools --enable-debug --enable-asan

make all -j4

make check TESTS='unit/test-sae'

Figure 17: The bash instructions to compile iwd 0.18 with libFuzzer support.

MR2200ac Router released in late 2018 by the company Synology. If the router is not
automatically updated, it suffers from all security vulnerabilities published in [VR19].
No new security vulnerabilities could be found with the fuzzing framework Dragonfuzz.

Furthermore, the main testing target during this thesis was hostapd 2.8 [Jou19].
hostapd 2.8 fixed all security vulnerabilities demonstrated in the paper dragonblood
[VR19]. Fuzzing with dragonfuzz.c and dragonfuzz.py did not yield any new security
vulnerabilities. It is conjectured that most low hanging programming mistakes that
can be triggered by a blackbox fuzzer have already been found, because hostapd has
been extensively fuzzed with libFuzzer as part of the distributed cloud fuzzing project
OSS-Fuzz from Google18.

The hostap source code ships with a dedicated fuzzing test suite targeting the function
ieee802_11_mgmt() in src/ap/ieee802_11.c which is responsible for parsing all
kinds of 802.11 management frames. The fuzzing corpus includes multiple SAE frame
examples for ECC and FFC.

6.1.2 Coverage-guided Greybox Fuzzing of iwd

The 802.11 authenticator iwd 0.18 [Int19] was fuzzed with a coverage-guided greybox-
fuzzing approach with libFuzzer which is part of the LLVM compiler toolchain. As
depicted in table 8, the function sae_rx_authenticate() located in iwd/src/sae.c
was extensively fuzzed. Figure 19 illustrates the libFuzzer entry point for the test
driver implementation targeting sae_rx_authenticate(). The compile instructions
for iwd 0.18 with libFuzzer can be reviewed in figure 17, the instructions to build
and link the fuzzing driver can be looked up in figure 18.
18hostap fuzzing with libFuzzer, accessed on 5th August 2019, https://github.com/google/

oss-fuzz/tree/master/projects/hostap

66

fuzz_sae_LDFLAGS = -fsanitize=fuzzer,address,leak
-fsanitize=integer -fsanitize=undefined

Figure 18: Flags for the fuzzing driver fuzz_sae.c that were added to iwd’s
Makefile.am.

As the code listing in figure 19 reveals, a valid 802.11 authentication header was
prepended to the fuzzed input data in order to direct the fuzzer in the correct target
function. No serious programming mistakes have been found using fuzzing efforts with
libFuzzer with AddressSanitizer, MemorySanitizer and UndefinedBehaviorSanitizer
and clang version clang version 8.0.1. The highest code coverage reached as in-
dicated by libFuzzer was 210. However, libFuzzer detected an unsigned integer
overflow in line 1043 in the source code file src/sae.c:

ret = sae_verify_packet(sm, L_LE16_TO_CPU(auth->transaction_sequence),
L_LE16_TO_CPU(auth->status),
auth->ies, len - 6);

The unsigned integer overflow occurs when the frame length is five or smaller. It is
possible to manufacture a SAE frame which results in a unsigned integer overflow in
the expression len − 6. However, a manual audit revealed that this overflow has no
further consequences, since the only critical code that uses the overflowed len variable
was fixed after reporting the DoS vulnerability explained in detail in section 6.2.

Even though iwd seems to have been thoroughly tested with unit tests and other test
cases, no prior coverage guided fuzzing approaches have been observed. It would be a
good decision to fuzz all critical code blocks that consume remotely tainted frames,
similar as it is currently done by the hostap developers. A fuzzing testing strategy
in iwd would be especially advisable in other Wi-Fi protocol implementations such as
EAPOL or WPS, because the parsing complexity there is much higher.

6.1.3 Coverage-guided Greybox Fuzzing of hostapd

The 802.11 access point hostapd v2.9-devel [Jou19] has been submitted to an
coverage-guided greybox fuzzing campaign with libFuzzer [Nik19].

As depicted in table 8, the function ieee802_11_mgmt() located in src/ap/ieee802_11.c
has been subjected to a greybox fuzzing test. The fuzzing test driver implementation
can be obtained from the corresponding Github repository19. This Github repository
also includes the Makefile and make instructions used to compile and link hostapd
v2.9-devel with libFuzzer and the required memory sanitizers.

The fuzzing corpus was compiled with SAE authentication frames recorded via Wire-
shark during a simulated WPA3 network, which was created according to description
19fuzz_sae_hostap, accessed on 11th August 2019, https://github.com/NikolaiT/fuzz_sae_hostap

67

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
struct test_data *td = l_new(struct test_data, 1);
struct auth_proto *ap = test_initialize_fuzz(td);

uint8_t *auth_mgmt_header = "\xB0\x00\x3A\x01\x02\x00\x00\x00\x00\x00\x02\x00"
"\x00\x00\x02\x00\x02\x00\x00\x00\x02\x00\x10\x04";

size_t frameSize = 24;
size_t bufSize = Size + frameSize;
uint8_t fuzzData[bufSize];
memset(fuzzData, 0, bufSize);
memcpy(fuzzData, auth_mgmt_header, frameSize);
memcpy(fuzzData + frameSize, Data, Size);
auth_proto_rx_authenticate(ap, (uint8_t *)fuzzData, bufSize);
test_destruct(td);
auth_proto_free(ap);
return 0;

}

Figure 19: fuzz_sae: The libFuzzer driver that targets sae_rx_authenticate() in
iwd. [Int19]

in section 4.3. The maximum coverage reached during the fuzzing campaign was 346.
No programming mistakes were uncovered in this fuzzing test.

The fuzzer was started using the command

./sae sae_corpus_2 -detect_leaks=0 -max_len=1050 -print_final_stats=1

and has been manually confirmed to reach the SAE processing and parsing functionality
located in src/common/sae.c.

Fuzzing the function ieee802_11_mgmt() has several disadvantages. Since
ieee802_11_mgmt() is placed relatively high in the call stack of hostapd, the function
is responsible for handling all possible management frames in Wi-Fi networks. Therefore,
the fuzzer might reach code paths unrelated to the handling of SAE frames.

Furthermore, hostapd handles SAE authentication messages in a queue with limited
capacity. Each call to auth_sae_process_commit() is delayed linearly with the number
of pending SAE authentication messages. Before fuzzing, this delaying mechanism had
to be disabled manually.

An advantage of targeting a function high in abstraction is the increased likelihood
to trigger logical flaws in the handling of SAE frames. Put differently, if a lower tier
function such as sae_parse_commit() located in src/common/sae.c would have been
chosen as a fuzzing entry point, much less code could be covered by the fuzzer.

Furthermore, the detection of memory leaks had to be disabled because it appears that
hostapd does not properly free allocated memory when processing commit messages.
Those tiny memory leaks accumulate quickly during a fuzzing campaign with many

68

million executions and result in an abort panic after around five minutes.

6.2 Denial of Service Vulnerability in iwd

While the author of this thesis (Nikolai Tschacher, nikolai@tschacher.ch) manually
audited the source code of the wireless daemon iwd v0.1820 (iNet wireless daemon), a
Denial Of Service vulnerability was located by him in the handling of anti-clogging
tokens in iwd/src/sae.c. iwd is a potential modern replacement for wpa_supplicant
with very few dependencies and low footprint [Int19]. iwd only makes use of the small
ELL (Embedded Linux Library)21 and does not depend on external cryptographic
libraries such as Openssl or Wolfssl, because the Linux kernel crypto subsystem is
used for all cryptographic operations. As a consequence, iwd runs only on Linux
distributions and requires a recent kernel to work. iwd is a good fit for small embedded
devices that need a 802.11 supplicant to communicate over radio. iwd is often used in
repeaters, Internet-of-Things devices and all kinds of electronic household hardware
with Wi-Fi support and industrial wireless devices.

The vulnerability is related to the handling of anti-clogging tokens in the WPA3-SAE
authentication handshake. Ironically, the anti-clogging defense of WPA3-SAE tries to
mitigate DoS attacks that arise when an attacker floods the victim with many forged
commit frames which invoke a cascade of costly commit frame processing operations:
Password element derivation, quadratic residue blinding and the mitigations against
side channel attacks and timing attacks themselves [VR19].

The anti-clogging mechanism consists of a simple cookie exchange procedure. When the
anti-clogging defense is activated in the access point, upon reception of an Auth-Commit
frame from the supplicant, the access point replies with an new Auth-Commit frame
with the anti-clogging token present. The client needs to reflect the token before the
initial commit frame is processed. The cookie is created from the MAC addresses of
both the supplicant and the access point. The authenticator alone may generate valid
cookies, because she is in possession of the required random secret that is used to hash
a concatenation of the MAC addresses of the supplicant and access point:

anti_clogging_token = SHA256 (MAC ap||MAC sta||random)

By using tokens, the access point may throttle the processing of Auth-Commit frames
based on the identity of the supplicant. The code responsible for processing anti-clogging
tokens in the authenticator in iwd 0.18 can be inspected in figure 20.

20iwd, accessed on 5th August 2019, git://git.kernel.org/pub/scm/network/wireless/iwd.git
21ELL, accessed on 5th August 2019, https://01.org/ell

69

static void sae_process_anti_clogging(struct sae_sm *sm, const uint8_t *ptr,
size_t len)

{
/*
* IEEE 802.11-2016 - Section 12.4.6 Anti-clogging tokens
*
* It is suggested that an Anti-Clogging Token not exceed 256 octets
*/

if (len > 256) {
l_error("anti-clogging token size %zu too large, 256 max", len);
return;

}

sm->token = l_memdup(ptr + 2, len - 2);
sm->token_len = len - 2;
sm->sync = 0;

sae_send_commit(sm, true);
}

Figure 20: The function that parses anti clogging tokens in iwd/src/sae.c v0.18.
[Int19]

An interesting question is if the frame length variable len can be 1 or 0, resulting in
the expression l_memdup(ptr + 2, len - 2); which evaluates to malloc(-1) with
a negative number −1. This invocation will result in an abort() panic as can be seen
in figure 21.

LIB_EXPORT void *l_malloc(size_t size)
{

if (likely(size)) {
void *ptr;

ptr = malloc(size);
if (ptr)

return ptr;

fprintf(stderr, "%s:%s(): failed to allocate %zd bytes\n",
STRLOC, __func__, size);

abort();
}

return NULL;
}

Figure 21: DoS vulnerability: Calling malloc() with negative values will abort the
iwd daemon.

It turns out that a function stack leading to len = 1 is possible by forging a commit
frame with a status code that indicates that it carries an anti-clogging token (status

70

code 0x4c or WLAN_STATUS_ANTI_CLOGGING_TOKEN_REQ) but does deliberately have an
empty payload.

Frame:
0000 b0 97 20 02 00 00 00 00 18 01 02 00 00 00 00 01
0010 50 99 20 02 00 00 00 00 00 1b 24 c3 03 00 01 00 P.$.....
0020 4c 00 20 L.

Figure 22: Hexdump of a possible frame that triggers the DoS vulnerability in iwd
0.18. [Int19]

The frame must be a valid management frame with subtype authentication and the
authentication methods must be SAE. The status code must be set to
MMPDU_STATUS_CODE_ANTI_CLOGGING_TOKEN_REQ to properly reach the vulnerable
sae_process_anti_clogging() function. The total length of the frame must be either
34 or 35 bytes, otherwise there won’t be an subtraction of len − 2 that results in a
negative number. If the frame has 35 bytes, the last byte may have any value. A
possible frame that triggers the DoS vulnerability can be seen in figure 22.

Can the vulnerability be remotely triggered? When a vulnerable iwd supplicant
tries to connect to an access point using SAE and the access point has anti-clogging
tokens enabled, the supplicant initiates the WPA3-SAE handshake by sending an initial
Auth-Commit frame. The access point replies with an Auth-Commit frame with the
status set to
MMPDU_STATUS_CODE_ANTI_CLOGGING_TOKEN_REQ. If this frame is a valid authentica-
tion frame using WPA3-SAE and has a length of 34 or 35 bytes, the supplicant will
abort due to calling malloc with either −1 or −2. This will terminate iwd and the
user will be unable to connect to this deliberately maliciously behaving access point.

A rouge access point could camouflage itself as another access point and thus an DoS
attack may be launched against any BSSID. In the worst case, as soon as the DoS
vulnerability was triggered, the iwd process aborts and does not restart.

Another plausible attacking scenario would be the injection of a malicious anti-clogging
frame into an observed WPA3-SAE authentication handshake by spoofing the MAC
address of the authenticator. This allows an remote attacker to crash any client trying
to initiate a WPA3-SAE handshake, because Auth-Commit frames are not encrypted
or protected and spoofing MAC addresses is trivial.

This security issue was fixed shortly after getting into contact with the maintainers of
iwd 0.18 in commit 0241fe81dff67f4b134e01d10bd884e9509a9d6f22 [Tsc19b].

22Commit that fixes the DoS, accessed on 5th August, https://git.kernel.org/pub/scm/network/
wireless/iwd.git/commit/?id=0241fe81dff67f4b134e01d10bd884e9509a9d6f

71

6.3 Discussion

Research conducted during this thesis uncovered a DoS vulnerability in the handling
of anti-clogging tokens (See section 6.2). This vulnerability was found during a manual
code review and not with the hybrid fuzzing methodology applied in this thesis.

It is believed that a model based fuzzing approach is not the most promising strategy
when bug hunting the WPA3-SAE handshake. A greybox and blackbox fuzzing strategy
is more applicable to software that is heavy in parsing functionality, such as parsing
information elements from beacon and probe request frames or handling EAPOL 4-way
handshake messages.

A better fuzzing target would have been the entire iwd 802.11 supplicant software,
because there are no previous fuzzing attempts observed and the supplicant has been
open sourced only since 2016. Furthermore, iwd seems to be an viable candidate to
replace wpa_supplicant. hostapd on the other side is continuously fuzzed as part of
the distributed fuzzing project OSS-Fuzz [OSS19], which makes new fuzzing discoveries
even less likely.

6.3.1 Practical Obstacles

Security research in the Wi-Fi ecosystem is nontrivial. There are many practical
obstacles that dampen the development of an effective fuzzing framework. For example,
a powerful fuzzer should be able to spoof its MAC address and receive all frames in reply
to the spoofed source MAC address. This capability is required when stress testing the
computational costly handling of Auth-Commit frames in WPA3-SAE access points.

To enable this functionality, a specific kernel module is required for each dedicated
802.11 network interface and firmware23 that sends ACK management frames when
receiving a frame with spoofed MAC address. However, developing kernel modules is a
nontrivial task and requires significant understanding of Linux kernel internals and the
mac80211 and nl80211 subsystems, as well as the specific firmware. For this reason,
the fuzzing framework contributed by this thesis does not support generating 802.11
ACK frames in reply to frames with spoofed MAC addresses.

Furthermore, a remote fuzzer has to deal with various problems related to the unreliable
radio medium: 802.11 frame loss and retransmission, detection of crashes of fuzzed
access points, unreliable hardware or drivers and so on.

Another major practical issue is the detection of security implicative crashes in pro-
prietary Wi-Fi hardware caused by fuzzed frames. Crash detection in the Synology
MR2200ac Router investigated during this thesis was straightforward, because the
23Example of a kernel module extension which configures Atheros drivers to forward all frames from

a specific MAC address range, accessed on 30th July 2019, https://github.com/vanhoefm/ath_
masker

72

hostapd daemon process can be monitored over a wired SSH connection. However, not
all proprietary Wi-Fi hardware provides shell access over an Ethernet connection. For
example, many IoT devices or 802.11 repeaters have no such debugging functionality.
For those devices, it is a nontrivial task to determine if and what frame caused a
security critical crash.

6.3.2 Disadvantages of Remote Fuzzing

It is not entirely clear if remote fuzzing is the best strategy to uncover security vulnera-
bilities regarding WPA3-SAE. The only open source access point implementation that
was targeted during this thesis was hostapd. The only WPA3 capable hardware tested
during this thesis was the Synology MR2200ac Router using hostapd 2.7 internally.

Research conducted during this thesis has shown that WPA3 authentication is in most
cases handled by a user space service process such as hostapd. However, in the first
half of 2019, Cypress developers introduced SAE authentication offloading capabilities
into the Linux kernel netlink interface nl80211, which allows wireless firmware to
handle WPA3 authentication24. User space programs may provide the SAE password
in a NL80211_ATTR_AUTH_DATA data structure via the nl80211 NL80211_CMD_CONNECT
command, which requests to connect to a specified BSSID without separated authenti-
cation and association steps. The full release of the Cypress open source driver can be
found online25. Cypress uses a broadcom wireless driver internally26.

Therefore, it is possible that WPA3-SAE authentication is handled by the firmware itself,
when the NL80211_FEATURE_SAE flag is advertised by the driver. As a consequence,
an improved fuzzing policy compared to remote fuzzing would be to setup a Linux
system with the whole collection of access point software and firmware under test on a
single system. An immediate advantage would be the better monitoring capabilities
and easier testing infrastructure compared to a remote fuzzing target. Additionally,
it would be possible to monitor crashes in a straightforward way. If needed, physical
802.11 radios could be created between fully controllable machines.

6.3.3 Limitations of the Fuzzing Approach

Blackbox fuzzing with boofuzz as well as coverage-guided greybox fuzzing with fuzzing
engines such as libFuzzer and AFL proved to be highly effective in detecting security
vulnerabilities in many widely used software projects. For example, the Google initiated
24Mailing list discussion about SAE auth offload, accessed on 29th July 2019, https://patchwork.

kernel.org/patch/10748075/
25Cypress Linux Wi-Fi Driver Release, accessed on 29th July 2019, https://community.cypress.com/

docs/DOC-17441
26Broadcom wireless driver https://github.com/torvalds/linux/tree/master/drivers/net/

wireless/broadcom/brcm80211

73

cloud fuzzing project OSS-Fuzz uncovered around 14.000 bugs in over 200 open source
projects as of August 2019 [OSS19].

The SAE handshake however consists of only two frames with a total of five possible
fields in the Auth-Commit management body (group id, scalar, element, optional
anti-clogging token, optional password identifier) and only two possible fields in the
Auth-Confirm frame (send confirm number, confirm token). Therefore, the parsing
of those two authentication frames has limited complexity and thus the likelihood of
programming mistakes in the parsing code is similarly slim. Hence, a solely fuzzing
based approach as conducted in this thesis covers a fraction of all existing vulnerability
classes.

As the recent security survey of the WPA3-SAE handshake of Vanhoef et al. has shown
[VR19], all of their discovered vulnerabilities were either logical security vulnerabilities,
downgrade attacks, side channel attacks or Denial of Service attacks. They did not
manage to find classical programming mistakes that lead to security implications.
However, it is extremely unlikely that such logical vulnerabilities are triggered with a
blackbox or greybox fuzzing based method as conducted during this thesis.

6.3.4 Symbolic Execution instead of Fuzzing

Using white box fuzzing approaches such as symbolic execution instead of greybox and
blackbox fuzzing is a possibly lucrative strategy for future work. Symbolic execution
guarantees full code coverage by generating symbolic inputs instead of concrete ones.

Execution forks as soon as a new code branch is encountered and state conditions
are recorded on each new conditional branch. Whenever a concrete test case needs
to be generated, a satisfiability modulo theories (SMT) resolver is applied [CDE+08].
However, symbolic execution is expensive in terms of computational resources and
not practically feasible in implementations that make use of extensive cryptographic
libraries due to an explosion of possible branches within cryptographic primitives
[VP18b].

A whitebox fuzzing method was used in recent research to fuzz the 4-way handshake in
open source 802.11 software such as hostap [VP18b]. The methodology has proven
to be promising, motivating the application of similar endeavors in the WPA3-SAE
handshake as proposal for future work.

In this thesis, even though being aware of the advantages of symbolic execution, it was
decided against it for the following reasons:

1. The output of cryptographic primitives would have to be treated as a fresh
symbol, because symbolic execution of algorithms such as AES or HMAC have a
computationally large impact when being subjected to a SMT solver [VP18b].

2. The relevant functionality of WPA3-SAE must be isolated from the huge codebase

74

of hostapd in order to make it suitable for symbolic execution. For example,
the functions sae_parse_commit() and sae_check_confirm() would need to
be isolated in the file hostapd-2.8/src/common/sae.c. This is problematic,
because the isolation of functionality creates new vulnerabilities while existing
flaws are destroyed.

6.4 Conclusion

Writing an efficient fuzzer that targets the WPA3-SAE authentication handshake in the
wild is a difficult assignment, because there exists almost no hardware that supports
the WPA3-SAE handshake at the time of writing this thesis (August 2019).

Instead a hybrid approach was followed. One method was the in-process, coverage-
guided greybox fuzzing of the open source Wi-Fi supplicant iwd and access point
implementation hostapd with the fuzzing engine libFuzzer.

Another fuzzing strategy was a remote, over-the-radio blackbox fuzzing of the Synology
MR2200ac Router, one of the rare devices that already supports the new WPA3 certi-
fication. Remote fuzzing was conducted with a fuzzing framework named Dragonfuzz
that was developed during this thesis. This blackbox fuzzing engine targets specific
states in the WPA3-SAE handshake which were inferred from a finite state machine
model derived in section 5.4.

As a concluding statement, the author conjectures that a fuzzing based approach using
modern, powerful greybox fuzzing engines such as AFL or libFuzzer is only meaningful,
if the target of evaluation is rich in parsing functionality. This is not necessarily the
case with WPA-SAE implementations, where parsing is limited to a few fields of static
size. The room for logical flaws such as timing attacks or cryptographic implementation
mistakes is much larger, as recent research has proven [VR19].

A manual security audit that checks for logical vulnerabilities is probably more suc-
cessful in uncovering security vulnerabilities compared to a automated fuzzing based
methodology. However, such a manual review process requires extensive experience
from the auditor in various areas of computer security research in order to yield potential
results.

Nevertheless, the research conducted in this thesis yielded a harmful DoS vulnerability
in the 802.11 supplicant software iwd and thus justifies the chosen methodology.

75

List of Figures
1 High-level overview of the SAE commit and confirm handshake. 27
2 MAC subsystem of modern Linux kernels. 38
3 Bash script that kills potentially interfering processes with hostapd. . 40
5 WPA3-SAE configuration file for hostapd when connected to iwd. . . 43
6 Generated hostapd configuration for WPA3-Personal taken from the

Synology MR2200ac Router. 45
7 The Wi-Fi interfaces powering the WPA3-Personal networks in the

Synology MR2200ac Router . 45
8 The complete model of the WPA3-SAE handshake, including announcing

beacons frames, probe request and probe response frames, association
request frames and the finalizing 4-way handshake 49

9 Format of a generic 802.11 management frame 51
10 An overview of management frame types and their identifiers 51
11 Format of a 802.11 authentication frame 52
12 The MAC header of a authentication frame taken from a Wireshark

packet capture. 52
13 SAE-Authentication status codes from iwd and hostapd. 53
14 Source code of the parsing of password identifiers in hostapd 2.8. [Jou19] 55
15 Computation of the Auth-Confirm token 57
16 The send confirm number is set to 216 − 1 when the received confirm

frame was successfully verified . 58
17 The bash instructions to compile iwd 0.18 with libFuzzer support. . 66
18 Flags for the fuzzing driver fuzz_sae.c that were added to iwd’s

Makefile.am. 67
19 The libFuzzer driver that targets sae_rx_authenticate() in iwd . . 68
20 The function that parses anti clogging tokens 70
21 DoS vulnerability: Calling malloc() with negative values will abort the

iwd daemon. 70
22 Hexdump of a possible frame that triggers the DoS vulnerability 71

76

List of Tables
1 Key concepts of coverage guided greybox fuzzing as implemented in AFL

or libFuzzer. 8
2 Auth-Commit frame without anti-clogging token and password identifier. 55
3 Auth-Commit frame with optional anti-clogging token and optional

password identifier present. The password identifier can be located
before or after the anti-clogging token. 56

4 Frame format when an access point requests an anti-clogging token from
the supplicant. 56

5 The message structure of an Auth-Confirm frame. 57
6 The state transition table of WPA3-SAE. 61
7 Fuzzing test cases implemented in the Dragonfuzz Framework. 63
8 Overview of the fuzzed WPA3-Personal capable software and hardware. 65

77

References
[Adr+15] David Adrian et al. “Imperfect forward secrecy: How Diffie-Hellman fails

in practice”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2015, pp. 5–17.

[All19a] WiFi Alliance. WPA3 Standard. https://www.wi-fi.org/download.
php?file=/sites/default/files/private/WPA3_Specification_v1.
0.pdf. WiFi Alliance, 2018, [Online; accessed on 21th July 2019].

[All19b] WiFi Alliance. WiFi Allicance WPA3-Personal Product Finder. https:
//www.wi-fi.org/product-finder-results?sort_by=certified&
sort_order=desc&categories=4,6&capabilities=16. www.wi-fi.org,
2019, [Online; accessed on 29th July 2019].

[AO16] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[AVM19] AVM. Avm security news. https : / / avm . de / service / aktuelle -
sicherheitshinweise/. AVM, 2019, [Online; accessed on 29th July
2019].

[Bel19] Fabrice Bellard. QEMU. https://www.qemu.org/. QEMU.org, 2019,
[Online; accessed on 21th July 2019].

[Beu+15] Benjamin Beurdouche et al. “A messy state of the union: Taming the
composite state machines of TLS”. In: Security and Privacy (SP), 2015
IEEE Symposium on. IEEE. 2015, pp. 535–552.

[BM19] S. Bellovin and M. Merritt. U.S. Patent 5,241,599. - Cryptographic
protocol for secure communications. https://patents.google.com/
patent/US5241599A/en. Google Patents, 1991, [Online; accessed on 21th
June 2019].

[Böh+17] Marcel Böhme et al. “Directed greybox fuzzing”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2017, pp. 2329–2344.

[Boo19] Boofuzz. Boofuzz fuzzing framework, Sulley successor. https://boofuzz.
readthedocs.io/en/latest/. Github.com, 2019, [Online; accessed on
29th July 2019].

[BPR17] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-
based greybox fuzzing as markov chain”. In: IEEE Transactions on
Software Engineering 45.5 (2017), pp. 489–506.

[BSI19] BSI. “Empfehlungen und Schlüssellängen, Tabelle 3.1”. In: Technische
Richtlinie TR-02102-1, Bundesamt für Sicherheit in der Informationstech-
nik (BSI), Stand 22. Februar 2019 (2019), p. 28.

78

[BT08] Laurent Butti and Julien Tinnes. “Discovering and exploiting 802.11
wireless driver vulnerabilities”. In: Journal in Computer Virology 4.1
(2008), pp. 25–37.

[CDE+08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs.” In: OSDI. Vol. 8. 2008, pp. 209–224.

[CH14] Dylan Clarke and Feng Hao. “Cryptanalysis of the dragonfly key exchange
protocol”. In: IET Information Security 8.6 (2014), pp. 283–289.

[Cha+19] Oliver Chang et al. OSS-Fuzz: Five months later, and rewarding projects.
https : / / security . googleblog . com / 2017 / 05 / oss - fuzz - five -
months - later - and . html. Google, 2017, [Online; accessed on 30th
August 2019].

[Che+18] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing.” In: NDSS. 2018.

[Clu19] Clusterfuzz contributors. Coverage-guided vs blackbox fuzzing. https://
google.github.io/clusterfuzz/. Github.com, 2019, [Online; accessed
on 3th August 2019].

[DP15] Joeri De Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implemen-
tations.” In: USENIX Security Symposium. 2015, pp. 193–206.

[Gas05] Matthew Gast. 802.11 Wireless Networks: The Definitive Guide, 2nd
Edition by Matthew S. Gast. Chapter 4. 802.11 Framing in Detail, Section:
Management Frames. O’Reilly Media, Inc., 2005.

[Har08] D. Harkins. “Simultaneous Authentication of Equals: A Secure, Password-
Based Key Exchange for Mesh Networks”. In: 2008 Second International
Conference on Sensor Technologies and Applications (sensorcomm 2008).
Aug. 2008, pp. 839–844. doi: 10.1109/SENSORCOMM.2008.131.

[Har15] D. Harkins. Dragonfly Key Exchange. RFC 7664. RFC Editor, Nov. 2015,
pp. 1–18. url: https://www.rfc-editor.org/rfc/rfc7664.txt.

[Har19a] D. Harkins. Secure Password Ciphersuites for Transport Layer Security
(TLS). RFC 8492. RFC Editor, Feb. 2019, pp. 1–40. url: https:
//www.rfc-editor.org/rfc/rfc8492.txt.

[Har19b] Dan Harkins. Dragonfly: A PAKE Scheme. https://datatracker.
ietf.org/meeting/83/materials/slides-83-cfrg-0. IETF 83, 2012,
[Online; accessed on 6th July 2019].

[Har19c] Dan Harkins. Reference Implementation of WPA3-SAE. https : / /
sourceforge.net/p/authsae/wiki/Home. sourceforge.net, 2014, [Online;
accessed on 21th June 2019].

79

[Har19d] Dan Harkins. DCN 387, Group TGm, Addressing some SAE comments.
https://mentor.ieee.org/802.11/dcn/19/11-19-0387-02-000m-
addressing-some-sae-comments.docx. IEEE, March 2019, [Online;
accessed on 16th June 2019].

[Hie+10] Guido R Hiertz et al. “IEEE 802.11s: the WLAN mesh standard”. In:
IEEE Wireless Communications 17.1 (2010), pp. 104–111.

[HR10] Feng Hao and Peter Ryan. “J-PAKE: authenticated key exchange without
PKI”. In: Transactions on computational science XI. Springer, 2010,
pp. 192–206.

[htt19] https : / / stackoverflow . com / users / 4975822 / artm. Architecture
of modern Linux kernels. https://stackoverflow.com/questions/
21456235/how-nl80211-library-cfg80211-work. stackoverflow.com,
Octobre 2015, [Online; accessed on 28th August 2019].

[IEE16] IEEE. IEEE Std 802.11. 2016. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Spec. IEEE, 2016.

[Int19] Intel. iwd - iNet wireless daemon. Version 0.18. May 11, 2019. url:
https://git.kernel.org/pub/scm/network/wireless/iwd.git/.

[Jab19] D. Jablon. U.S. Patent 6,226,383. - Cryptographic methods for remote
authentication. https : / / patents . google . com / patent / US6226383.
Google Patents, 1997, [Online; accessed on 21th July 2019].

[Jou19] Jouni Malinen and contributors. Hostapd. Version 2.8. Apr. 21, 2019.
url: http://w1.fi/hostapd/.

[Kav19] Sumanth Kavuri. Protocol Stack in Wi-Fi Chipsets. http://80211notes.
blogspot.com/2014/08/protocol-stack-in-wi-fi-chipsets.html.
80211notes.blogspot.com, 2014, [Online; accessed on 16th July 2019].

[KK07] Sylvester Keil and Clemens Kolbitsch. “Stateful fuzzing of wireless device
drivers in an emulated environment”. In: Black Hat Japan (2007).

[LK14] Yehuda Lindell and Jonathan Katz. Introduction to modern cryptography.
Chapman and Hall/CRC, 2014.

[LŠ15] Jean Lancrenon and Marjan Škrobot. “On the Provable Security of the
Dragonfly protocol”. In: International Information Security Conference.
Springer. 2015, pp. 244–261.

[Man+18] Valentin JM Manes et al. “Fuzzing: Art, science, and engineering”. In:
arXiv preprint arXiv:1812.00140 (2018).

[MFS90] Barton P Miller, Louis Fredriksen, and Bryan So. “An empirical study of
the reliability of UNIX utilities”. In: Communications of the ACM 33.12
(1990), pp. 32–44.

80

[MN08] Manuel Mendonça and Nuno Neves. “Fuzzing wi-fi drivers to locate
security vulnerabilities”. In: Dependable Computing Conference, 2008.
EDCC 2008. Seventh European. IEEE. 2008, pp. 110–119.

[Nik19] Nikolai Tschacher. Dragonfuzz Framework. Version 1.0. https : / /
gitlab.com/NikolaiT/dragonfuzz, https://github.com/NikolaiT/
dragonfuzz/, https://github.com/NikolaiT/fuzz_sae_hostap com-
mit 0101c59. 2019, [Online; accessed on 2nd September 2019].

[OSS19] OSS-fuzz. Continuous Fuzzing for Open Source Software - OSS-fuzz.
https://github.com/google/oss-fuzz/. Github.com, 2019, [Online;
accessed on 3th August 2019].

[Per19] Trevor Perrin. TLS Review of Dragonfly PAKE. https://mailarchive.
ietf.org/arch/msg/tls/A_SfHI4BsdAi4miklBs3TvUbu-Y. Windows
Phone Central, December 2013, [Online; accessed on 23th June 2019].

[PP09] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[Tsc19a] Nikolai Tschacher. dragonfuzz.c, commit 42bb1e34. https://gitlab.
com/NikolaiT/dragonfuzz. Github.com, 2019, [Online; accessed on 21th
July 2019].

[Tsc19b] Nikolai Tschacher. Iwd v0.18 Denial of Service. https://git.kernel.
org/pub/scm/network/wireless/iwd.git/tree/src/sae.c, Commit:
0241fe81dff67f4b134e01d10bd884e9509a9d6f. git.kernel.org, 2019, [Online;
accessed on 29th July 2019].

[Tsc19c] Nikolai Tschacher. dragonfuzz.py, commit d19be24. https://github.
com/NikolaiT/dragonfuzz/. Github.com, July 2019, [Online; accessed
on 21th July 2019].

[Van19] Maty Vanhoef. Dragondrain. https://github.com/vanhoefm/dragondrain-
and-time/. Github.com, 2019, [Online; accessed on 21th July 2019].

[VP17] Mathy Vanhoef and Frank Piessens. “Key reinstallation attacks: Forcing
nonce reuse in WPA2”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM. 2017,
pp. 1313–1328.

[VP18a] Mathy Vanhoef and Frank Piessens. “Release the Kraken: New KRACKs
in the 802.11 Standard”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM. 2018,
pp. 299–314.

[VP18b] Mathy Vanhoef and Frank Piessens. “Symbolic execution of security
protocol implementations: handling cryptographic primitives”. In: 12th
{USENIX} Workshop on Offensive Technologies ({WOOT} 18). 2018.

81

[VR19] Mathy Vanhoef and Eyal Ronen. “Dragonblood: A Security Analysis
of WPA3’s SAE Handshake.” In: IACR Cryptology ePrint Archive 2019
(2019, [Online; accessed on 30th August 2019]). https://eprint.iacr.
org/2019/383, p. 383.

[VSP17] Mathy Vanhoef, Domien Schepers, and Frank Piessens. “Discovering
logical vulnerabilities in the Wi-Fi handshake using model-based testing”.
In: Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM. 2017, pp. 360–371.

[wir19] wireless.wiki.kernel.org. WiFi Glossary. https : / / wireless . wiki .
kernel.org/en/developers/documentation/glossary. 2019, [Online;
accessed on 30th July 2019].

[wla19] wlan1nde.wordpress.com. WPA3, improving your wlan security. https:
//wlan1nde.wordpress.com/2018/09/14/wpa3- improving- your-
wlan-security/. wlan1nde.wordpress.com, 2018, [Online; accessed on
21th July 2019].

[Zel+19a] Andreas Zeller et al. “Generating Software Tests”. In: Generating Software
Tests. Retrieved 2019-05-21 20:25:44+02:00. Saarland University, 2019.
url: https://www.fuzzingbook.org/html/00_Table_of_Contents.
html.

[Zel+19b] Andreas Zeller et al. “Greybox Fuzzing”. In: Generating Software Tests.
Retrieved 2019-05-19 14:42:27+02:00. Saarland University, 2019. url:
https://www.fuzzingbook.org/html/GreyboxFuzzer.html.

82

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den September 10, 2019

83

