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Abstract

Wireless local area networks have become an essential component of many
households today. The widely used wireless encryption standards WPA2 and
WPA3 offer comprehensive protection against attacks originating from outside
the network. However, entities within a network have numerous possibilities
to violate the confidentiality, authenticity and integrity of data transmitted by
other network participants. This thesis addresses the problem by proposing an
amendment of the above mentioned protocols that enforces the use of identity-
based keys. It is shown that many insider attacks are no longer feasible due
to the protocol modification, while the impact on performance and usability
remains moderate.
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1. Introduction
1.1. Motivation
The Internet of Things (IoT) already has a lasting impact on our life. What a few
years ago was still considered dreams of the future has now become a matter of course
for many people. The smartphone, for example, has established itself as an all-rounder
that can control not only communication but also lighting, shopping, kitchen appliances
and even your own front door. More and more people are deciding to optimize everyday
household processes with the help of networked devices. According to a recent study,
the worldwide installed base of IoT devices will increase from 27 billion in 2017 to
73 billion in 2025 [1]. But in addition to progress and comfort, this new trend also
entails risks. Most IoT devices are built with cost and efficiency as the driving factor,
but suffer from poor security configurations and open designs [2]. IoT devices are
usually equipped with a number of sensors and at the same time offer the possibility
of establishing a network connection through which the collected information can be
transmitted. The collected information can range from the location of a home to
the living habits of a person. While this user data can certainly contribute to the
optimization of smart systems, privacy concerns arise.
Given the weak security and valuable user data, IoT devices are also a worthwhile

target for hackers. A compromised device can be utilized as gateway to further attack
other units in a home network. Effects could range from simple backdoor injection to
stealing user information and credentials to even robbery of the victim’s property [3].
Furthermore, the discovery of Mirai in 2016 showed the extent of malware threats. The
malware was used to build a botnet of about 500,000 compromised IoT devices that
later became responsible for some of the largest Distributed Denial-of-Service (DDoS)
attacks ever seen [4].

In the past, it was often assumed that all clients who had access to a home network
were trustworthy. Comprehensive concepts have been developed in recent years to
protect home networks from external attacks, but it has often been overlooked that
threats can also originate from within the network itself. Large network infrastructures,
such as those in big companies or universities, offer more protection from inside because
different requirements were placed on the network protocol from the very beginning.
As the number of networked devices in private households increases, so does the risk
of acquiring a device that exploits its privileged position, either because it has been
hacked or because it passes on confidential data carelessly. The following thesis will
address this problem and propose a protocol adaptation to strengthen the security of
home networks against attacks originating from inside the network.
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1.2. Goals
The main goal of this thesis is to elaborate a protocol amendment for the state-of-the-art
wireless security protocols Wi-Fi Protected Access 2 (WPA2) and Wi-Fi Protected
Access 3 (WPA3). The amendment aims to provide clients in home networks with
an encrypted channel to the Access Point (AP) that cannot even be decrypted by
network members. Furthermore, it is intended to ensure that clients can be reliably
identified, even if they try to change their identity. Proper identification should help
to guarantee that an AP can reliably separate clients from each other. In order to
deploy the proposed protocol adaptation, compatibility with the existing supplicant
implementation must be ensured. Secondary goals considering the amendment are
good performance and usability, which should be maintained as well as possible, while
achieving the primary goals.

Another objective is to provide the reader of this thesis with a deeper understanding
of the underlying problems and to raise awareness of the need to improve existing home
network security.

1.3. Structure
The remainder of this thesis follows the ensuing outline. Chapter 2 introduces all major
security protocols for wireless networks. The selection will be limited to WPA2 and
WPA3, whose operating principles are described below. Furthermore, the vulnerabilities
of these protocols and the attacks they allow are explained in detail. Chapter 3 gives
an overview of related works and research on this topic. In chapter 4, the proposed
protocol adaptations are presented in pseudo code and explained at length. Chapter D
briefly outlines the Proof-of-Concept (PoC) implementation details and introduces the
hardware and software used to run the extension. In chapter 6, the protocol adaptation
will be compared to the genuine implementation in terms of a runtime analysis, memory
consumption analysis and binary size comparison. Furthermore, it is discussed how
the protocol modification could have been done differently to achieve similar and even
better results. Finally, the last chapter will summarize the results. Last but not least,
this thesis contains four appendices, which hold the documentation and configuration
files of the practical work.
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2. Fundamentals and Underlying Problems
In 1997, The Institute of Electrical and Electronics Engineers (IEEE) developed the
IEEE 802.11 standard, which describes the guidelines on how to create a network in
which clients can communicate wirelessly. The original protocol does not take any
measures to ensure confidentiality, authenticity or integrity; it transmits data in pure
plain text. The need for secure encryption soon became apparent and in the last 23
years several amendments have been released by the IEEE to satisfy stronger security
requirements. At the time of writing, four major security protocols have been developed
for the 802.11 standard: Wired Equivalent Privacy (WEP), Wi-Fi Protected Access
(WPA), WPA2 and WPA3. WEP, developed in 1999, was the first protocol used to
secure wireless networks. It is nowadays regarded as insecure given significant flaws that
allow one to break its encryption within minutes [5, 6]. WPA was quickly developed in
2003 to provide a secure alternative to WEP. To ensure compatibility with hardware
targeting WEP, WPA’s underlying Temporal Key Integrity Protocol (TKIP) uses
the Rivest Cipher 4 (RC4) for encryption, just as WEP, but with per-packet RC4
keys. It was developed as a temporary solution to replace WEP without requiring
the replacement of legacy hardware. Since January 2009, TKIP has been considered
insufficiently secure and the IEEE advises against its use [7]. Given that WEP and
WPA are no longer secure, WPA2 and WPA3 will be the focus of the rest of this paper.

2.1. Wi-Fi Protected Access 2
In 2004, the Wi-Fi Alliance launched a new version ofWPA, calledWPA2. It implements
large parts of the 802.11i standard. While it is still possible to use the old and
insecure TKIP method for legacy hardware, they introduced the Counter Mode Cipher
Block Chaining Message Authentication Code Protocol (CCMP). CCMP provides
confidentiality by encrypting the data according to the Advanced Encryption Standard
(AES) in Counter (CTR) mode. Lastly, for authentication and integrity, a Cipher
Block Chaining (CBC)-Message Authentication Codes (MAC) is utilized. The block
cipher AES is classified in the year 2020 by the “Bundesamt für Sicherheit in der
Informationstechnik” (BSI) as secure with a minimum key length of 128 bits [8].

There are two different authentication methods in all WPA protocols, called WPA-
Personal and WPA-Enterprise. In WPA-Enterprise with 802.1X authentication, the
client authenticates (mostly with a unique username and password pair) to an au-
thentication server. The topology is based on three instances, the supplicant, the
authenticator and the authentication server : The authentication process is initiated by
the supplicant (e.g. the client or station who wants to connect to the network). They
ask the authenticator (e.g. the AP or router) for network access. The authenticator
forwards the credentials to the authentication server (e.g. Remote Authentication
Dial-In User Service (RADIUS) server), which will eventually decide whether to grant
access. The decision is then sent back to the authenticator. WPA-Enterprise does
not require a specific authentication protocol, but uses the Extensible Authentication
Protocol (EAP) for encapsulation of other authentication protocols [9]. There exists
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various EAP types like the Lightweight Extensible Authentication Protocol (LEAP),
EAP Transport Layer Security (EAP-TLS), EAP Tunneled Transport Layer Security
(EAP-TTLS) and many more [10].

WPA-Enterprise, as the name suggests, is often used in large network infrastructures,
such as for big companies or universities. Since it requires some expertise to set up
and maintain the network, there exists a more lightweight authentication method
called WPA-Personal. Using this method, the client can authenticate using just a
secret key called Pre-Shared Key (PSK). This method is often used in private home
networks, small office or home office (SoHo) environments and in small companies.
When implemented correctly, both approaches offer reliable security, but include some
advantages and disadvantages that will be discussed later.

In order to understand the problems which emerge with WPA2-Personal, it is worth
taking a closer look how the protocol works. Since multiple network members use the
same PSK, they can’t be distinguished by their credentials. Therefore, the Media-
Access-Control-Address (MAC address) assigned to the network card of each device
determines the identity. WPA2 ensures that after every successful authentication new
ephemeral session keys are negotiated between the supplicant and the AP. The session
keys are negotiated using the 4-way Extensible Authentication Protocol over Local Area
Network (EAPoL) handshake. Both the supplicant and AP generate random numbers,
the so-called Authenticator Number Only Used Once (ANONCE) and Supplicant
Number Only Used Once (SNONCE), and send them to each other in plain text.
Subsequently, they both derive the same Pairwise Transient Key (PTK) from the two
NONCEs, the MAC addresses of the supplicant and AP for identification and the
Pairwise Master Key (PMK) for authentication. In WPA2-Personal, the PSK is used
as PMK, whereas in WPA2-Enterprise the PMK is prior sent from the authentication
server to the supplicant via EAP. The PTK is finally used to derive several session
keys like the unicast and group keys used for the actual encryption with CCMP.

2.2. Weaknesses of Wi-Fi Protected Access 2 Personal
All components needed to derive the PTK, and thus be able to decrypt the actual data,
are sent in plain text over the radio, excluding the PMK. Therefore, it is crucial for
the security of WPA2 that the PMK is kept secret. In the event of WPA2-Personal,
all supplicants share the same PSK from which they can derive the PMK. This brings
us to the core problem: Clients on the same WPA2-PSK network can decrypt and
encrypt each other’s traffic. The only requirement is that they have recorded another
client’s traffic from the very begin of the session. The information in the recorded
4-way handshake combined with the knowledge of the PSK gives an adversary the
opportunity to derive the PTK. The PTK can then be used to gradually decrypt all
CCMP encrypted data frames. Given that packet numbers and counters are used in
CCMP, it is important that the adversary has captured all packets from the client. In
the event of a client already connected to the network, an adversary can exploit the
fact that managements frames aren’t verified or replay-protected by default. Hence, the
attacker could make the target leave the network by sending forged deauthentication
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packets. Supplicants are programmed to regain connection to the network right after
they have been deauthenticated. This allows an adversary to record the new session
from the beginning.
With the ability of decrypting other client’s traffic at hand, there exists a large

variety of attack vectors an adversary could perform. First things first, all clear text
network protocols could be exploited without further effort. E-mails send and accessed
over the Simple Mail Transfer Protocol (SMTP), the Internet Message Access Protocol
(IMAP) or the Post Office Protocol 3 (POP3); data transmitted over the File Transfer
Protocol (FTP), Telnet or SQLnet; or credentials sent with the Hypertext Transfer
Protocol (HTTP) are no longer confidential. The data can easily be collected and
decrypted with programs like wireshark, tcpdump or airodump-ng.
Attacks using more sophisticated vectors are also within the bounds of possibility:

One could try to gain a Man-In-The-Middle (MITM) position with the use of Address
Resolution Protocol (ARP) spoofing. ARP spoofing (or poisoning) is the process of
actively sending out unsolicited ARP packets on the network to alter the ARP table of
two victims (in most cases another client and the AP). By altering the ARP table, the
adversary establishes a connection to both victim machines and relays the messages
between them. Both victims believe they are communicating directly to each other,
when in reality the communication flows through the host performing the attack. Some
home routers have implemented proprietary solutions to detect and avoid ARP spoofing
but according to the Hole 196 vulnerability, forged ARP responses can be sent directly
to the client and therefore circumvent the AP [11]. Ample research has been conducted
towards developing secure address resolution protocols, like TARP [12] or signed ARP
[13], but none have become a standard.
Once the MITM position is established through ARP spoofing, there are various

exploits an adversary could perform. They could use a SSL-stripping attack on websites
without HTTP Strict Transport Security (HSTS) protection to downgrade HTTPS
connections to HTTP. They could conduct Domain Name System (DNS) spoofing to
redirect an ignorant client to a fishing website and with a little luck harvest the client’s
credentials. They could drop all packages instead of relaying them to the original
destination, which will result in a Denial-of-Service (DoS) attack. Or they could modify
messages and inject additional content, hence violate the integrity of the data. The
list of possible scenarios and the damage they may create is huge.
In addition to ARP spoofing, one can acquire the MITM position using the Evil

Twin Attack. Here, instead of connecting to the existing AP and trying to redirect
the packet flow, an adversary mimics the AP and persuades a client to connect to
the new “fake” network. The adversary creates their own AP using a Service Set
Identification (SSID) and PSK identical to the original AP. Existing built-in Wi-Fi
supplicant implementations assumes that all the APs with the same SSID are legitimate
and automatically connects to the AP with the maximum Received Signal Strength
Indication (RSSI) value [14]. If an adversary accomplishes to present an AP with a
higher RSSI than the legitimate AP, clients will likely connect to the “evil twin”. As a
result, all packets are sent to the adversary, who in turn would forward them to avoid
suspicion, thus allowing for all the previously mentioned post-MITM exploits.
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There is another important problem associated to WPA2-Personal: The ability
of impersonation. As already mentioned before, all clients authenticate themselves
with the same PSK. Therefore, the AP distinguishes all network members by their
unique MAC address associated to the wireless network card. Unfortunately, MAC
addresses can easily be forged with the appropriate software, which means that the
used identification mechanism is not reliable. Virtual Local Area Networks (VLANs)
allow network administrators to automatically limit access to a specified group of users
by dividing clients into different isolated Local Area Network (LAN) segments. While
this concept works well with physical network ports or 802.1X authentication, it is
possible to circumvent VLAN restrictions in WPA2-Personal networks with the help of
impersonation. Access-Control Lists (ACLs) perform a very similar task by restricting
or allowing access to specific ports, IPs or protocols, but in contrast to VLANs, they
operate on Open Systems Interconnection (OSI) model layer 3. However, they can also
be bypassed with impersonation. Quality of Service (QoS) is a network feature that
allows you to give priority to certain types of Internet traffic or restrict bandwidth of
clients. Like VLANs and ACLs, QoS is implemented by using a user’s MAC address to
determine the identity.

All an adversary has to do to circumvent ACL, VLAN, QoS or tunnel policies is to
discover the MAC address of a client whose identity they want to impersonate. They
then wait until the target disconnects from the network, disconnect themselves and
adopt the sniffed MAC address. As soon as the adversary reconnects with the spoofed
MAC address, the AP will not be able to distinguish them from the genuine client. For
this reason, they are assigned to the same VLAN and packets are routed according to
the same ACL as the impersonated target. This method could gain an intruder access
to network recourses such as file servers, databases, printers or the like. It should
be noted that this type of impersonation only works when the targeted client is not
connected to the network. As soon as two clients with identical MAC addresses connect
to the AP simultaneously, complications arise. The router will attempt an EAPoL
handshake for both clients, which will generate two different PTKs. These PTKs are
then tied to an identity (MAC address) and stored on the AP. Since each identity only
allows one PTK, runtime errors occur. The outcome is highly implementation specific,
but in most cases the router disconnects both.
On the contrary, there is an impersonation attack which does not postulate a

disconnected target. Instead of performing a proper EAPoL handshake themselves,
the adversary records the target’s EAPoL handshake and keeps track of the respective
CCMP packet numbers and counters, much like as they would decrypt data as described
previously. With this information, they are able to compose and encrypt messages just
as the target does. Since the adversary is using the existing session of the target, which
means they are using the existing ephemeral PTK the target negotiated with the AP,
this exploit is called session hijacking. However, it is very important that once the
session is hijacked, the legitimate client does not continue using it, otherwise the state
of CCMP will be scrambled. Either a Channel Switch Announcement (CSA) beacon
could prompt the client to switch channels to avoid interfering with the adversary or a
forged management frame can be sent to deauthenticate the client from the network.
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All mentioned exploits assume that the adversary has knowledge over the secret
PSK. There are still more attack vectors in which the adversary does not need any
prior knowledge, but they will not be covered in this thesis. The weaknesses with
WPA2-Personal lead to the introduction of a successor, 14 years later.

2.3. Wi-Fi Protected Access 3
WPA3, announced in January 2018 by the Wi-Fi Alliance, brought several innovations
to WPA networks, the most notable of which being Simultaneous Authentication of
Equals (SAE). SAE was originally designed for use between peers in IEEE 802.11s
mesh networks and is based on the dragonfly key exchange. Dragonfly is a patent-
free technology that uses a zero-knowledge proof key exchange, which allows users or
devices to prove knowledge of a password without having to reveal a password [10]. In
WPA3-Personal, SAE replaces the old PSK authentication method and eliminates some
of the shown weaknesses. The main goal of SAE is to prevent offline dictionary attacks.
Given we’re assuming that the adversary already possesses the PSK, we won’t go into
the specifics of such dictionary attacks. Besides this property, SAE promises Perfect
Forward Secrecy (PFS) [15]. PFS is a feature of specific key agreement protocols that
gives assurances that session keys will not be compromised even if the private key is
compromised [16]. That is, an adversary with the knowledge of the PSK cannot derive
the PMK of other clients. The PSK is merely used for authentication, not for deriving
the PMK [17].

Another important innovation in WPA3 it the obligatory use of Protected Management
Frames (PMF). The idea behind PMF has been around for a long time; it was already
specified in 2009 in the 802.11w standard [18]. PMF provides protection for unicast and
multicast management action frames like disassociation and deauthentication requests,
fast BSS transition or CSAs. Unicast management action frames are protected from
both eavesdropping and forging, and multicast management action frames are protected
from forging. It is important to mention that PMF must be supported by the wireless
network card’s chipset and is thus incompatible with many supplicant devices at the
time of writing.
Aside from SAE and PMF, WPA3-Personal enforces a minimum key-length of 192

bits, it prohibits unauthenticated key reinstallation and therefore fixes the KRACK
vulnerability and introduces Opportunistic Wireless Encryption (OWE) which in turn
enhances the security in open networks [19].

2.4. Weaknesses of Wi-Fi Protected Access 3 Personal
The advantages of the new authentication method SAE are apparent: an inside
adversary with knowledge of the PSK cannot passively eavesdrop on other clients traffic.
SAE makes it impossible to derive another client’s PMK (thus the PTK) in order
to decrypt unicast traffic. However, it is still possible to conduct ARP spoofing and
redirect the victim’s traffic to a malicious host performing the attack. This way, the
packets will be encrypted with the adversaries PTK and therefore be transparent to
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them. The same applies to the Evil Twin attack: An adversary with the knowledge
of the PSK can setup a fake WPA3-Personal network with a stronger RSSI than the
genuine AP and wait for clients to connect. But there is one downside: A client already
connected to the genuine AP cannot be deauthenticated by network members other
than the AP. PMF causes unauthenticated deauthentication or disassociation packets
to be dropped. It would be possible to jam all radio traffic with a dedicated network
jammer until the AP times out the session. However, since this procedure is very
conspicuous, it is usually more reasonable to wait until a client reconnects themselves.
They will then most likely reconnect to the “malicious” host with the stronger signal.

Impersonation, in terms of session hijacking, no longer works. Since it is not possible
to derive the PMK out of the PSK, the active session cannot be pursued by the attacker,
because the essential encryption keys are missing. Incidentally, due again to PMF, it
isn’t possible to expel the genuine client from their session. That said, impersonation
attacks mounted by creating a proper session are feasible. The adversary waits until
the targeted client leaves the network, they impersonate the client’s MAC address
and connect themselves, just like in WPA2-Personal. VLANs and firewalls can be
circumvented in this manner.

2.5. Conclusion
WPA3 was introduced to replace WPA2 in the long term. Nevertheless, it will take
some time for most home networks to be converted. The Wi-Fi Alliance started the
certification of WPA3-capable devices in late 2018 [10], but the prevalence is still rather
small at the time of writing. In addition, most supplicant-devices do not yet support
PMF and are therefore not capable of WPA3-only. We have seen that WPA3 solves
some of the vulnerabilities described above, but an attacker within the network still has
the ability to violate confidentiality, integrity and authenticity. This problem follows
inherently from the fact that every network participant in WPA2-Personal networks
has the same PSK. One obvious solution would be to use WPA-Enterprise instead of
WPA-Personal in home networks. Since each client negotiates their unique PMK with
the RADIUS server, the PTK can’t be derived by another client. An eavesdropping
adversary within the network has no prior knowledge they can use to attack other
network members. They are left with OSI model layer 2 encrypted 802.11 frames, thus
all mentioned exploits except ARP spoofing are futile. But in reality there are many
reasons that prevent people from using WPA-Enterprise. The main reason being that
many devices do not support 802.1X. Especially consumer gear, such as game consoles,
entertainment devices, some printers or IoT devices are often not capable to connect to
a WPA-Enterprise network. But there are other reasons: It is already pointed out that
an authentication server is required to set up such a network. Frankly, most routers
for home networks can be configured to have a built in RADIUS server, but for the
average consumer it is quite difficult to implement. Once this hurdle is cleared, there is
still the question of how certificates and credentials are shared and installed on clients.
Distributing generated credentials and certificates and registering them to each device
is usually called device onboarding. Especially in home networks, people are used to
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insert a password, scan a QR-code or push the WPS-button to connect to the network.
Granting network access to someone by creating a new user on the authentication
server, subsequently installing the server certificates at the user’s device and eventually
entering these credentials is considered to be too complicated by a majority of the
people.
Ideally, we would like to combine the advantages of WPA-Enterprise with those of

WPA-Personal. The advantage of WPA-Enterprise, that every network member has
their unique credential combined with the simplicity of WPA-Personal. In the following,
I will present and discuss a modification of the WPA2/WPA3-Personal protocol that
aims at exactly these properties.

3. Current State of Research and Related Works
The idea behind each client having a unique PSK in WPA-Personal networks is not
new. Nevertheless, it never made it into a standard. For this reason, several vendors
have implemented this feature under different names. They all differ in detail, but the
basic idea and functionality is the same.
First of all, almost all routers today offer the possibility to create a guest network.

This network has a distinct SSID and it is also advised to define a passphrase distinct
from that of the regular network. A VLAN is assigned to both networks and firewall
rules prohibit clients from the guest network from accessing the regular network. In
most cases, clients from the guest network are completely separated from each other,
which is called client isolation. This segregation is reliable, since both networks have
a different PSK. A potential intruder in possession of the guest passphrase cannot
impersonate a client of the regular network because they are in possession of the wrong
PSK. ARP spoofing is impossible since the AP isolates the client and an Evil Twin
attack could only fool other guest members. In summary, it can be said that the AP can
reliably distinguish clients from the guest-and regular network. Not by MAC address,
but by the PSK they authenticate themselves with. However, a binary subdivision in
more complex network topologies is not sufficient.

The telecommunications company Cisco Systems developed a proprietary extension
of the WPA2-PSK protocol called identity Pre-Shared-Key (iPSK). iPSK allows unique
PSK per endpoint or based on a policy. For instance, groups of like endpoints can share
a same PSK value or each of the endpoint can have a unique PSK [20]. Clients can
register their device utilizing an external portal and SQL endpoint database for iPSK
management, called “iPSK Manager”. The assigned PSK is then manually entered at
the client. Identities are managed and stored on an Identity Services Engine (ISE),
which answers authentication requests forwarded from the authenticator (AP) like a
RADIUS server. When a client authenticates to the wireless network, the AP checks
with the RADIUS server to see if the MAC address exists. If it does, the RADIUS
server will respond with the stored PSK. Subsequently, the AP verifies the stored
PSK in the RADIUS policy to the one the client used to authenticate. This system
offers the advantages of 802.1X authentication while clients connect using the simple
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WPA2-PSK method.
The company LANCOM developed a similar WPA2-PSK amendment. LANCOM

Enhanced Passphrase Security User (LEPS-U) introduces several PSKs tied to a single
network. Depending on the PSK, clients are automatically assigned to a specific VLAN.
Since LEPS-U is configured exclusively on the infrastructure side, full compatibility
with all types of supplicants is ensured at all times. Within LANCOM Enhanced
Passphrase Security MAC (LEPS-MAC), each passphrase is assigned a MAC address
in an additional column of the ACL. Only the combination of passphrase and MAC
address allows the authentication at the AP. Attacks on the WLAN are thus made
considerably more difficult, since by linking the MAC address and passphrase, both
parts must always be known in order to negotiate encryption. Both LEPS-U and
LEPS-MAC can be used locally in the device as well as centrally managed with the
help of a RADIUS server [21].

There are many more proprietary personal PSK implementations to mention like the
Private PSK feature from Aerohive [22], the Dynamic PSK from Ruckus Wireless [23],
Multiple PSK from Aruba Networks [24] or the ePSK from Cambium Networks [25],
but since they all differ only marginally in their functionality, I will not go further into
detail. In contrast to all the closed-source solutions I mentioned, there is a prominent
open-source representative who also implemented this feature: hostapd.

hostapd is a user space daemon for AP and authentication servers. It implements
802.11 AP management, 802.1X/WPA/WPA2/EAP authenticators, RADIUS client,
EAP server, and RADIUS authentication server [26]. The daemon uses netlink sockets
for inter-process communication with the kernel. The current version supports various
versions of Linux and FreeBSD. Since the codebase may be distributed, used, and
modified under the terms of BSD license [26], most wireless distribution system vendors
use large portions of hostapd's code for their own products or use it as reference.

In December 2004, hostapd v.0.3.0 added support for multiple WPA PSKs [27]. They
can either be read from a separate text file containing a list of PSK and MAC address
pairs or they can be received from the RADIUS authentication server. Each client
can be assigned its own unique PSK or groups of clients can be assigned a common
PSK. The text file must be created manually before operation and its path must be
defined in the hostapd.conf. Instead of manually entering each client’s MAC address
with a unique PSK in the text file, hostapd offers the possibility to randomly generate
a per-device PSK and send it to the client via WPS. The generated PSK will also be
appended to the text file for future authentications.
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4. Methodology
The primary goal of the adaptations proposed in this thesis is to provide better security
in home networks towards adversaries from within the network; more specifically,
adversaries in possession of the PSK. As we have seen in section “Current State of
Research and Related Works”, effort has been made to deprive an adversary of their
advantage by giving each client their own identity-based Pre-Shared Key (iPSK). This
is done either by using a RADIUS server (similar to 802.1X) to manage and verify
the iPSKs or by the AP itself keeping a database or table where all MAC addresses
and their associated iPSKs are stored. In the following I will propose a protocol
adaptation that allows a wireless distribution system to enforce an iPSK policy for
WPA2/WPA3-Personal without RADIUS server and without having to store each iPSK
and MAC address pair in a database or table. It is a stateless protocol adaptation that
generates the iPSK at runtime when it is needed.

Before I go into more detail, I would like to explain the difference between the PSK
and WPA-passphrase, as this is often misunderstood: When we grant a device access to
our WLAN, we typically enter a human-readable password of at least 8 and at most 63
American Standard Code for Information Interchange (ASCII)-characters, called WPA-
passphrase. The passphrase is converted internally by the supplicant into a 256-bit
key, the so-called PSK. The conversion is carried out by applying the Password-Based
Key Derivation Function 2 (PBKDF2) to the WPA-passphrase, using the SSID as the
salt and 4096 iterations of HMAC-SHA1 [28]. This kind of transformation is called
key stretching and has the purpose of adding computational cost in order to increases
the time it takes an adversary to brute-force the WPA-passphrase. The PSK itself is
not human readable because not every byte is assigned a printable ASCII-symbol. To
onboard a new device, the WPA-passphrase is either entered manually or transmitted
via WPS. The supplicant itself then derives the PSK from the WPA-passphrase by the
means of key stretching. In the interest of completeness, it should be mentioned that
when using fully configurable supplicants, it is possible to enter the PSK in hexadezimal
representation manually into the wpa_supplicant.conf file, although this is rarely used.
With this distinction in mind, it is noticeable that the CISCO extension “identity

PSK” should actually be called “identity WPA-passphrase” since no iPSKs but indentity-
based WPA-passphrases are initially generated. The supplicant themselves implicitly
generates their iPSK by receiving an identity-based WPA-passphrase and stretching
it as described above. The same applies to all the other WPA extensions presented
before. But for the interest of consistency, I will adapt to this slightly confusing naming
convention.

4.1. Key Derivation Function
The core of this adaptation is a key derivation function that generates an identity-based
WPA-passphrase at runtime. It is a mapping function that assigns a unique key to
each individual client, identified by their MAC addresses. There are a number of
characteristics that this key derivation function must fulfill: First of all, the function
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must be deterministic in order to derive the identical identity-based WPA-passphrase
for each new connection of the same client. In addition, only the AP must be able to
derive an identity-based WPA-passphrase. According to Kerckhoffs’ principle the key
derivation function should not be kept secret, thus a master-secret known only to the
AP must be included. In the event that an iPSK or identity-based WPA-passphrase
is compromised, it must be possible to revoke it. The derived identity-based WPA-
passphrase itself should follow the same constraints as a conventional WPA-passphrase
to ensure compatibility with the supplicants. It must consist of ASCII-printable
characters with a length between 8-63 digits. And last but not least, the function
must not affect the runtime of the authentication process too much. One possible key
derivation function which fulfills all the characteristics is the following:

# Compute HMAC with
HMAC = HMAC_SHA512(key=master_secret, data=MAC_address)
# Use PBKFF2 to stretch the HMAC
stretched_HMAC = PBKDF2(data=HMAC, salt=SSID, iterations=4096, output_bits=384)
# Base64 encode the stretched HMAC
encoded_stretched_HMAC = BASE64(stretched_HMAC)
# Cut the last character to fulfill the WPA-passphrase length
# constraint
identity_based_WPA_passphrase = prefix(encoded_stretched_HMAC, 63)

Hash-Based Message Authentication Code (HMAC) is a mechanism for calculating
a MAC involving a hash function in combination with a secret key. In this case, the
Secure Hash Algorithm (SHA) 512 is used as hash function. Unlike the conventional
use of HMACs, it is not of interest to authenticate a message in this scenario, but to
take advantage of the one-way property of SHA. A one-way function means that it is
practically infeasible to invert the output, hence the only possibility to find a message
that produces a given hash is to attempt a brute-force search of possible inputs to see
if they produce a match. Since SHA is a cryptographic hash function, it also offers
collision resistance, thus it is very unlikely to find two inputs that hash to the same
output.

In this key derivation function, two input parameters are needed to create the HMAC:
The MAC address of a supplicant is used as data and a master-secret known only
to the AP is used as key. The generated HMAC is then used as input for PBKDF2
with the SSID of the network as salt. To ensure that the stretched HMAC is human-
readable, it is then Base64 encoded. Since Base64 is a six-bit encoding, every four
characters of Base64-encoded text represent three bytes of the unencoded stretched
HMAC. Therefore the 384 bit issued by the PBKDF2 are mapped to 512 bit, which
corresponds to a 64 character ASCII-string. The maximum length of a WPA-passphrase
is 63 characters, the last character of the encoded and stretched HMAC is therefore
omitted. It would not be necessary to shorten the output if the PBKDF2 outputs 378
instead of 384 bits, but this is not possible because it can only output multiples of
whole bytes.
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There are two reasons why key stretching is applied in this function. First of all, it
makes it more difficult to brute-force the master-secret. Without key stretching, an
adversary with knowledge of their own identity-based WPA-passphrase could randomly
compute passphrases by trying all possible combinations of the master-secret and
comparing the results with their own identity-based WPA-passphrase. When the
generated passphrase matches the genuine identity-based WPA-passphrase, the master-
secret is successfully found. Since both the calculation of an HMAC and the Base64
encoding are not computationally expensive operations, even long user-defined master-
secrets could be cracked with the help of dictionary attacks. In addition, the calculation
can be massively parallelized, which would accelerate the process incredibly. Just
like deriving the PSK from the WPA-passphrase, key stretching adds additional
computational costs for each password attempt to complicate the process. The second
reason concerns rainbow tables. Once a comprehensive list of tuples with all possible
master-secrets and their resulting WPA-passphrases is generated, this list could be used
on other networks too. This assumes that the attacker uses the same MAC address
that was used to create the rainbow table and that they are in possession of their own
identity-based WPA-passphrase. Since PBKDF2 uses the SSID as salt, an exhaustive
calculation of all possible master-secrets serves only the purpose of breaking one single
network.
Both the HMAC calculation and the Base64 encoding are deterministic, therefore

the entire key derivation function is also deterministic. Provided that the master-secret
is kept secret, no one else can derive an identity-based passphrase but the AP. In the
event that an identity-based WPA-passphrase or iPSK is compromised, the AP can
change its master-secret and force new WPA-passphrase to be derived.

4.2. Integration into WPA2 and WPA3
The question remains how the key derivation function is integrated into the WPA2-PSK
and WPA3-SAE protocol. In both cases the initial step is identical. Once a client
connects to the network, the AP uses their master-secret, the client’s MAC address and
the SSID as salt to generate the identity-based WPA-passphrase for the particular client
with the above defined key derivation function. From this point on, both protocols
use the created passphrase differently. In the case of WPA2-PSK, the passphrase
is converted into an iPSK with the help of PBKDF2 and used as PMK within the
4-way EAPoL handshake, whereas WPA3-SAE uses the identity-based passphrase
instead of the normal WPA-passphrase for the dragonfly handshake of SAE. The
beauty of this protocol amendment is that neither SAE nor the EAPoL handshake
are modified. Merely the keys that serve as input for both protocols are exchanged by
identity-based keys. Neither iPSKs nor identity-based WPA-passphrase are stored on
the infrastructure side at any time.
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4.3. Key Distribution

The problem of bootstrapping secure communication between wireless devices has
always been a challenge. As opposed to conventional WPA networks, no single key
has to be distributed to all clients, rather, each client gets their own key. As the
keys are dynamically derived, no static passphrase can be printed on the back of a
router for future references. An interaction with a device that can derive identity-based
WPA-passphrases is therefore essential. One possibility is to extend the router’s web
interface in such a way that the network administrator can request the identity-based
WPA-passphrase of a new supplicant. To accomplish this, the administrator logs on
to the router with their credentials and enters the MAC address of the new, not yet
connected device. The router derives and displays the identity-based WPA-passphrase,
which is finally entered manually at the supplicant.

Most devices can be connected using this method, but there are also (mostly IoT)
devices that do not have a screen or keyboard. Various solutions have been developed
to address this problem. One common approach is to have the new device appear
temporarily as an AP with its own SSID and passphrase, which is supplied on the
manufacturer’s manual. To onboard it, a smartphone is required to connect to the
temporary network and enter the SSID and WPA-passphrase of the home network via
an additional application or HTTP landing page. Once the credentials are transmitted,
the new device switches from AP to client mode using the received credentials. Another
approach is to use an additional application on a smart phone to transfer the credentials
via bluetooth, Wi-Fi direct, flashes or event sound waves to the new device [29, 30].
However, it is unimportant how credentials are transferred to the client in detail, as
only the infrastructure side is modified in identity-based networks. The only difference
is that the identity-based WPA-passphrase obtained from the router’s web interface is
used instead of the conventional WPA-passphrase for the various onboarding techniques.

Besides the manual readout of the identity-based WPA-passphrase from the router’s
web interface, there exists another much more convenient key distribution technique:
Wi-Fi Protected Setup (WPS). WPS is a standard of the Wi-Fi Alliance that simplifies
the process of logging end devices into an encrypted WLAN. Thanks to WPS, the
WPA-passphrase does not need to be entered manually, but is transmitted as a series
of EAP request/response messages, ending with the AP disassociating from the client
and waiting for the client to reconnect with its newly obtained credentials. There are
two mandatory WPS methods: the PIN method and the push button method. With
push-button configuration, a physical or a software-implemented button exists at both
the AP and the client. If both buttons are pressed or triggered within two minutes, the
client can automatically join the network, as the WPA-passphrase is transmitted during
the configuration phase. When using the PIN method, the AP generates an eight-digit
PIN that must be entered on the client side. The credentials are then transferred as
for the push button method. In order to transfer identity-based keys instead of shared
keys, the WPS registrar must be adapted. A modified WPS registrar offers an elegant
alternative, as no additional effort is required by an administrator.
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5. Implementation
This chapter describes the implementation of the previously described iPSK protocol
amendment. To recreate a home network topology, the AVM FRITZ!Box 7530 has
been chosen to serve as an AP. Since the router’s pre-installed FRITZ!OS firmware is
closed-source and therefore not customizable, an open-source Linux operating system
for embedded devices, OpenWrt, was installed instead. The documentation of the
flashing process can be found in appendix A. Instead of providing a single, static
firmware, OpenWrt offers a fully writable filesystem with package management. All
components are optimized to be small enough to fit into the limited storage and memory
available in most home routers. While OpenWrt can be managed completely using
SSH and the terminal, the OpenWrt full-releases ship with an extensible and easily
maintainable web user interface called LuCI. The newest version of OpenWrt (OpenWrt
19.07) has been installed at the time of writing. The FRITZ!Box 7530 offers 128 MB
of flash, which would be more than enough storage space for this PoC. However, the
memory has been expanded by an external USB drive using Extroot to allow extra
packages to be installed, making it more user-friendly for the development process.
The corresponding documentation can be found in appendix B.

Like most wireless distribution systems, OpenWrt uses an adapted version of hostapd
to handle all aspects of the wireless infrastructure like authenticating clients, set
encryption keys, establishing key rotation policy etc. The difference between the
original and OpenWrt’s version of hostapd consists of some extensions added to the
source code. For instance, OpenWrt’s inter-process communication system ubus and
support for the Unified Configuration Interface (UCI ) are integrated.

5.1. hostapd
In order to implement the presented identity-based key policy, several changes have
been made to the hostapd source code. The requirement that the modified version
should also be portable to other systems led to the decision to use the original and
not OpenWrt’s version of hostapd as the basis of the implementation. However, this
decision has the disadvantage that hostapd cannot be configured using the UCI. Since
the web user interface LuCI depends on the UCI, hostapd is only controlled via the
terminal in this PoC. Another drawback is that the WPS button handling managed
by procd can no longer be accomplished using ubus calls to hostapd. For the latter, a
workaround is given to preserve the functionality of the WPS button. Instead of calling
ubus to trigger the WPS push button event, the command-line interface hostapd_cli is
used to notify the daemon.

In this PoC, an entry has been added to the hostapd.conf that enables and disables
iPSK mode globally for all networks created by the single hostapd instance. Conceptually
it is also possible to toggle this mode for each SSID. Once the statement “ipsk=1” is
included to the configuration file, hostapd no longer uses the traditional WPA-passphrase
and the corresponding PSK for authentication of WPA2/WPA3-Personal networks.
In iPSK mode, the wpa_passphrase value defined in the configuration file is considered
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to be the master-secret for the key derivation function. Once a client associates to
the network, a callback function derives the identity-based WPA-passphrase with the
client’s MAC address, the SSID and the master-secret. The passphrase is converted to
an iPSK and cached into a data structure. The subsequent authentication uses the
cached value. If the client re-associates for any reason, the cached iPSK is used instead
of re-deriving it. As soon as another client associates, the cached iPSK is overwritten
with the one of the new client. A larger cache may be implemented at this point.

Besides adding identity-based authentication to WPA2/WPA3-Personal, the WPS
implementation has been adapted to transfer identity-based credentials. It must be
noted, that the latest version of hostapd (version 2.9) does not support WPS onboard-
ing with SAE-only key management. However, SAE can be enabled automatically
for WPA2-PSK credentials received using WPS. When both SAE and WPA2-PSK
key management is offered simultaneously at the infrastructure side, this is called
WPA3-Personal transition mode or WPA2/WPA3-Personal mixed mode. The WPS
implementation was modified to send the identity-based WPA-passphrase to the suppli-
cant when using WPA2-PSK or WPA3-Personal transition mode. When the statement
“wps_cred_add_sae=1” is added to the supplicant.conf, the received WPA2-PSK creden-
tials are used for WPA3-SAE. If the supplicant supports PMF, it is automatically
activated. Finally, the AP can notify authenticated clients to disable transition mode
in their network profiles when WPS is completed. Once a transition disable indica-
tion is sent, the stations are expected to automatically disable WPA2-PSK and less
secure security options. Although this procedure is not equivalent to SAE-only WPS
onboarding, it yields the same result. Once the original version of hostapd supports
SAE-only onboarding with WPS, the source code could be adapted in the same way to
transfer identity-based WPA3-SAE credentials. An example configuration file to create
an identity-based WPA2/WPA3-Personal mixed mode network with WPS enabled can
be found in appendix D.
In order to run the modified version of hostapd on the FRITZ!Box 7530, the code

must be compiled for the Qualcomm Atheros IPQ40XX processor architecture. It
turned out that on-device compilation was not feasible due to limited resources and
library dependencies. Fortunately OpenWrt offers a well documented build system. The
build system is a set of makefiles and patches that automates the process of building a
cross-compilation toolchain and then using it to build the OpenWrt firmware itself or
other pieces of software. A flag has been added to the hostapd's compile time config
file to toggle between compilation for the native system and cross-compilation for
the FRITZ!Box 7530. The documentation how the build system was set up and the
toolchain was configured can found in appendix C.
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5.2. wpa_passphrase
wpa_passphrase is a command line tool which generates a minimal configuration file
for wpa_supplicant. The sole purpose of the program is to precalculate the PSK on
the basis of a specified SSID and WPA-passphrase and output it according to the
wpa_supplicant.conf syntax. The program is called with the following parameters:

wpa_passphrase <ssid> <passphrase>

In order to facilitate onboarding in identity-based WPA2/WPA3 networks, the
program has been extended to generate corresponding configuration files. The modified
command line tool can be called with an optional parameter:

wpa_passphrase <ssid> <passphrase> [MAC address]

The input format of the MAC address must be either colon-hexadecimal notation or
simple hexadecimal notation without colons. Once a valid MAC address is provided, the
passphrase is interpreted as master-secret and the resulting configuration file contains
an iPSK instead of a regular PSK. Using this method, no prior interaction with the
AP is needed to readout the identity-based WPA-passphrase.

5.3. Proof of Concept Code
The source code of the PoC implementation, including hostapd, wpa_passphrase and
sample configuration files, is available on GitLab.

https://gitlab.informatik.hu-berlin.de/panizzaj/iPSK/

Whenever the PoC implementation is mentioned throughout this thesis, the commit
with the following hash value is referenced:

master: f7715f8e47081ce48444dadc092431897c84f539
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6. Results and Critical Discussion
To evaluate the proposed modification of hostapd, the following sections analyze the
runtime, memory usage and size of the binary compared to the original version. Later
in this chapter it will be described in detail which attacks on Wi-Fi networks can be
prevented by identity-based authentication. This is followed by a discussion of the
advantages and disadvantages of the proposed concepts and how the key derivation
function could be optimized.

6.1. Runtime Analysis
PBKDF2 is the part of the key derivation function that deliberately takes up the
most runtime. Normally hostapd calculates the PSK from the given WPA-passphrase
during the initialization phase. Once a supplicant connects, a simple lookup of the
value is performed. Since the identity-based WPA-passphrase and iPSK derivation is
dependent on the MAC address of the supplicant, it can only be calculated once the
supplicant associates itself. It results in a delay of the connection establishment. To
measure this additional execution time, it is sufficient to measure the runtime of the
additional instructions added to the source code. Since the handshake has not been
changed, it is expected that the execution time of the entire authentication process
will not change except for the additional runtime of the key derivation.

The following benchmarks were measured on the FRITZ!Box 7530, which has the
following hardware and system specifications:

• CPU: Qualcomm IPQ4019 (4 x 716 MHz)

• RAM: 256 MB

• OS: OpenWrt

• Kernel: Linux Kernel version 4.14.171

As we can see in table 1, deriving an identity-based key takes considerably longer for
WPA2-Personal than for WPA3-Personal. This is due to the fact that in WPA2 the
key stretching function PBKDF2 is executed twice. The first time in the key derivation
function to generate the identity-based WPA-passphrase and the second time to derive
the iPSK from the passphrase. WPA3-Personal directly uses the identity-based WPA-
passphrase for SAE and therefore does not require any further derivation. The same
applies to WPS as the identity-based passphrase is transferred and no iPSK is needed.
The minor time difference between WPA3-Personal and WPS is caused by the inherent
fluctuation in each execution.
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Connection δt [ms] σ [ms]
WPA2-Personal 150.891 0.535
WPA3-Personal 94.944 0.461
WPS 95.015 0.362

Table 1: Additional runtime of the identity-based implementation. 10 iterations were
performed to measure the average execution time and standard deviation.

6.2. Binary Size Comparison
The available storage space on common routers is often quite limited. For this reason
a binary size analysis of the program becomes essential. Table 2 shows the size of both
programs in bytes. The modification increases the binary size by 0.25 %, which can be
considered trivial.

Binary Size [Byte]
Original 5194256
Adapted 5207480

Table 2: Binary size of original version compared to the adapted version of hostapd.

6.3. Memory Comparison
In order to compare the memory consumption, the heap profiler Massif from the
valgrind suite was used to records the memory use of the heap. For the measurement
hostapd was executed in WPA2/WPA3-Personal mixed mode. After the network was
set up, three supplicants were connected first via WPA2-PSK, then via WPA3-SAE
and finally via WPS. Figure 1 shows the memory heap consumption of the modified
version of hostapd whereas figure 2 shows the consumption of the original version.

It is clearly recognizable that the protocol adaptation has little effect on the mem-
ory. During WPA2-PSK connection establishment, the identity-based implementation
allocates about 70 kB of heap memory for a very short period of time, whereas the
genuine implementation only requires about 45 kB. The comparison of WPA3-SAE
and WPS in both figures does not show any noticeable difference. It should be noted
that the memory consumption varies from execution to execution, as retransmissions
may occur due to radio channel interference. Since all received packets from hostapd
are dynamically stored on the heap, retransmissions increase memory consumption
and bias the result.
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Figure 1: Memory heap consumption of the adapted version of hostapd. Generated
with massif-visualizer

Figure 2: Memory heap consumption of the original version of hostapd. Generated
with massif-visualizer

6.4. Discussion
As we have seen in chapter “Weaknesses of Wi-Fi Protected Access 2 Personal”, there
are several ways to attack a WPA2-PSK network. WPA3-SAE prevents some of these
attacks, but certainly not all, as outlined in chapter “Weaknesses of Wi-Fi Protected
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Access 3 Personal”. The following section illustrates, which of the described attacks
vectors are not feasible when using identity-based authentication.

In WPA2-PSK it is possible to encrypt and decrypt packets from other clients on the
network, assuming one has possession of the PSK. Identity-based WPA2-PSK prevents
this because each supplicant has its own PSK and they are not shared. WPA3-SAE
also solves this problem whether or not identity-based keys are used.

In WPA2-PSK an adversary can impersonate a client by hijacking an active session.
Since encryption and decryption is needed for active session hijacking, identity-based
WPA2-PSK also prevents this attack. WPA3-SAE has prevented this attack all along,
it makes no difference whether identity-based keys are used or not. However, with
impersonations in terms of a new session, the situation is different: Neither WPA2-PSK
nor WPA3-SAE can distinguish clients with fake MAC addresses from the original ones.
Identity-based authentication offers a remedy in both cases. Because MAC addresses
are key-bound, a rogue client cannot use their identity-based key to connect with a
spoofed MAC address. Nevertheless, it would be conceivable that the client adopts
a spoofed MAC address before the onboarding process. However, the generated key
would force the client to remain in their false identity, because as soon as the identity
is changed, access to the network is lost. Since onboarding requires user interaction, it
is unlikely that a device with the wrong MAC address will be added to the network.
Nevertheless, the system follows a Trust On First Use (TOFU) model because the
legitimacy of the MAC address is not always checked (e.g. WPS).
It has been shown that an Evil Twin attack is feasible in both WPA2-PSK and

WPA3-SAE networks. From the moment an identity-based key is used, the network
cannot be cloned because the key is unknown to the adversary. This applies equally to
both WPA2 and WPA3.

Last but not least, it is worth taking a closer look at ARP spoofing. Unfortunately,
identity-based WPA networks do not protect against this attack. Since the GTK is
shared among all supplicants, an adversary can still poison a victim’s ARP cache by
sending unsolicited ARP replies. Once the ARP cache is altered, all outgoing packets
are addressed to the adversary but still encrypted with the victim’s identity-based key.
The AP receives the packets, but before they are forwarded, they are decrypted with
the victim’s key and re-encrypted with the adversary’s key. Since the AP acts as a
proxy and re-encrypts all packets according to the recipient’s key, it does not matter
whether identity-based keys are used or not. As mentioned above, the AP could use
client isolation to prevent ARP spoofing. Table 3 shows a list of all mentioned attacks
and distinguishes for which key management protocols they can be performed.
The analysis shows that identity-based keys in WPA networks offer numerous

advantages. However, there are different ways to implement this concept. The presented
version differs fundamentally from already existing implementations: the identity-based
keys are generated at runtime and never need to be stored on an AP or authentication
server. This has the apparent advantage that even in networks with several hundred
clients only a constant amount of disk space is needed for passwords. Furthermore, APs,
repeaters and authentication servers can synchronize credentials in O(1), because only
the master-secret and the SSID must be transferred. The data being transmitted is
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Attack WPA2-PSK WPA3-SAE identity-based identity-based
WPA2-PSK WPA3-SAE

En/Decryption Yes No No No
Impersonation with Yes No No No
session hijacking
Impersonation with Yes Yes No No
new session
Evil Twin Yes Yes No No
ARP spoofing Yes Yes Yes Yes

Table 3: Comparison of key management protocols, whether or not they are
vulnerable to different attacks.

not proportional to the number of passwords. In addition, it is sufficient for a network
administrator to remember only the master-secret, since all other keys can be generated
from it.
However, there are also disadvantages that must be mentioned. One drawback

concerns the key revocation: as soon as an identity-based key is compromised and the
master-secret is replaced, all keys are changed. The protocol design prohibits changing
only the compromised key, which could lead to large administrative effort if there are
many clients on the network. Stateful implementations, where MAC addresses and the
associated keys are stored in a file or database, do not suffer from this shortcoming.
If a device does not support WPS, an administrator needs its MAC address for

onboarding. For an average user, this can already be a significant challenge. Devices
with a screen usually have the ability to display the address, but IoT devices or
printers, for example, rarely allow this. To work around this problem, the described
web interface of a router for retrieving identity-based keys could be programmed as
follows: The web interface shows a history of all supplicants who have unsuccessfully
tried to connect to the network. A timestamp indicates when each authentication
attempt was made and the MAC address uniquely identifies the device. A button
next to each entry in the history allows direct key generation for the identity. Once
an unsuccessful authentication attempt has been made with a dummy password, the
corresponding device appears in the history. Thereupon, the identity-based passphrase
can be generated at the click of a button, without the administrator having to enter a
MAC address manually in the first place.
The main drawback, however, concerns the runtime. Since keys are derived at

runtime, this inherently increases the execution time of the authentication process.
While it could be argued that this constant factor does not have a major impact on
the quality of the connection, as authentication is ideally performed only once, there
are several ways to address this problem. The following section discusses some changes
that could be made to either improve performance or enhance security or usability.
First of all, a larger cache can be used to ensure that re-authenticaions do not

result in the keys being re-derived. If a history of connected MAC addresses were
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stored persistently, one could also pre-calculate and cache all keys during the boot
process. But since the requirement was to develop a stateless protocol modification,
the latter is to be seen as a secondary solution. Moreover, it is possible not to stretch
each HMAC at runtime, but the master-secret during the initialization phase. During
runtime, the cached, stretched master-secret is used as key to generate the HMAC.
This optimization results in key stretching not being performed at runtime at all, except
for iPSK derivation from the identity-based passphrase.

Assuming that the master-secret is only stretched once, another key stretching
method comes into question, which is more memory expensive but also offer stronger
security against parallelization. PBKDF2 is considered vulnerable to attacks with
special hardware such as Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) [31]. The
computation of the hashes can be massively parallelized with such hardware. The key
stretching function scrypt, on the other hand, takes advantage of the fact that memory
is relatively expensive and allocates an excessively large vector of RAM thus driving
up the cost of using specialized hardware. Nevertheless, no matter how much costs are
imposed on an adversary per password attempt, these costs must also be paid by the
AP. The complexity of the problem is not increased by key stretching, only a constant
is multiplied.

On the other hand, one can also argue that key stretching is not necessary at all. In
this PoC implementation it is assumed that the master-secret is defined manually by a
user. When using user-defined keys, it is always recommended to use key stretching
as further protection, as humans tend to use weak, easy-to-remember passwords that
are prone to dictionary attacks. However, if e.g. a randomly generated 256 bit key is
used as master-secret, this provides enough entropy to be protected against brute force
even without key stretching. The entropy of a randomly generated 256 bit password
corresponds to a randomly generated 43 character ASCII-string. But as humans rarely
create randomly generated passwords, key stretching is not omitted here.

Furthermore, it should be mentioned that an HMAC is not necessarily required.
Since we only want to take advantage of the one-way function property of SHA, it is also
possible to concatenate the MAC address with the master-secret and hash the result
with SHA. This method is usually not recommended because all hash functions based
on the Merkle-Damgård construction (e.g. SHA2) are vulnerable to the length extension
attack, where an adversary takes a message and its HMAC signature, and use this to
construct a longer message with the same signature. However, this attack is irrelevant
in this case because the generated HMAC is not used as message authentication code
and never shared among clients. But since the calculation of an HMAC is about as
expensive as directly executing the hash function, there is no reason not to use it.

Last but not least a different binary-to-text encoding could be used instead of Base64.
In order to avoid both non-alphanumeric characters (“+” and “/”, which are part of
Base64’s character set) and letters which might look ambiguous when printed (“I”,
“O”, “l”, “0”) Base58 could replace the former.
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7. Conclusion
The thesis shows that identity-based authentication in WPA2/WPA3-Personal networks
can counteract the threats posed by the proliferation of IoT devices in home networks.
It turned out that WPA2-PSK benefits even more from the protocol adaptation,
since WPA3-SAE inherently prevents the decryption of third-party unicast traffic.
Nevertheless, the extension promises effective protection against impersonation attacks
in the case of WPA3-SAE. Thanks to this property, routers can create profiles that
reliably prevent untrusted devices from accessing the wide area network, making it
impossible to leak user data. Devices for which a server connection is essential can be
reliably isolated from the rest of the network. This makes it impossible for hackers or
malware to use a compromised device as a gateway for further attacks. Given that
it will probably take several years before most of the supplicant hardware is PMF-
capable, a rapid transition to WPA3 is not expected. Until this point, identity-based
authentication even provides the desired confidentiality that is missing in WPA2-PSK.
The proposed protocol adaptation differs from existing implementations because it

has a stateless design. Neither identities nor identity-based keys need to be stored on the
AP or authentication server. The PoC demonstrates that only minor modifications of
hostapd are necessary to implement the presented concept. The described optimizations
could further enhance the runtime of the authentication process, while different keys
stretching methods can be applied depending on the threat level. Vendors of wireless
distribution systems could deploy identity-based authentication as an optional feature
on their routers in the form of a firmware update. Ideally, integration into the standard
would also be desirable in order to disseminate a uniform implementation. Concerning
usability, extra effort is to be expected during the onboarding process. Unless WPS
is used, a user must actively request identity-based keys before entering them at the
supplicant. However, assuming that this is possible via the router’s straightforward
web interface, this task becomes trivial.

30



References
[1] Louis Columbus. Roundup Of Internet Of Things Forecasts And Market

Estimates. https://www.forbes.com/sites/louiscolumbus/2018/12/13/
2018-roundup-of-internet-of-things-forecasts-and-market-estimates/,
2018. Accessed: July 27, 2020.

[2] Paul Marrapese. P2P Weakness Exposes Millions of IoT Devices.
https://krebsonsecurity.com/2019/04/
p2p-weakness-exposes-millions-of-iot-devices/, 2019. Accessed: July 27,
2020.

[3] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security in
internet of things and wearable devices. IEEE Transactions on Multi-Scale
Computing Systems, apr 2015.

[4] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi.
DDoS-capable IoT malwares: Comparative analysis and mirai investigation.
Security and Communication Networks, 2018, 2018.

[5] Erik Tews. Breaking 104 bit WEP in less than 60 seconds. Master’s thesis, TU
Darmstadt, 2007.

[6] Erik Tews and Martin Beck. Practical attacks against WEP and WPA. In
Proceedings of the second ACM conference on Wireless network security - WiSec
'09. ACM Press, 2009.

[7] IEEE Jouni Malinen. 802.11mb issues list v12. https://mentor.ieee.org/802.
11/file/08/11-08-1127-12-000m-tgmb-issues-list.xls, 2009. Accessed:
July 5, 2020.

[8] BSI TR-02102-1 Kryptographische Verfahren: Empfehlungen und Schlüssellängen
Version: 2020-01. https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf,
2020.

[9] Radomir Prodanovic and Dejan Simic. A survey of wireless security. Journal of
Computing and Information Technology, 15(3):237, 2007.

[10] David A. Westcott David D. Coleman. CWNA Certified Wireless Network
Administrator Study Guide. John Wiley & Sons Inc, 2018.

[11] Md Sohail Ahmad. WPA 2 Hole196. In AirTight Networks Presentation, 2012.

[12] Wesam Lootah, William Enck, and Patrick McDaniel. TARP: Ticket-based
address resolution protocol. Computer Networks, pages 4322 4337, 2007.

31



[13] D. Bruschi, A. Ornaghi, and E. Rosti. S-ARP: a secure address resolution
protocol. In 19th Annual Computer Security Applications Conference, 2003.
Proceedings. IEEE.

[14] Hossen Mustafa and Wenyuan Xu. CETAD: Detecting evil twin access point
attacks in wireless hotspots. In 2014 IEEE Conference on Communications and
Network Security. IEEE, oct 2014.

[15] Dan Harkins. Simultaneous authentication of equals: A secure, password-based
key exchange for mesh networks. In 2008 Second International Conference on
Sensor Technologies and Applications (sensorcomm 2008). IEEE, 2008.

[16] Alfred John Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. Taylor & Francis Inc, 1996.

[17] Dan Harkins. Dragonfly Key Exchange. RFC 7664, November 2015.

[18] IEEE standard for information technology - telecommunications and information
exchange between systems - local and metropolitan area networks - specific
requirements : Part 11: wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications : Amendment 4: protected management
frames. Institute of Electrical and Electronics Engineers, New York, 2009.

[19] Dirk Westhoff. Mobile Security. Springer-Verlag GmbH, 2020.

[20] CiscoSystems. iPSK (Identity Pre-Shared-Key) Manager portal server for ISE.
https://community.cisco.com/t5/security-documents/
ipsk-identity-pre-shared-key-manager-portal-server-for-ise/ta-p/
3904265. Accessed: June 26, 2020.

[21] Lancom. LEPS / PPSK (Private Pre-Shared Key).
https://www.lancom-systems.de/pdf/techpapers/TP_PPSK-LEPS_DE.pdf.
Accessed: June 26, 2020.

[22] Aerohive. Private Pre-Shared Key: Simplified Authentication.
https://www.aerohiveworks.com/Authentication.asp. Accessed: June 26,
2020.

[23] Ruckus. Enabling DPSK for a WLAN. https:
//docs.ruckuswireless.com/unleashed/200.3/t-EnableDPSKforWLAN.html.
Accessed: June 26, 2020.

[24] Aruba. Configuring MPSK.
https://www.arubanetworks.com/techdocs/ClearPass/6.8/Guest/Content/
AdministrationTasks1/Configuring-MPSK.htm. Accessed: June 26, 2020.

32



[25] CambiumNetworks. ePSK - Multiple Pre-Shared Keys. https://community.
cambiumnetworks.com/t5/cnPilot-E-Series-Enterprise-APs/
ePSK-Multiple-Pre-Shared-Keys/m-p/106597#. Accessed: June 26, 2020.

[26] WiFi-Aliance. hostapd. https://w1.fi/hostapd/. Accessed: June 28, 2020.

[27] WiFi-Aliance. hostapd changelog.
https://w1.fi/cgit/hostap/plain/hostapd/ChangeLog. Accessed June 28,
2020.

[28] 802.11i-2004 IEEE standard for information technology-telecommunications and
information exchange between systems-local and metropolitan area
networks-specific requirements-part 11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications: Amendment 6: Medium access
control (MAC) security enhancements, jul 2004.

[29] Liang Liu, Zhaoyang Han, Liming Fang, and Zuchao Ma. Tell the device
password: Smart device wi-fi connection based on audio waves. Sensors, page
618, feb 2019.

[30] Toni Perković, Tonko Kovačević, and Mario Čagalj. BlinkComm: Initialization of
IoT devices using visible light communication. Wireless Communications and
Mobile Computing, 2018.

[31] Markus Kasper Christof Paar Tolga Yalcin Ralf Zimmermann Markus Dürmuth,
Tim Güneysu. Evaluation of Standardized Password-Based Key Derivation
against Parallel Processing Platforms. In Computer Security ESORICS 2012.
Springer Berlin Heidelberg, 2012.

33



A. Flashing OpenWrt to the FRITZ!Box 7530
The following is a step-by-step documentation on how to flash OpenWrt 19.07.02 on
the AVM FRITZ!Box 7530. An Ubuntu 18.04.4 LTS running inside a virtual
environment was used to accomplish the flashing process. There are two types of
images used in this documentation: The initramfs-kernel image is the first part of a
multi-stage installation. It is used as a one-time boot as a stepping stone toward
installing the regular squashfs version. The initramfs version runs entirely from RAM
and is therefore not persistent.

# Download flashing scipt
wget "https://git.openwrt.org/?p=openwrt/openwrt.git;a=blob_plain;f=scripts/

flashing/eva_ramboot.py;hb=HEAD" -O eva_ramboot.py

# Download OpenWrt images
wget https://downloads.openwrt.org/releases/19.07.2/targets/ipq40xx/generic/openwrt

-19.07.2-ipq40xx-generic-avm_fritzbox-7530-squashfs-sysupgrade.bin -P $HOME
wget https://downloads.openwrt.org/releases/19.07.2/targets/ipq40xx/generic/openwrt

-19.07.2-ipq40xx-generic-avm_fritzbox-7530-initramfs-fit-uImage.itb -P $HOME

# Download bootloader
wget https://downloads.openwrt.org/releases/19.07.2/targets/ipq40xx/generic/u-boot-

fritz7530/uboot-fritz7530.bin -P $HOME

# Install tfdp server
sudo apt-get install atftpd

# inetd controls atftp. We want to change this behavior
sudo /etc/init.d/inetutils-inetd stop
vim /etc/default/atftpd # Change USE_INETD=true to USE_INETD=false
sudo /etc/init.d/inetutils-inetd start

# Copy the initramfs image to the tftp server location and rename it
sudo cp openwrt-19.07.2-ipq40xx-generic-avm_fritzbox-7530-initramfs-fit-uImage.itb

/srv/tftp/FRITZ7530.bin

# Start the tftp server
sudo service atftpd start

# Assign a static IP on the physical LAN interface
nmcli con add type ethernet ifname enp0s8 con-name wired ipv4.addresses "

192.168.178.10/24" ipv4.gateway "192.168.178.1" ipv4.method manual

# Connect one LAN port of the FRITZ!Box (not the WAN port) to the LAN
# port of the computer with an ethernet cable. Important: The LAN
# interface of the virtual machines host OS must be disabled!
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# Power on the box and run immediately the following command. Try it
# several times if a "connection refused" occurs, the operation must
# be exactly in time
./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin

# Now the bootloader should be up and running. You can confirm it by
# executing the following command in a new terminal window. You
# should see a tftp request asking the client with the IP
# "192.168.1.70" for the file "FRITZ7530.bin"
sudo tcpdump -i enp0s8 port 69 -v

# Assign yourself the IP address 192.168.1.70/24 and adjust the
# default gateway
nmcli con add type ethernet ifname enp0s8 con-name wired ipv4.addresses "

192.168.1.70/24" ipv4.gateway "192.168.1.1" ipv4.method manual

# With the correct IP address set, our tftp server will answer the
# request and transfer our initramfs image. The FRITZ!Box is then
# rebooted

# Login onto the router
ssh root@192.168.1.1

# Set a root password and logout again
passwd
exit

# Copy the persistent squashfs image and the bootload to the box
scp openwrt-19.07.2-ipq40xx-generic-avm_fritzbox-7530-squashfs-sysupgrade.bin uboot

-fritz7530.bin root@192.168.1.1:/tmp/

# Login to the box again. All following commands are executed via ssh
# on the FRITZ!Box
ssh root@192.168.1.1

# Install uboot persistently
mtd write /tmp/uboot-fritz7530.bin uboot0
mtd write /tmp/uboot-fritz7530.bin uboot1
ubirmvol /dev/ubi0 --name=avm_filesys_0
ubirmvol /dev/ubi0 --name=avm_filesys_1

# Flash the persistent firmware
sysupgrade -n /tmp/openwrt-19.07.2-ipq40xx-generic-avm_fritzbox-7530-squashfs-

sysupgrade.bin
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B. Extroot configuration
The following describes how an external USB flash drive can be used to extend the
root filesystem of the FRITZ!Box 7530. With an extended file system it is possible to
install additional packages without having to rely on the limited internal disk space of
the router. In most supported devices OpenWrt splits the internal storage into rootfs
and rootfs_data partitions which are merged together into a single writable overlay
filesystem. Extroot works by setting another overlay partition in the external storage
device, and during boot this new overlay partition will be mounted over the internal
storage’s overlay partition. Note: All following command are executed on the
FRITZ!Box 7530 via SSH.
# Install required packages
opkg update && opkg install block-mount kmod-fs-ext4 kmod-usb-storage e2fsprogs

kmod-usb-ohci kmod-usb-uhci fdisk

# Configure /etc/config/fstab to mount the rootfs_data in another
# directory in case you need to access the original root overlay to
# change your extroot settings
DEVICE="$(sed -n -e "/\s\/overlay\s.*$/s///p" /etc/mtab)"
uci -q delete fstab.rwm
uci set fstab.rwm="mount"
uci set fstab.rwm.device="${DEVICE}"
uci set fstab.rwm.target="/rwm"
uci commit fstab

# Search for the partition name of the USB drive. In my case "sda1"
block info

# Format the partition as ext4
mkfs.ext4 /dev/sda1

# Configure the USB as new overlay via fstab uci subsystem
DEVICE="/dev/sda1"
eval $(block info "${DEVICE}" | grep -o -e "UUID=\S*")
uci -q delete fstab.overlay
uci set fstab.overlay="mount"
uci set fstab.overlay.uuid="${UUID}"
uci set fstab.overlay.target="/overlay"
uci commit fstab

# Transfer the content of the current overlay inside the external
# drive
mount /dev/sda1 /mnt
cp -a -f /overlay/. /mnt
umount /mnt

# Reboot the device
reboot
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C. Cross-Compilation for the FRITZ!Box 7530

The following steps were made to setup the build system on a Ubuntu 18.04.4 LTS
running inside a virtual environment and cross-compile hostapd.

# Install all essential packages
sudo apt update
sudo apt install subversion build-essential libncurses5-dev zlib1g-dev gawk git

ccache gettext libssl-dev xsltproc zip git-core unzip subversion mercurial

# Download build system
git clone https://github.com/openwrt/openwrt.git

# Configure build system
cd openwrt
./scripts/feeds update -a
./scripts/feeds install -a
make menuconfig

# The last command opens an interactive configuration menu. Select
# the following:
# --> Target system --> Qualcomm Atheros IPQ40XX
# --> Subtarget --> Generic
# --> Target profile --> AVM FRITZ!Box 7530
# --> Libraries --> SSL --> libopenssl
# --> Libraries --> libnl

# Build the toolchain. This takes approx. 2 hours
make -j 4

# Add the following lines to the hostapd Makefile
ifdef CONFIG_FRITZBOX_7530
CC := arm-openwrt-linux-gcc
STAGING_DIR := /home/jonas/openwrt/staging_dir
TOOLCHAIN_DIR := ${STAGING_DIR}/toolchain-arm_cortex-a7+neon-vfpv4_gcc-8.4.0

_musl_eabi
TARGET_DIR := ${STAGING_DIR}/target-arm_cortex-a7+neon-vfpv4_musl_eabi
CFLAGS += -I${TARGET_DIR}/usr/include
LIBS += -L${TARGET_DIR}/usr/lib
LDCFLAGS := ${TOOLCHAIN_DIR}/usr/lib
LD_LIBRARY_PATH := ${TOOLCHAIN_DIR}/usr/lib
PATH := ${TOOLCHAIN_DIR}/bin:${PATH}
export PATH
export STAGING_DIR
endif

# Add the following line to the hostapd.conf. When this statement is
# omitted, hostapd is compiled natively for the Ubuntu system.
CONFIG_FRITZBOX_7530=y

# Now hostapd can be cross-compiled as usual with make.
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D. Configuration file for identity-based
WPA2/WPA3-Personal mixed mode

# Change wlan0 to your wireless device
interface=wlan0

# Driver interface nl80211 is used with all Linux mac80211 drivers
driver=nl80211

# Define a network name
ssid=Example

# Sets the operating mode of the interface and the allowed channels
hw_mode=g

# Use 802.11n to increase data rates
ieee80211n=1

# Set a channel. Channels 1-13 are allowed with 802.11n
channel=1

# Setting this variable configures the AP to require WPA (either
# WPA-PSK or WPA-RADIUS/EAP based on other configuration)
wpa=2

# WPA pre-shared key for WPA-PSK. This can be either a PSK, entered
# as a 256-bit secret in hex format (64 hex digits), or an ASCII
# passphrase (8..63 characters) that will be converted to PSK.
# When iPSK mode is enabled, the wpa_passphrase acts as master-secret
wpa_passphrase=mastersecret

# Set of accepted key management algorithms. The entries are
# separated with a space.
wpa_key_mgmt=WPA-PSK SAE

# Set of accepted cipher suites
rsn_pairwise=CCMP

# Specify whether protected management frames (PMF) is enabled
# 0 = disabled
# 1 = optional
# 2 = required
ieee80211w=1

# Enable iPSK policy
ipsk=1

# Enable internal EAP server for EAP-WSC (part of WPS)
eap_server=1
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# Do not allow external WPS registrars
wps_state=2

# Enable control interface for WPS PBC/PIN entry
ctrl_interface=/var/run/hostapd
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