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Abstract

Security keys used in two-factor authentication are based on digital signatures. These
signatures are currently based on elliptic curves or other problems which will no longer be
hard to solve on quantum computers. This thesis looks at Google’s OpenSK specifically,
assessing steps for making it post-quantum secure. Sequentially-updatable Merkle trees
and Merkle tree forests are presented as theoretical generalizations of Merkle trees.
A novel hash-based few-time signature scheme is then proposed, which is based on
sequentially-updatable Merkle trees and a variant of W-OTS+. An implementation
of this scheme is analyzed and compared to lattice-based and classical cryptography
regarding its feasibility for use in FIDO authenticators and similar applications.
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1. Introduction

Security keys provide a great alternative to — or extension of — password-based
authentication. They are usually hardware tokens (for example USB sticks or NFC
smart cards) that store private keys of asymmetric cryptography. In asymmetric
cryptography both communicating parties do not know the same secret, instead the
authenticating party has sole ownership of a private key and the verifying party only
needs a public key, which does not need to be kept secret. Advantages of security keys
over password-based authentication are:

• high entropy (keys are generated from secure random numbers by the hardware,
not thought of and remembered by the user)

• phishing resistance (in asymmetric cryptography secrets are never transmitted to
the server)

• replay-attack resistance (challenge-response mechanisms are used where the same
authentication message can only be used for one session)

FIDO is the most widely used standard for security-key based authentication. It is an
open standard developed by the industry consortium FIDO Alliance, which includes
companies such as Google, Microsoft, and Mozilla. The FIDO Alliance is also supported
by government organizations, such as the American National Institute of Standards
and Technology (NIST) and the German Federal Office for Information Security (BSI).
Later in section 2.4, FIDO’s relevant protocols are presented in more detail.

It is long known though [41], that quantum computers will be able to solve the
discrete logarithm problem (DLP) and the prime factorization problem, which are
number theoretical problems for which no efficient algorithm for classical (non-quantum)
computers exists. The hardness of these problems is at the heart of current asymmetric
cryptography. Therefore, quantum computers are able to break the security of RSA,
Digital Signature Algorithm (DSA) and Elliptic-Curve DSA (ECDSA), the asymmetric
cryptosystems used in essentially all cryptographic applications today, including FIDO
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security keys. Across all systems and applications a lot of work needs to be done
replacing these asymmetric cryptosystems with quantum-secure alternatives.

1.1. Motivation
FIDO authentication is currently based on asymmetric cryptographic primitives, like
ECDSA. To provide secure authentication even in a future where adversaries with
large quantum computers exist, the FIDO protocols need to be extended. Especially,
new cryptographic primitives need to be employed, for example hash- or lattice-based
signature schemes could replace current signatures.
Furthermore, all currently available PQ asymmetric cryptography is much more

resource intensive than their classical counterparts. Different schemes also give very
different tradeoffs between, for example, signature size and computation time needed.
Thus, there is not one straightforward way of making current protocols PQ secure.
Especially, there is no single primitive that is optimal in every way and can always be
substituted in for the current classical primitive. The different tradeoffs have to be
weighed carefully, possibly even novel ways of combining cryptographic primitives have
to be found for optimally crafted PQ security protocols.

1.2. Contributions
The goal of this thesis is to analyze the possible ways of integrating PQ secure crypto-
graphic primitives into the FIDO protocols, compare the different primitives in their
relevant performance characteristics. For this OpenSK, an open-source implementation
of a FIDO security key developed at Google, and its supported hardware are used as a
reference and benchmarking platform.

Specifically, the focus is on how hash-based few-time signatures can be used efficiently.
These cryptosystems have been disregarded so far because of the usually very large
public key and signature sizes. In chapter 4 new ways of using hash-based signature
schemes for the specific use-cases of FIDO authentication are presented. Finally, in
chapter 5, we evaluate the proposed solutions regarding their security properties, and
communication- and computation-efficiency. We compare them to NIST standardization
candidates for PQ cryptography and the current classical primitives, thus giving an
indication towards the viability of PQ secure user authentication on current embedded
hardware.
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2. Background

2.1. Quantum Algorithms

2.1.1. Shor

Shor presented efficient quantum algorithms [41] for integer factorization and the
(elliptic curve) discrete logarithm. The running times are in O((log n)3), where n is
the number to be factored. Thus, they run in time polynomial in the input length,
and are therefore almost exponentially faster than the fastest algorithms available on
classical computers [36, 1]. Consequently, an adversary with a large quantum computer
can break RSA, DSA, and ECDSA, by for example cryptanalyzing the public key,
reconstructing the private key.

2.1.2. Grover

Grover’s algorithm [17] can be used to speed up search for an input to a black-box
function for a specific output by a quadratic factor. That is, a quantum computer
can find such an input in an average of O(

√
n) steps, whereas any classical algorithm

will always need on average O(n) time. This is because the classical computer would
on average have to check half the possible inputs. It can be used to speed up hash
preimage/collision search and symmetric cryptography key recovery attacks. Because
the speed-up is only quadratic, searching a search space of size 2n still takes O(2n/2)
time. For hash-collision search the theoretical speed-up is even less, improving from
O(2n/2) (using classical birthday attacks) to O(2n/3). So, symmetric cryptography
and hash functions are not broken by quantum computers. Doubling hash function
output lengths and key lengths of symmetric encryption is enough to eliminate any
theoretical advantage. Also, Grover’s algorithm is shown to be asymptotically optimal
on quantum computers [44]. So, further results improving upon Grover’s work are not
to be expected.

There are also arguments [13, 2] that Grover’s algorithm, in practice, has even less of
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an effect. Specifically, this means 192-bit primitives actually provide around 128-bit PQ
security against preimage attacks — not just 96 bits. These arguments are based on
the limited parallelization possibilities of Grover’s algorithm, which scales only by

√
n

when using n parallel instances [44]. This is relevant because in most attack models the
attacker runs their attack highly parallelized. In their call for proposals [32], the NIST
also asked researchers to focus on the lower security levels, suggesting they estimate
these to be secure for the near future. This mostly means levels I and III, which
are equivalent to 128-bit preimage search and 192-bit preimage search respectively.
Throughout this thesis we will use these as our PQ security levels.

2.2. Preliminaries
Here we establish some common definitions from cryptography, which are needed for
the rest of the thesis.

2.2.1. Cryptographic Hash Functions

A hash function is a deterministic function h : {0, 1}∗ → {0, 1}n, i.e. it maps arbi-
trary length bit strings to bit strings of fixed length n. To be considered a (strong)
cryptographic hash function it needs to fulfill these security properties:

• Preimage resistance: Given h(m) it is hard to find any m′ (possibly m′ = m),
such that h(m) = h(m′).

• Second preimage resistance: Given m1, and thus h(m1), it is hard to find an
m2 6= m1, such that h(m1) = h(m2).

• Collision resistance: It is hard to find any m1,m2 (with m1 6= m2), such that
h(m1) = h(m2). This is only required for strong cryptographic hash functions.

Cryptographic hash functions usually provide n-bit security against preimage attacks,
and n

2 -bit security against collision attacks, both of which is optimal. Another property
that is often wanted of (cryptographic) hash functions is that they behave like pseu-
dorandom functions when concatenating the inputs to a key. For this we first define
keyed cryptographic hash function families:

• Keyed cryptographic hash function family: A set of functions F , where
each function fk ∈ F for key k (usually k ∈ {0, 1}n, where n is the hash function
output length) is a cryptographic hash function.
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• Pseudorandom function family: A keyed function family F where if we pick
a function fk ∈ F at random based on its key k it is impossible to distinguish
any outputs of fk from random outputs (regardless of whether inputs are chosen
randomly or predictably).

2.2.2. Digital Signature Schemes

A digital signature scheme provides three algorithms:

• genkp(seed): Takes an n-bit random seed (usually from a cryptographically-
secure pseudorandom number generator (CSPRNG)) and returns a keypair, i.e.
a private key (with an entropy of n bits) and a corresponding public key.

• sign(kp, msg): Generates a signature for message msg using keypair kp.

• verify(pk, msg, sig): Verifies whether sig is a valid signature for the message
msg under the public key pk, i.e. was created using the corresponding private
key. Returns true/false accordingly.

Security of digital signature schemes is formalized in the following three notions [16].
For all, assume the public key pk, some messages (m0,m1, . . . ,mk) and corresponding
valid (under pk) signatures (s0, s1, . . . , sk) to be public information. This list is in weak
to strong order (where each stronger notion implies all weaker ones):

• Total break resistance: Using only the public information, it is hard to find
the secret key sk that corresponds to pk.

• Universal forgery resistance: Given a new message mk+1 (generated by the
owner of the secret key) and using only the public information, it is hard to find
a corresponding signature sk+1 which is valid under pk.

• Selective forgery resistance: Given a message mk+1 (generated by the adver-
sary independent on the messages and signatures they learned) and using only
the public information, it is hard to find a corresponding signature sk+1 which
is valid under pk.

• Existential forgery resistance: Using only the public information, it is hard
to find any message-signature pair (mk+1, sk+1) which is valid under pk.
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2.2.3. One-/Few-Time Signatures

A digital signature scheme is called an one-time signature (OTS) scheme if we can only
sign one message without (partially) compromising security. Let n be the security level
of the one-time signature (OTS) scheme. If a second signature is ever created under
the same keypair, the security of the scheme may become less than n bits (possibly
rendering all signatures untrustworthy).

A digital signature scheme is called an few-time signature (FTS) scheme if for some
k ∈ N we can only sign k message without (partially) compromising security. Let n
be the security level of the few-time signature (FTS) scheme. As long as k or fewer
signatures have been created under a given keypair, the security of the scheme is
(at least) n bits. As soon as a total of k + 1 or more signatures have been created
under the same keypair, the security of the scheme may become less than n bits
(possibly rendering all signatures untrustworthy). Usually k is a parameter which can
be increased at the cost of more storage-, communication-, and computation-overhead.

2.3. Post-Quantum Cryptography

2.3.1. Lattice-based Cryptography

These cryptosystems are based on mathematical properties of lattices and specific
problems regarding these. The underlying computational problems, such as the shortest
vector problem (SVP) are currently believed to be intractable to solve, even on
quantum computers. Falcon [14] is an example of lattice-based cryptography; it
is a signature scheme based on NTRU lattices [18]. Another notable example is
SWIFFT [27], a cryptographic hash function based on lattices. There is a security
reduction of its collision resistance to worst-case ideal lattice problems, which is
unusual for cryptographic hash functions. Also unusual is its homomorphic property
(h(a+ b) = h(a) + h(b)), which can be useful for certain applications (as will be seen
in subsection 3.3.1) but necessarily makes it not a pseudorandom function. One more
example is the first ever fully homomorphic encryption scheme [15], which is also made
possible by lattice-based cryptography.
The NIST post-quantum cryptography (PQC) standardization process has so far

shown that lattice-based schemes offer a good middle ground. Under the finalists, two
of the three signature schemes and three of the four key encapsulation mechanisms
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(KEMs) are lattice-based 1. Other schemes [4, 29] go very far to either extreme of
time-space tradeoffs. Whereas those based on linear codes are fast but have key sizes
in the megabytes, those based on supersingular isogenies over elliptic curves are up to
three orders of magnitude slower but have the smallest ciphertexts [38].

2.3.2. One-time Passwords

Lamport [26] first proposed the idea of using a chain of hash values as single-use
passwords, so-called one-time passwords (OTPs). The idea is that of a finite chain
(x0, x1, . . . , xn), where x0 is a secret seed value and xi = h(xi−1) for all i > 0, for some
cryptographic hash function h. Initially, after generating the hash chain, the verifying
party is given xn. After that the authenticating party can authenticate themselves by
sending xn−1.
One main shortcoming of this scheme is that it needs regular re-registration of the

password because the hash chain only has a finite number of elements. Recently, an
improved hash-chain OTP was proposed [34] which solves exactly this problem while
keeping the other advantages of the Lamport OTP. As opposed to other schemes which
generate unbounded numbers of OTPs this does not require any shared secrets. It
works by using many short hash chains, which are linked in a specific pattern. Each
hash chain in theory has its own seed, though the seeds can all be generated from
a single seed via a CSPRNG. Where this infinite OTP scheme fails though is when
transmission failures occur. It can not recover from more than one failure, whereas
Lamport’s scheme can always recover from r − 1 failures, where r is the number of
unused OTPs remaining. In contrast to signatures OTPs are not bound to a specific
message. Especially, they can not be used to prove to a third party that a specific
message was approved.

2.3.3. Hash-based Signature Schemes

Hash-based signature schemes build upon the seminal papers of Lamport [25] and
Merkle [31]. Lamport first introduced the idea of using hash values as public keys and
selectively publishing their inputs to sign messages. The original scheme requires one
collision resistant hash value per bit of the message to be signed. Assuming 256 bit
long hashes (to achieve 128-bit security against collisions), this gives signature sizes of

1https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions (Accessed Oct 17
2021)
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around 8 KiB (= 256 · 256 bits) because the signed message should also be a collision
resistant hash. This is a one-time signature (OTS) scheme.

Hash-based signatures are especially interesting as (depending on their construction)
they may require only one-way functions, which is the minimal assumption you need
for digital signature schemes to exist at all [37]. The next scheme we look at, W-OTS+,
actually achieves this. Also, because hash functions are already central to much of
practical cryptography, it might be easier to trust signature schemes built from them
than other PQ secure schemes, which often rely on new assumptions which are not yet
applied in any practically used schemes.

W-OTS/W-OTS+

Nowadays there are much more efficient hash-based OTS schemes exist, most promi-
nently the Winternitz improvement [30]. It extends Lamport’s idea by introducing a
space-time tradeoff parameter w. With w = 2 it is essentially equivalent to Lamport’s
scheme, whereas with w > 2 a single hash value in the signature maps to log2 w bits
(instead of just one bit) of the message. Thereby the signature size decreases linearly in
log2 w, the number of hash function evaluations needed for key generation, signing, and
validation on the other hand increase (almost) linearly in w (and thus exponentially in
log2 w). Central to the scheme are hash chains, such as seen in Figure 2.1. In W-OTS
the chaining function is just plain applying of a hash function h, i.e. ei,j = h(ei,j−1)
for all i > 0. Further improvements have been made to the Winternitz OTS scheme,
especially the W-OTS+ variant [20], which is shown to be secure when instantiated
with any cryptographic one-way function (without requiring collision resistance). This
enables signature sizes to be half the length they need to be for plain W-OTS for the
same security parameter. Also, whereas security for W-OTS decreases linearly in w,
for W-OTS+ it only decreases logarithmically. W-OTS+ achieves all this by replacing
plain calls to the hash function with keyed calls and using random bitmasks on the
input, i.e. ei,j = hkeyi,j−1(ei,j−1 ⊕ bitmaski,j−1) for all i > 0.
In the following the exact variant of W-OTS+ used in this thesis is explained in

detail. Let hk be functions from keyed cryptographic one-way function family, w be the
Winternitz parameter, n be the security parameter, and fk be pseudorandom functions.
The output size of hk needs to be at least n bits (if it is longer it can be truncated). The
number of hash chains is l = l1 + l2, with message length l1 = 2n/ log2 w and checksum
length l2 = blogw (l1 · (w − 1))c + 1. The secret key technically is (s0, s1, . . . , sl−1),
instead we can generate these from a single seed using a key derivation function (KDF).
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p0 = e0,w−1

. . .

e0,2

e0,1

s0 = e0,0

p1 = e1,w−1

. . .

e1,2

e1,1

s1 = e1,0

. . .

pl−1 = el−1,w−1

. . .

el−1,2

el−1,1

sl−1 = el−1,0

Figure 2.1.: Hash chains as used in the W-OTS one-time signature scheme.

Then, only a single value s needs to be stored by defining si = fs(i). The public key
technically is the tuple of hash-chain end values (p0, p1, . . . , pl−1). This can be reduced
by hashing because the values pi can later be calculated from the signature. So, the
published public key is just the single hash value pk = h(p0, p1, . . . , pl−1) instead of the
whole tuple of l hash values.

To sign a message, it is hashed and the hash is converted into base-w numbers
(m0, . . . ,ml1−1). Additionally a checksum is calculated as chk =

l1−1∑
i=0

w − 1 − mi,
also converted to a base-w representation (ml1 ,ml1+1, . . . ,ml−1), and then appended
to the message. The signature for the final message (m0,m1, . . . ,ml−1) is then
(e0,m0 , e1,m1 , . . . , el−1,ml−1). Signing and verifying thus use an expected number of
wl
2 hash function evaluations, whereas public key generation always requires wl evalua-
tions. Signature size is wl + 1 hash values ((wl + 1) · n bits), the one additional hash
value being for the public seed from which the keys for and bitmasks for chaining are
derived. Effective secret and public key sizes are, as argued before, just a single hash
value (n bits).

Without the additional checksum it would be possible to calculate signatures for
different messages from a given signed message. Given a message (m0,m1, . . . ,ml−1)
and a corresponding valid signature (c0, c1, . . . , cl−1). Assuming for some i the mes-
sage has mi < w − 1, an attacker could construct the message (m0, . . . ,mi−1,mi +
1,mi+1, . . . ,ml−1) and the corresponding valid signature (c0, . . . , ci−1, h(ci), ci+1, . . . , cl−1).

One interesting property of W-OTS (and W-OTS+) is that the public key can be
derived from the signature. Usually the actual public key would not be published,
instead a compact hash value would be published, defined for example as: h1 = h(pk0 ‖
pk1 ‖ . . . ‖ pkl−1).
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Algorithm 1 W-OTS+(w, n, l, h, f)
1: procedure KeyGen(seed)
2: seedpublic ← fseed(l)
3: (s0, . . . , sl−1)← (fseed(0), . . . , fseed(l − 1))
4: (p0, . . . , pl−1)← (Chain(s0, w − 1, 0, 0), . . . ,Chain(sl−1, w − 1, l − 1, 0))
5: pk ← h(p0 ‖ p1 ‖ . . . ‖ pl−1)
6: return (seed, pk)
7: end procedure

8: procedure Sign(msg, seed)
9: (c0, . . . , cl−1)← CyclesForMsg(msg)
10: (s0, . . . , sl−1)← (fseed(0), . . . , fseed(l − 1))
11: (σ0, . . . , σl−1)← (Chain(s0, c0, 0, 0), . . . ,Chain(sl−1, cl−1, l − 1, 0))
12: return (o0, o1, . . . , ol−1)
13: end procedure

14: procedure Verify(msg, sig = (σ0, . . . , σl−1), pk)
15: (c0, . . . , cl−1)← CyclesForMsg(msg)
16: (p0, . . . , pl−1) ← (Chain(σ0, w − 1− c0, 0, c0), . . . ,Chain(σl−1, w − 1− cl−1, l −

1, cl−1))
17: pkCalc ← h(p0 ‖ . . . ‖ pl−1)
18: return pk = pkCalc
19: end procedure

20: procedure CyclesForMsg(msg)
21: hash← h(pk ‖ h(msg))
22: (c0, . . . , cl1−1)← ToBase(hash, w)
23: chk ← 0
24: for all x ∈ {c0, . . . , cl1−1} do
25: chk ← chk + (w − 1− x)
26: end for
27: (cl1 , . . . , cl−1)← ToBase(chk, w)
28: return (c0, . . . , cl−1)
29: end procedure

30: procedure Chain(input, cycles, chain, i)
31: if cycles = 0 then
32: return input
33: else
34: key ← fseedpublic(”key” ‖ chain ‖ i)
35: bitmask ← fseedpublic(”bm” ‖ chain ‖ i)
36: return Chain(hkey(input⊕ bitmask), cycles− 1, chain, i+ 1)
37: end if
38: end procedure
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To further reduce the signature size, during signing h1 can be included in the message
hash, that is to sign message m the input to W-OTS+ should be h(m ‖ h1) instead
of simply h(m) [35]. The authenticator would then publish h2 = h(h1) instead of h1,
to keep h1 hidden until the signature is created. By doing this the hash function h
also does not need to be collision-resistant. Therefore, the input to W-OTS+ can be
again half its original length, resulting in almost halving the total signature length.
Publishing the original public key hash, before the additional round of hashing is then
necessary though, increasing the signature size by one hash value. So signatures are
now wl+2 hash values (n(wl+2) bits) long, still with l = l1 + l2 but now l1 = n · log2 w.
This adaptation to W-OTS+ is also used in our implementation.

MSS/XMSS

Merkle [31] showed how OTSs can be combined into an FTS scheme, by building a
binary tree of hash values. In general a Merkle tree is a binary tree of hash values,
where each node is the hash over the concatenation of its two children. When used
as an FTS scheme this is called Merkle signature scheme (MSS). The leaf nodes are
then OTS public keys (or hash values thereof, in which case the actual public keys
need to be provided together with the signature). The root of the tree serves as the
FTS public key, and serves as a pre-commitment to all the OTS public keys. To sign a
message under this scheme the signer first signs it using the OTS keypair from one of
the leaves. Additionally, they need to provide the authentication path, which is the
sequence of sibling nodes when traversing the path from leaf to root node. A verifier
can then check the OTS signature and calculate all hashes along the authentication
path, finally comparing the calculated root hash with the root value they have stored
as FTS public key.
This is a rather efficient scheme, in terms of communication overhead: Signature

size overhead over the OTS scheme is only logarithmic in the number of signatures
possible with the same public key (i.e. the number of leaf nodes). On the other hand,
the public key generation can become rather expensive, as the whole tree needs to be
calculated (including one OTS public key for each leaf node). Public and secret keys
can still be just a single value of the same length as a hash output. This is because the
OTS seeds can all be generated from the same FTS seed via a KDF, analogous to how
we then generate all the hash chain start values from the single OTS seed.

A variant of this scheme called eXtended Merkle Signature Scheme (XMSS) [8] (but
instantiated with W-OTS+, as in [20]) is standardized in RFC 8391 [19].
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2.4. FIDO

FIDO is a collection of standards defining algorithms and protocols (or ceremonies)
for user authentication based on so-called FIDO authenticators. These authenticators
are recommended to be so-called roaming authenticators, i.e. external hardware that
is not part of the platform running the client software, for example a USB security
key (NFC and Bluetooth Low Energy are other common connectivity methods). It
can be used as a single factor to provide password-less authentication or in two-factor
authentication (2FA) in addition to a password. First of all, we define some specific
terms from the FIDO standard that will be used in this section:

• Relying Party: The platform running the WebAuthn and application servers is
called the relying party (RP).

• Client: Software that communicates with WebAuthn server and the authenticator.
For authentication against web servers, this is usually done directly by the browser.

• Credential: One keypair that is registered with a specific RP and is used for
creating assertions. A special case are discoverable credentials (also known as
resident keys), which are stored persistently on the authenticator or generated
deterministically from the RP ID. Usually stored encrypted on the server and
thus not discoverable.

• Assertion: A confirmation created by an authenticator specifying that a certain
action has been authenticated, with a specific credential and possibly with a user
presence check or further verification (e.g. PIN or fingerprint).

• Attestation: The process in which the authenticator provides a certificate and
signature, indicating that it is genuine and provides specific capabilities.

• User presence: A simple check on the authenticator which serves to verify the
user is using the device (e.g. by button press), to prevent fully-automated access
to the authenticator.

• User verification: A further check performed directly on the authenticator to
verify the user to the authenticator. This can be a user-specified PIN code or
biometric check (e.g. fingerprint).
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2.4.1. WebAuthn

WebAuthn is an authentication API designed by the World Wide Web Consortium
(W3C). The WebAuthn/FIDO2 protocol is the challenge-response authentication
protocol that is part of the FIDO standards. It is used for authenticator-based authen-
tication on the web and serves as a standard, which many independently developed
implementations adhere to. Web application developers can use a WebAuthn server
library to support authenticators as password-less or second-factor authentication for
their users. In the case of discoverable credentials even username-less login is possible.
For this the client discovers the credential on the authenticator based on the RP ID.
Then, the server can look up the correct account based on the public key (serving as
the user’s identifier).

2.4.2. CTAP

Client to Authenticator Protocol (CTAP) is the protocol used for communications
between the FIDO authenticator and the client platform. CTAP 2.0/2.1 are the versions
of this protocol which are part of the FIDO2 standard currently under development.
They replace their predecessor CTAP 1.0, also known as U2F.

Central to the CTAP specification are two procedures, one for registering a new
credential (called authenticatorMakeCredential) and one for authenticating with an
already registered credential (called authenticatorGetAssertion). These are called
ceremonies — not protocols — in FIDO because of the explicit involvement of the
human user (for example via user presence checks).

The credential registration ceremony (see Figure 2.2) is used to register a credential
with a user account. Usually it will be performed only once to add the authenticator to
the user’s account, but can also be done again, for example to add another authenticator.
During this ceremony the credential’s public key is signed with an attestation key, which
is static and independent of the credential. The attestation key lets the RP identify the
authenticator’s manufacturer and model, they may then use this information to assess
the risk associated with this type of authenticator, for example no longer accepting
authenticators from a compromised series.

The authentication ceremony (see Figure 2.3) is a challenge-response authentication
protocol. Depending on the application it may be performed on every login, only when
signing in to a new device, or only when specific actions — such as a password reset
— should be performed. The RP sends a random challenge which serves to provide
freshness and thus prevent replay attacks. This challenge (together with some data from
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Credential registration ceremony
Auth. Client RP

authenticatorMakeCredential params, options

(up/uv)
cred = KeyGen()
attst = Sig(credpk)

credpk, attst credpk, attst

Figure 2.2.: Simplified sequence diagram of the credential registration ceremony in
WebAuthn/FIDO2. The abbreviations up and uv mean user presence and
user verification respectively.

User authentication ceremony
Auth. Client RP
credsk credpk

ch←$ {0, 1}256

authenticatorGetAssertion ch

(up/uv)
asrt = Sig(ch, . . .)

asrt asrt

Ver(asrt, credpk)

Figure 2.3.: Simplified sequence diagram of the user authentication ceremony in We-
bAuthn/FIDO2. The abbreviations up and uv mean user presence and
user verification respectively.
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the authenticator) is signed on the authenticator using the private key that is registered
with this RP. This way many of the usual attack vectors against passwords do not
apply. For example, phishing by a third party website is no longer possible because
the authenticator only responds with the keypair registered for the RP. Though, it is
essential that the authenticator gets authentic data about the RPs identity from the
client, otherwise phishing is possible again. Assume the client is compromised and can
provide the authenticator with wrong RP IDs. If the malware and the phishing site
are operated by the same adversary, they can cooperate to trick the authenticator to
issue a signature.
CTAP requires the authenticators to at least support a global signature counter,

and preferably one for each credential. Allowing the RP, who stores this counter, to
detect and prevent attackers from logging in with cloned authenticators.
In chapter 4 the focus will be on replacing the credential (keypair) and assertion

(signature). Conversely, we will not focus on attestation, user PIN protocol, and
WebAuthn encryption and authentication (TLS). These parts are less interesting, in
the sense that they are more well studied and less FIDO specific. Attestations for
example can be implemented with any public key infrastructure solution, such as is
needed for TLS anyways. Also, attestations are only sent once on credential registration,
not on every user authentication. Thus, the resource constraints are less harsh here as
well. On the other hand the user PIN protocol is (potentially) executed on every user
authentication, but only between client and authenticator, without involving the RP.
It is largely based on symmetric cryptography, though, only a single key agreement is
needed, which can be done with any PQ KEM.
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3. Related Work

There is currently no published work directly analyzing the FIDO protocols regarding
their PQ security. Furthermore, there is no published work so far making propositions
on how to adapt the protocols to guarantee some level of PQ security. Thus, the work
presented in this thesis is the first analysis, that we are aware of, directly regarding
FIDO and PQ cryptography. On the other hand, a lot of work already exists analyzing
the security of the FIDO protocols and PQ cryptography, including hash-based signature
schemes (even in the setting of embedded systems), separately.

3.1. Formal Analysis of FIDO

There are published works formalizing the security properties of WebAuthn and FIDO
protocols, including CTAP1/UAF and CTAP2, even providing (tool-assisted) formal
proofs [5, 21, 12]. These are important as they are further support for the soundness
of the protocols. On the other hand, they assume the cryptographic primitives to be
secure, or at least the underlying number theoretic problems to be hard. That is, they
do not look at quantum-capable adversaries. Therefore, they also don’t look at how
these primitives need to be replaced and what specific candidates there are.

3.2. PQ Cryptography on Embedded Devices

Also a lot of literature already exists [38, 28, 3, 43, 10, 42] on the general question of PQ
cryptographic primitives’ performance on mobile and embedded devices. Topics already
covered in the literature include pre-computation [3], hardware-software co-design [43],
and relative viability of different types of primitives [42, 3, 38]. Some [28, 10] also came
to the conclusion that hash-based signature schemes are viable on embedded systems.
What is new in this thesis is the focus on FIDO as a specific use case and the analysis
of a novel more efficient hash-based FTS scheme for this use case.
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3.3. Efficient Hash-based Signatures

3.3.1. K2SN-MSS (SWIFFT)

K2SN-MSS [24, 22] is a special case, as it is a hash-based FTS scheme but SWIFFT, the
hash function it is based on, uses lattice-based cryptography internally. The interesting
property of SWIFFT that is needed here is its homomorphic property, i.e. if we have
inputs x1, x2 for which x1 +x2 is also a valid input, it satisfies h(x1 +x2) = h(x1)+h(x2).
This property enables more efficient constructions than the Winternitz scheme. It is
also efficiently implemented in software, taking similar times for key generation, signing,
and verification as W-OTS+ implementations.

Unfortunately, the hash outputs of SWIFFT are much larger than the output sizes
of the SHA family, which are optimal for their respective security parameters. For
example for security parameter 112 the hash output is at least 512 bits long [27]. This
results in OTS public keys of around 15 KB because the public key can also not be
calculated from the signature as in W-OTS+, and thus not reduced by hashing it.

3.3.2. SDS-OTS

Very recently, Shahid et al. [39] [40] proposed a new OTS scheme, which aims to
improve upon W-OTS+ regarding signature size and computation time.
Whereas W-OTS+ builds one hash chain per w-bit symbol of the message hash, in

SDS-OTS the parameter w is used in practically the inverse way. They build w hash
chains, where the length of each chain is equal to the number of w-bit symbols in the
message hash.

Their claimed performance of the signature scheme would make it a very attractive
alternative to W-OTS+. If the parameters they provide in the paper would indeed
give a PQ security level of 128 bits, SDS-OTS would be about two times faster at
signing and key generation and also have slightly smaller signatures. Unfortunately,
the scheme as they describe it does not seem to give the claimed security level.
The signature is determined entirely by the sums of hex digit indices, these are 16

numbers in the range 0, 1, . . . , 127. Therefore, there are only a total of 12816 = 2112

different signatures. By the pigeon-hole principle an attacker can find two messages
with the same signature, and thereby an existential forgery, by exhaustive search of
2112 + 1 messages. Thus, SDS-OTS does not even achieve a classical security level
of 128 bits. The security proof, which claims existential forgery of SDS-OTS can be
reduced to onewayness of the underlying hash function has to be flawed then. Flawed
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assumptions in the proof include: uniform randomness of the forged messages and even
allowing the adversary to calculate the inverse of the one-way function at one point.

We can make three adaptations to the SDS-OTS scheme to at least achieve 128 bit
classical security, see Appendix A. One of the necessary changes makes key generation,
signing, and verification twice as computationally expensive. By then it is no longer
any faster than W-OTS+ with w = n = m = 256, which even achieves the 256 bit
classical security level (and PQ level V). In conclusion, SDS-OTS does not need to be
considered further because it can be seen as inferior to the state-of-the-art W-OTS+.

3.3.3. SPHINCS+

SPHINCS+ [6, 7] was one of the candidates in round 2 of the NIST’s PQC competi-
tion [33], though in the ongoing round 3 it is only listed under “Alternate Candidates”,
not under “Round 3 Finalists” 1. It combines FTSs into a general signature scheme
which can sign a practically unlimited number of messages, similarly to how FTS
schemes combine many instances of an OTS scheme.

We do not consider SPHINCS+ further as it gives very large signatures and public keys,
of at least 8 KiB each. The other NIST candidate schemes offer better tradeoffs between
signature size and computational effort [38, 42]. The only upside of general hash-based
signature schemes at the moment is that hash functions are already well studied and
widely used, compared to lattice-based cryptography for example. In chapter 4 it will
be shown how much can be gained in terms of performance, when using FTSs directly
and dropping the aim of signing (practically) unlimited numbers of messages.

1https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
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4. Methodology

4.1. Hardware and Software

4.1.1. OpenSK

OpenSK 1 is an open-source implementation of a FIDO authenticator developed by
Google. It currently implements the CTAP 2.0 protocol, with version 2.1 being
worked on. OpenSK is written in Rust and based on the embedded operating system
Tock 2, also written in Rust. We used OpenSK and the nRF52840 board (explained
in subsection 4.1.2) it is supposed to be used with as a reference FIDO authenticator.
Of the actual OpenSK implementation only the cryptography benchmark was used
and extended to provide easy benchmarking on the board, and to perform direct
performance comparisons with OpenSK’s cryptographic primitives.

4.1.2. nRF52840

Nordic Semiconductor’s nRF52840 is a system on a chip (SoC) and the only hardware
currently officially supported by the OpenSK project. It features a single 32-bit ARM
processor, clocking at 64 MHz, 256 KiB RAM and 1 MiB flash memory. It supports all
usual FIDO connectivity methods: USB, NFC, and Bluetooth Low Energy. As opposed
to more advanced FIDO authenticator hardware it has neither a display nor input
capabilities for a user PIN. This chip has an embedded ARM TrustZone CryptoCell
310 security subsystem, which offers hardware accelerated cryptographic primitives,
including AES and SHA-256. Unfortunately, it is currently not directly accessible from
Tock, though there is a work-in-progress development branch for this 3 on OpenSK
developer Picod’s fork of Tock. For benchmarking, we more specifically used the
development board nRF52840-DK.

1https://github.com/google/OpenSK (Accessed Oct 17 2021)
2https://github.com/tock/tock (Accessed Oct 17 2021)
3https://github.com/jmichelp/tock/tree/cryptocell (Accessed Oct 17 2021)
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4.2. Threat Model

FIDO authenticators are meant to protect against scenarios which are not considered by
the usual adversary model, in which the adversary has a read/write man-in-the-middle
position between the two (or more) communicating parties. Additionally, it tries to
reduce the impact of certain user errors, such as skipping necessary checks, or falling
victim to phishing. Malware with certain capabilities is also part of the adversary
model, at the minimum an adversary under this model should be able to read any
messages on the device where the FIDO client software runs This adversary is therefore
at least as strong as an adversary employing a keylogger. Evidently, password-only
authentication is not strong enough against this kind of adversary.

Regarding denial-of-service (DoS), we further make a limiting assumption about
our attacker. We assume they are not able to disturb the communication at a specific
point in the message flow, i.e. between two specific packets, with higher than 50%
probability. This restriction in the attacker’s capabilities will allow us to argue, that a
few-time signature scheme will with near certainty never result in the user running out
of signatures. Also, this assumption is quite reasonable, as the communication between
FIDO/WebAuthn client and RP are usually TLS-secured channels. The attacker needs
to solve the non-trivial task of identifying one specific packet in a TLS-encrypted data
stream. An adversary with both, a man-in-the-middle position able to disrupt the TLS
connection and some read-only malware able to eavesdrop on client-to-authenticator
communication, however might be able to use information gathered from the malware
to time the connection disruption. To make it harder for attackers the implementation
could also introduce padding into messages, split packets, and send additional decoy
messages, to more reliably achieve this bound.

This attack capability is not inherent to FTS schemes. The same type of DoS attack
is possible against FIDO using ECDSA today. Though, when using FTSs we have to
take extra care because we could run out of signatures permanently locking the user
out of their account.

Under this model, the probability of a successful DoS attack is thus: pDoS = 0.5n.
Here, n is the number of so far unused OTS keypairs. The expected number of attempts
necessary to perform this attack successfully is thus exponential in n. Therefore, the
number of unused OTS keypairs is a security parameter for security against such DoS
attacks. More directly, we can control the number of total OTS keypairs to adapt this
security parameter.
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4.3. Changes to the FIDO Protocols

In this section the different ways of adapting and extending the WebAuthn/FIDO2
and CTAP2 protocols for PQ security are presented. First explaining possibilities that
are not further considered and then depicting our proposed schemes using hash-based
signatures.

4.3.1. General Hybrid Signatures

This way of making FIDO post-quantum secure is the most straightforward. In addition
to the ECDSA signature, assertions would also be signed with a post-quantum secure
signature scheme. Adding a second signature instead of replacing the ECDSA signature
completely is preferable because the PQ cryptosystems used are based on less well
studied mathematical properties than their classical counterparts. This approach is
called hybrid-security and recommended by the German Federal Office for Information
Security (BSI) [9]. Accordingly, during credential registration two public keys need to
be sent by the authenticator. This greatly increases all transmission and computation
costs. Possibly the only type of PQ signature schemes we are confident enough in to
deploy without using them in hybrid with ECDSA, are the hash-based cryptosystems.
For this reason, especially hash-based FTS schemes are looked at further below.

4.3.2. Key Encapsulation Mechanisms

One could also consider using KEMs instead of signatures as the cryptographic building
block for adding PQ security into the protocol. This is attractive because among
the NIST competition candidates the KEMs are more compact and faster than the
signature schemes [38].
The naive way to do this would be to perform a key exchange only once, upon

credential registration. Then authenticator and RP have a shared symmetric key and
can authenticate themselves via message authentication codes (MACs). There are two
problems with this approach, namely: A read-only compromise of the server allows an
attacker to impersonate users, and a backup alone is enough for an attacker to do so.
The former is inherent in that symmetric cryptography is used.

The latter problem can be solved by performing ephemeral PQ key exchanges for
each authentication event. This would give forward secure authentication, a backup
of the server would no longer be enough for an attacker because they could at best
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obtain an old ephemeral key. There is also another reason why the FIDO standard
requires signatures instead, which will be seen below.

4.3.3. One-time Passwords

Generally, for authenticator-based user authentication OTPs are an interesting possibil-
ity. Especially regarding PQ cryptography, because OTPs are very efficient, requiring
only a few hash function calls. The main goal is only to prove the user’s identity to the
RP (authentication). If this is all we need to achieve, this requirement is strictly weaker
than that of a signature, which could also be used to prove the identity to a third
party. In FIDO however the standard requires that signatures are used. One reason
for this is that FIDO attestations are not only for user authentication but also let the
user approve specific actions 4. And in certain applications, for example banking, it
should probably not be possible for the RP to sign these in the name of the user.

4.3.4. Hash-based One-time Signatures

Because most PQ signature schemes are very expensive when it comes to both compu-
tation and data transmission, the option of adapting FTS schemes is also explored.
The hope here is, that few-time signatures can be cheaper in both ways than regular
signature schemes.

Sequentially-Updatable Merkle Tree

First of all, we introduce a sequentially-updatable Merkle tree, which is then used as a
building block of the schemes explained below. The tree is initialized with a secret-key
seed s, its height h, and a KDF f . The internal state of the tree is then defined by two
counters c and cnew, which are both at first initialized to 0. One such counter would
need to be persisted anyways to prevent reuse of the OTS keypairs. The leaf nodes of
the tree are then always the OTS public keys corresponding to the OTS secret keys:
fs(c), fs(c+ 1), . . . , fs(c+ 2h − 1). Internal nodes and the root are calculated in the
usual way using a hash function. Messages are always signed with the left-most unused
keypair, that is the keypair at position cnew. Upon signing a new message, firstly cnew

is incremented, then a new OTS is added based on the secret key fs(cnew + 2h − 1),
finally the new root can be calculated. Signatures then not only include the OTS

4One such proposal: https://fidoalliance.org/white-paper-fido-transaction-confirmation (Accessed
Oct 17 2021)
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pkFTS,new
pkFTS

pkOTS,c · · · pkOTS,cnew · · · pkOTS,c+2h−1 · · · pkOTS,cnew+2h−1
fs(c) · · · fs(cnew) · · · fs(c+ 2h − 1) · · · fs(cnew + 2h − 1)

Figure 4.1.: This shows the inner workings of a sequentially-updatable Merkle tree.
The lower two rows show the leaf nodes, i.e. the OTS public keys, and the
secrets they are generated from. The upper two rows show over exactly
which leaves each of the two concurrently existing FTS keys is defined.

signature and authentication path, but also the new root hash (basically equivalent to
an updated public key). When the verifier responds with success, that the new root
hash has been persisted, the sequentially-updatable Merkle tree can be reconciliated.
Reconciliation simply means the old part of the tree, before cnew is no longer needed.
So, c can be set to cnew and all leaf nodes before cnew can be deleted.

Shallow-deep Merkle Tree (sd-MSS)

Next we present an unbalanced Merkle tree, which may also be useful for building
similar authentication schemes based on OTSs or other FTSs. The idea of unbalanced
Merkle trees was already proposed before [23]. This similar idea however was focused
on streaming applications and not the highly synchronous setting of user authentication.
Also, there is not much focus on signature sizes there.

We call this new unbalanced Merkle tree a shallow-deep Merkle tree (sd-Merkle
tree). It has a simple structure, consisting of a single Merkle root node, combining two
subtrees of (possibly) different heights. The left subtree, parameterized by its height s
is called the shallow subtree. The right subtree, parameterized by its height d is called
the deep subtree. In total the tree is thus parameterized by a pair (s, d) with s ≤ d,
for s = d it is equivalent to a Merkle tree of height s+ 1 (or equivalently d+ 1).
An sd-Merkle tree can also be built from sequentially-updatable Merkle trees, as

explained above. It then needs to keep track of two counters for each of the two
subtrees. We call these counters cs, cs,new and cd, cd,new respectively. When signing
a message, the shallow subtree is used whenever there are unused OTS keypairs left
(i.e. cs,new < cs + 2h). Once all keypairs in the shallow subtree are used up, the deep
subtree is used for signing new messages.

We would usually cache the shallow subtree completely on the server. This reduces
the signature size overhead in the best case from s + 1 to just a single hash value,
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pkOT S,cs

fs(cs)

pkOT S,cs+1

fs(cs + 1)

pkF T S,d

. . .

pkOT S,cd

fs(cd)

. . . . . .

. . .

. . . pkOT S,cd+127

fs(cd + 127)

Figure 4.2.: Simplified drawing of a cached sd-Merkle tree (with s = 1, d = 7). Because
of the server-side caching, the upper levels of the shallow (left) subtree
are not needed. To fully benefit from the server-side caching we also omit
the root node.

at the cost of increasing server-side storage from a single hash value to 2s + 1 hash
values. Assuming a small s of 3 or less, this is still very acceptable, coming out to only
144 Bytes for a 128-bit hash function. To fully benefit from the server-side caching we
also omit the root node, which combines shallow and deep tree.

In addition to this server-side caching of the shallow tree, the client (in our case the
FIDO authenticator) could also cache (parts of) the deep tree. Here we argue that
even caching the whole deep tree might be feasible. Assuming s = 3, d = 7, n = 128
and available storage of 1 MiB, we could store around

10242 B

2 ∗ 128 ∗ 16 B + 2 ∗ 8 ∗ 16 B ' 240

credentials on the authenticator with full caching of both trees (including new and old
part of the sequentially-updatable Merkle trees).

We can thus see that an sd-Merkle tree defined by (s, d) has the following properties:

• Total number of faults that can be tolerated: 2s + 2d − 1

• Size overhead for the ith signature (with i ≤ 2s): i hash values

• Size overhead for all other signatures: 2s + d+ 1 hash values

• Server-side storage needed: 2s + 1 hash values

The only disadvantage over a normal Merkle tree is the additional server-side storage
needed for the shallow subtree. And also, a slight increase in public key generation
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Figure 4.3.: Simplified drawing of a 0-1-7-MTF.

time, which is however directly proportional in the additional number of signatures
possible.

In analogy to MSS, we call the signature scheme based on a such an sd-Merkle tree
sd-MSS. Also, the pseudocode of how the scheme works is shown in 2. In chapter 5 we
will look at our implementation of sd-MSS in comparison to other post-quantum and
classical signature schemes, and comparing it to a basic sequentially-updatable MSS
implementation. But before that, we present a theoretical generalization of this idea.

Merkle Tree Forest

As a generalization of Merkle trees and (cached) sd-Merkle trees we present Merkle
tree forests (MTFs). An h1-h2-. . . -ht-MTF is a forest of t trees of heights h1, h2,
. . . , ht respectively. Normally we would expect: h1 ≤ h2 ≤ . . . ≤ ht. Therefore,
any non-cached sd-Merkle tree with parameters (s, d) is an s-d-MTF, or if cached an
sc-d-MTF (which is ) instead. This analogy of course only works using the modified
definition of sd-Merkle trees with the root node removed.
We can see that an h1-h2-. . . -ht-MTF has the following properties (assuming h1 ≤

h2 ≤ . . . ≤ ht):

• Total number of faults that can be tolerated: 2h1 + 2h2 + · · ·+ 2ht − 1

• Overhead for the signatures in the ith tree: hi + i hash values

• Min. overhead: h1 + 1 hash values

• Max. overhead: ht + t hash values

• Server-side storage needed: t hash values
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Algorithm 2 sd-MSS(w, n, s, d, h, f)
1: procedure KeyGen(seed)
2: (cs, cs,new, cd, cd,new)← (0, 0, 0, 0)
3: (ss,0, . . . , ss,2s−1)← (fseed(“shallow′′, 0), . . . , fseed(“shallow′′, 2s − 1))
4: (ps,0, . . . , ps,2s−1)← (WotsPK(ss,0), . . . ,WotsPK(ss,2s−1))
5: (sd,0, . . . , ss,2d−1)← (fseed(“deep′′, 0), . . . , fseed(“deep′′, 2d − 1))
6: (pd,0, . . . , ps,2d−1)← (WotsPK(sd,0), . . . ,WotsPK(sd,2d−1))
7: pkd ← MerkleRoot(pd,0, . . . , pd,2d−1)
8: return (seed, ps,0, . . . , ps,2s−1, pkd)
9: end procedure

10: procedure Sign(msg, cs,remote, cd,remote, seed)
11: if cs,remote > cs or cd,remote > cd then
12: (cs, cd)← (cs,remote, cd,remote)
13: pkd ← pkd,new

14: end if
15: if cs,new < cs + 2s then
16: cs,new ← cs,new + 1
17: ss,cs,new+2s−1 ← fseed(“shallow′′, cs,new + s2 − 1)
18: ps,cs,new+2s−1 ←WotsPK(ss,cs,new+2s−1)
19: σ ← MerkleSign(msg)
20: return (i = cs,new − cs − 1, σ, ps,cs+2s , . . . , ps,cs,new+2s−1)
21: else
22: cd,new ← cd,new + 1
23: sd,cd,new+2d−1 ← fseed(“deep′′, cs,new + s2 − 1)
24: pd,cd,new+2d−1 ←WotsPK(ss,cs,new+2s−1)
25: pkd,new ← MerkleRoot(pd,cd,new

, . . . , pd,cd,new+2d−1)
26: σ ← MerkleSign(msg)
27: return (i = 2s, σ, ps,cs+2s , . . . , ps,cs,new+2s−1, pkd,new)
28: end if
29: end procedure

30: procedure Verify(msg, sig = (i, σ, p0, . . . , pi, pkd,new), cs,remote, cd,remote)
31: if i < 2s then
32: r ←WotsVerify(σ, ps,cs+i)
33: else
34: r ← MerkleVerify(σ, pkd)
35: end if
36: (ps,cs+2s , . . . , ps,cs,new+2s−1)← (p0, . . . , pi)
37: pkd ← pkd,new

38: (cs, cd)← (cs,remote, cd,remote)
39: return r
40: end procedure
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The signature size is variable and depends on how often in a row authentication
is expected to fail, leading to no reconciliation of the updatable Merkle tree between
signing of messages. When given an estimate for the failure probability pfail of a single
authentication attempt, we can even calculate the expected average signature size
overhead δσavg as:

E[δσavg] =
t∑

i=1
ptree,i(hi + i) [hash values]

where ptree,i = p
(2h0 +2h1 +···+2hi−1 )
fail (1− p(2hi )

fail ) for each i ∈ {0, 1, . . . , t} is the probability
of being in the state where tree i is being used.

4.4. Implementation

All code for the cryptographic primitives, benchmarks, performance estimates, and
evaluation calculations is available in the following GitHub repository:

URL: https://github.com/qkniep/PQ-FIDO_sd-MSS
Commit hash: 2f85f1a408503dff4b5c1bc510e315bf2cb87622

The commit hash refers to the version of the repository that this thesis is based on.
Specifically, all measurement in chapter 5 were taken with this exact version of the
source code.

The signature_benchmark directory contains implementations of the cryptographic
primitives, all written in Rust. This includes implementations of our variant of W-OTS+,
the sequentially updatable Merkle tree, and the sd-Merkle tree. Not included is an
implementation of Merkle tree forests. In the OpenSK directory there is a fork of
Google’s OpenSK with W-OTS+ and sd-MSS added to the cryptography benchmark.
This can be used for running the benchmarks directly on the nRF52840 board, whereas
the signature_benchmark project is only meant to compile on non-embedded x86
systems.

Furthermore, there are some Python scripts available for creating graphs and tables
based on estimated data. These are located in the scripts directory. The estimates
are based on the formulas for size and time used by the different schemes. For example
shallow_deep_merkle_tree.py generates an overview table, comparing sd-Merkle
trees with different values for s and d to Merkle tree forests. Also, it generates graphs
for signature size and signing time of sd-Merkle tree, which are also shown in chapter 5.
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Then there is ctss.py, which generates a simple overview table comparing different
FTS schemes, including XMSS, sd-Merkle trees, and two schemes CTSS and XCMSS
which were predecessors of the sd-Merkle tree but are not discussed in this thesis.
Finally, sds_ots.py is a small script used to estimate SDS-OTS security levels of the
plain scheme, and with the adaptations presented in Appendix A.
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5. Evaluation

In this chapter we analyze the security and practical applicability of the presented
signature scheme. We compare sd-MSS to other post-quantum schemes, specifically
Dilithium [11] and Falcon [14], and the classical state-of-the art signature schemes,
represented by ECDSA-p256, and also to sequentially updatable Merkle trees without
the shallow-deep tree construction.

5.1. Security Analysis
Here, the security levels of different schemes are compared. As quantum security levels
we use the levels defined by NIST for the PQC competition [32], which are defined by
equivalence to symmetric security levels of well-known primitives.

Primitives Classical Post-Quantum
ECDSA-p256 128 —
Dilithium2 ≥ 128 I (AES-128)
Dilithium4 ≥ 192 III (AES-192)
Falcon-512 ≥ 128 I (AES-128)
Falcon-1024 ≥ 256 V (AES-256)
W-OTS+(n = 128) ∼ 128− logw2 I (AES-128)
W-OTS+(n = 192) ∼ 192− logw2 III (AES-192)
W-OTS+(n = 256) ∼ 256− logw2 V (AES-256)
sd-MSS (n = 128) ∼ 128− d− logw2 I (AES-128)
sd-MSS (n = 192) ∼ 192− d− logw2 III (AES-192)
sd-MSS (n = 256) ∼ 256− d− logw2 V (AES-256)

Table 5.1.: Security levels (classical and quantum) of the different PQ cryptographic
primitives.

The Winternitz OTS scheme’s security is reduced to preimage attacks on the under-
lying hash function, and therefore offers a security level that is similar to key recovery
on AES with keys of the same length as the hash output. If instantiated with XMSS
trees as shallow and deep trees, our scheme’s theoretical security is the same as the
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minimum of the two XMSS security levels. Using the formula from [8] together with
the formula in [20] this gives us an upper bound on the security level b in bits:

b ≤ n− 2−min {s− log2 (w2
s l + ws), d− log2 (w2

dl + wd)}

Or, with ws = wd and assuming d > s we have simply:

b ≤ n− 2− d− log2 (w2l + w)

As a specific example for n = 128, w = 64, d = 7, this comes out to:

128− 2− 7− log2(642 ∗ 24 + 64) ' 102 (bits)

5.2. Performance Evaluation

All code for the benchmarks is also included in the GitHub repository that was linked
in section 4.4. Wherever possible the benchmarks here have been performed directly
on the nRF52840 board, its hardware specifications were presented in subsection 4.1.2.

5.2.1. W-OTS+ Parameters

On most modern hardware one would implement the Winternitz OTS scheme using
AES. A benchmark by the wolfSSL developers though suggests that SHA-256 is faster
than AES on the CryptoCell 310 (see Appendix B).

Because we use a custom implementation ofW-OTS+, we first look at the performance
of this on its own. Table 5.2 shows these results as measured on the nRF52840. These
measurements will later be used to estimate the overhead of the FTS scheme over
the pure W-OTS+ calculations. They also serve as an estimate for the performance
difference between security levels n = 128 (PQ: I), n = 192 (PQ: III), and n = 256
(PQ: V).

In the following benchmarks we will no longer look at verification times, as those
are not performed on the authenticator. Instead verification runs on the RP server,
which is usually orders of magnitude more powerful. Also, the server probably features
a processor with hardware support for SHA-256 anyways.
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w n ssk[B] spk[B] ssig[B] tgen[ms] tsig[ms] tver[ms]
16 128 16 16 592 160 72.0 86.7
16 192 24 24 1,272 365 173 194
16 256 32 32 2,208 594 288 306
64 128 16 16 405 443 200 241
64 192 24 24 864 977 460 517
64 256 32 32 1,493 1,638 764 874
256 128 16 16 320 1,328 548 783
256 192 24 24 672 3,044 1,369 1,679
256 256 32 32 1,152 4,980 2,338 2,649

Table 5.2.: W-OTS+ benchmark performed on the nRF52840 board for different pa-
rameters w and n. Showing key sizes, signature size, and timings of the
single function calls.

5.2.2. sd-MSS Parameters

In Figure 5.1 we see the signature times of sd-MSS for some reasonable values of s
and for different expected failure rates. In this setting we can understand lower failure
rates to mean normal operation, without active attacks and unusually bad network
conditions. High failure rates on the other hand represent scenarios where an attacker
is actively running a DoS attack or with unexpectedly bad network conditions where
the TLS connection is interrupted frequently. We see that even quite small shallow
trees (s = 2 or s = 3) drastically reduce the average signature size, moving it very close
to the minimum. On the other hand, for larger values (such as s = 4) there is basically
no further improvement for failure rates below 50%. We should remind ourselves here
that, as part of our attack model, we assume a maximum average failure rate of 50%
anyways. If we didn’t, DoS attacks would be a bigger hindrance than large signatures.
The maxima are the same for all parameters because building the shallow tree does not
significantly influence the total time, or not at all if we assume the calculated public
keys to be cached on the authenticator.

In Figure 5.2 we see a similar graph as we saw above for the signing times. This time
we look at signature sizes of sd-MSS for the same values of s and for all the expected
failure rates. The most notable difference to the time graph is that the maxima are
now significantly different (signature size grows exponentially in s). Because of the
server-side caching of the shallow tree, the authenticator needs to send all the new
OTS public keys from the shallow tree in addition to the OTS, authentication path,
and new deep tree root hash. This is further reason not to use larger values for s
because for s = 4 the maximum is already more than two times the minimum. Also,
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Figure 5.1.: Average time for signing a message under sd-MSS (with w = 64, n = 128)
for different failure rates. This assumes two layers of the deep tree are
cached client-side (shrinks the graph by factor ∼ 4).
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Figure 5.2.: Average signature size under sd-MSS (with w = 64, n = 128) for different
failure rates.

this increase might even be reason to chose s = 2 over s = 3.
Here, we present a first benchmark of the FTS schemes (MSS and sd-MSS) compared

to each other, to Falcon and Dilithium (as two of the NIST PQ standardization
candidates), and to ECDSA. Table 5.3 shows the results of this benchmark which
was run on a modern work laptop, not (as the other benchmarks) on the nRF52840.
MSS here means our implementation of a sequentially-updatable Merkle tree, sd-MSS
is our proposed scheme, Falcon and Dilithium are the liboqs 1 implementations of
the two schemes, and ECDSA-p256 is the OpenSK’s internal implementation of said
scheme. We include this benchmark to provide at least some comparison to NIST
PQ cryptography candidates, even though we could not get the available Falcon and
Dilithium implementations to compile in the embedded environment of the nRF52840.
It can be seen that keypair generation is three to four orders of magnitude more
expensive, whereas for signing the difference is less extreme.

1https://github.com/open-quantum-safe/liboqs
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Scheme sReg[B] tReg[µs] sAuth[B] tAuth[µs]
ECDSA-p256 33 20.0 72 19.4
Falcon512 897 14.1 690 4.1
Dilithium2 1,312 27.5 2,420 71.6
MSS (h = 7, w = 16) 16 13,049 704 189
MSS (h = 7, w = 64) 16 37,956 517 477
MSS (h = 7, w = 256) 16 114,150 432 1,285
sd-MSS (s = 2, d = 7, w = 16) 80 13,979 630.7 159
sd-MSS (s = 3, d = 7, w = 16) 144 14,321 624.4 160
sd-MSS (s = 2, d = 7, w = 64) 80 38,894 443.7 441
sd-MSS (s = 3, d = 7, w = 64) 144 40,611 437.5 412
sd-MSS (s = 2, d = 7, w = 256) 80 117,380 358.7 1,298
sd-MSS (s = 3, d = 7, w = 256) 144 120,630 352.4 1,269

Table 5.3.: Performance characteristics (data to transfer and timings) of the different
cryptographic primitives, all with security parameter n = 128 (and PQ secu-
rity level I, except for ECDSA, which offers no PQ security). Measurements
are split into the two protocol steps: Registration and Authentication. The
time measurements were taken on a laptop with an AMD Ryzen 5 4600H
processor. sAuth and tAuth are averages, assuming 50% failure rate (which is
the worst case in our model). Important to note: The time measurements
here are in µs whereas most others in this thesis are in ms!

Next, we present a benchmark of the FTS schemes (MSS and sd-MSS) compared to
each other and ECDSA, performed on the nRF52840 board. Table 5.4 shows results of
this benchmark of just the cryptographic schemes (without FIDO functionality). MSS
here means our implementation of a sequentially-updatable Merkle tree, sd-MSS is
our proposed scheme, and ECDSA-p256 is the OpenSK’s internal implementation of
said scheme. Comparing these to the measurements of just W-OTS+ (see Table 5.2)
suggests the overhead in key generation is almost non-existent, signing on the other
hand takes about three to four times as long, mostly due to the generation of a new
OTS keypair.

5.2.3. CryptoCell

Table 5.5 compares the sd-MSS and ECDSA timings from above with estimates based
on a CryptoCell 310 benchmark. The benchmarks were run on the nRF52840 hardware,
except for the CryptoCell ones (marked by “CC310”), which are instead based on the
other benchmarks (which use a software implementation of SHA-256) and comparative
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Scheme sReg[B] tReg[ms] sAuth[B] tAuth[ms]
ECDSA-p256 33 104 72 144
MSS (h = 7, w = 16) 16 20,201 704 270
MSS (h = 7, w = 64) 16 57,204 517 679
MSS (h = 7, w = 256) 16 172,228 432 1,932
sd-MSS (s = 2, d = 7, w = 16) 80 20,887 630.7 234
sd-MSS (s = 3, d = 7, w = 16) 144 21,519 624.4 233
sd-MSS (s = 2, d = 7, w = 64) 80 58,991 443.7 645
sd-MSS (s = 3, d = 7, w = 64) 144 61,488 437.5 646
sd-MSS (s = 2, d = 7, w = 256) 80 177,611 358.7 1,896
sd-MSS (s = 3, d = 7, w = 256) 144 185,148 352.4 1,882

Table 5.4.: Performance characteristics (data to transfer and timings) of the different
cryptographic primitives, all with security parameter n = 128 (and PQ secu-
rity level I, except for ECDSA, which offers no PQ security). Measurements
are split into the two protocol steps: Registration and Authentication. The
time measurements were taken on the nRF52840-DK board. sAuth and
tAuth are averages, assuming 50% failure rate (which is the worst case in
our model).

benchmarks found in Appendix B. The wolfSSL benchmark was used to find the
estimate factor of 50, which we assume to be the speedup the CryptoCell would offer
to SHA-256 hash calculation. This factor was derived as:

25.903 MB/s
1024 B/1.989 ms ≈ 50

because the wolfSSL benchmark gave the speed of SHA-256 on the CryptoCell as
25.903 MB/s running on 1,024-byte data blocks, whereas our measurements showed
that the software implementation of SHA-256 takes 1.989 ms per 1,024-byte block.
Also, the running time of sd-MSS is almost entirely based on W-OTS+ calculation and
authentication path calculations, both of which are sped up by a faster implementation
of the underlying hash function. However, since the benchmark used 1,024 B blocks (as
opposed to the small 16-byte block used in W-OTS), the estimate could be somewhat
optimistic.
It can be seen from the data that the authentication step can be performed very

quickly; even the pure software implementation could be considered fast enough
(below one second) for the use case of a FIDO authenticator. And the CryptoCell
implementation is likely competitive to or even faster than ECDSA on the CryptoCell.
Only the registration step which involves the keypair generation is the bottleneck.
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Scheme sReg[B] tReg[ms] sAuth[B] tAuth[ms]
ECDSA-p256 33 104 72 144
ECDSA-p256, CC310* 33 18.5 72 20.1
sd-MSS (s = 3, d = 7, w = 16) 144 21,519 624.4 233
sd-MSS, CC310 (s = 3, d = 7, w = 16)** 144 430 624.4 4.7
sd-MSS (s = 3, d = 7, w = 64) 144 61,487 437.5 652
sd-MSS, CC310 (s = 3, d = 7, w = 64)** 144 1,230 437.5 13
sd-MSS (s = 3, d = 7, w = 256) 144 185,148 352.4 1,882
sd-MSS, CC310 (s = 3, d = 7, w = 256)** 144 3,703 352.4 38

Table 5.5.: Comparison of the cryptographic primitives’ software implementations to
implementations using the ARM CryptoCell 310, all with security parameter
n = 128. Measurements are split into the two protocol steps: Registration
and Authentication. (*) This measurement was performed independently
by the wolfSSL developers (see Appendix B). Therefore, this can not
be considered a comparative benchmark. (**) These measurements are
based on a simple conversion factor of 50, derived from the same wolfSSL
benchmark. Therefore, these values should only serve as a rough estimate.

5.2.4. Further Improvements

Further measures to improve the performance (especially regarding keypair generation)
are however possible:

Firstly, one could try to combine the advantages of different w parameter values,
namely small signatures (for large w) and fast computation (for small w). To do so, the
shallow tree could work with a large w (e.g. w = 256) and the deep tree with a small
w (e.g. w = 16 or smaller). Then, during key generation only a small number (2s) of
expensive long-chained W-OTS+ instances needs to be calculated. The minimum size
of signatures would be as small as if the whole sd-Merkle tree had used w = 256. And,
as we already saw, the average signature is very close to the minimum anyways, even
for small s. It can be estimated from Table 5.5 that this could achieve signature sizes
below 360 B with key generation times below 500 ms. The computation overhead over
ECDSA is thus estimated to be lower than it is for Falcon, where it could be around
30× for keypair generation at PQ security level I [38]. At the same time signature sizes
would on average be a lot lower. This even keeps the same security level, compared to
the parameters given in section 5.1:

128− 2−min {3− log2(2562 ∗ 16 + 256), 7− log2(162 ∗ 35 + 16)} ' 102 (bits)
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Furthermore, the number of keypairs in the deep tree could be reduced significantly
(e.g. using s = 2, d = 4). Then another backup mechanism would be needed, to prevent
the user being locked out permanently (which with s = 2, d = 4 would happen after 20
failures). The naive solution would be to use an ECDSA and Falcon (or Dilithium)
hybrid signature as backup solution.

Also, at least in the case of USB-powered authenticators, which are constantly powered
and have lots of idle CPU cycles, offline computation can be used to offload some of the
key generation times. The authenticator could use downtime to generate spare keypairs,
which are stored in a central buffer and later (during authenticatorMakeCredential)
assigned to a specific RP. This is not really feasible with NFC or Bluetooth authenti-
cators as these might not be permanently powered on.

Another property that is rather specific to our FTS-based signature scheme is that it
is stateful. Both client and server need to persistently store and update certain state
variables. Most importantly, the client needs to immediately persist the counters before
using a signature, to prevent ever using the same OTS keypair twice. The server needs
to regularly update the stored public key, overwriting it with the new one generated
from the sequentially-updatable Merkle trees. This step is less critical, as the scheme
is supposed to handle failures and DoS attacks anyways, and to this end is resistant
to temporary failures. The server can use the same mechanism to put off persisting
the updated public keys to a later time, by simply not updating the counters even
on a successful authentication. This should be limited to a fixed number of times
though, to prevent using up to many of the keys. When using the sd-MSS for example,
the server could allow up to 2s authentications without updating the public key, only
persisting the new public key once the deep subtree starts being used. This would still
keep us mostly using the shallow subtree. If this parameter is part of the protocol
the client could also directly refrain from sending the updated shallow public keys,
only submitting updated public keys once they know the server might accept them. In
terms of performance (e.g. signature size) this somewhat undermines our analysis from
above because the server artificially increases the effective failure rates. In settings like
globally distributed and replicated authentication servers, the lower rate of persisting
data may however be well worth the (on average) larger signature sizes.
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6. Conclusion

This thesis looked at post-quantum cryptographic primitives for the use-case of FIDO
authenticators. The main-focus was on hash-based cryptography and how it may
be used efficiently, possibly serving as a post-quantum replacement for ECDSA as
the signature scheme of choice in WebAuthn/FIDO authentication and other similar
applications. To achieve this efficiency, we took a step back from general signature
schemes, and looked at few-time signature schemes based on Merkle trees instead.

Sequentially-updatable Merkle trees and sd-Merkle trees were presented as novel
applications of Merkle trees, which can be used whenever signatures are used in
a synchronous setting between only two parties, for example in challenge-response
authentication protocols. The additional risks of being only able to sign finitely many
messages before syncing public keys with the server again were assessed, as was the
additional cost of server-side storage incurred.

Feasibility of an actual implementation of sd-MSS was further analyzed on the
hardware of a specific FIDO authenticator. The current implementation based on
software-implemented SHA-256 was shown to be too resource intensive for this restricted
platform. On the other hand, we gave an outlook on what is possible once hardware-
accelerated SHA-256 is available (for example via the CryptoCell). It was shown that
this reduces signing and verification times far below 100 ms and keypair generation in
the low seconds range (possibly down to 500 ms). This makes the scheme generally
usable. Also further adaptations or tradeoffs were discussed that could be made to
try to reduce or mitigate the long key generation times. At the same time our scheme
has very small signature sizes (and even smaller public keys) compared to other post-
quantum schemes, competitive even with supersingular isogeny-based cryptography.
Even though hash-based signature schemes were previously disregarded specifically
because of their large signatures. This suggests that hash-based signatures are more
flexible than previously thought.
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6.1. Future Work
Open for the future is the task of more accurately analyzing the security level of our
proposed scheme, sd-MSS. Also more possible applications of sequentially-updatable
Merkle trees, sd-MSS, or even the more general (sequentially-updatable) Merkle tree
forests could be explored.
Regarding the implementation there are open tasks in analyzing and improving its

memory usage. Specifically, there are known problems with running out of memory on
the nRF52840 for parameters with particularly high memory usage.
In general, this thesis could help encourage future work to consider hash-based

cryptography as a viable alternative to lattice-based cryptography. For less computation-
restricted environments it could be especially interesting, as the bottleneck part (keypair
generation) is almost perfectly parallelizable.
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A. Possible adaptations to SDS-OTS

Contrary to the claims by SDS-OTS authors Shadid et al. [40], arguments presented in
subsection 3.3.2 suggest security levels of the scheme may be lower. To nevertheless
achieve 128-bit classical security we can make certain adaptations to the scheme, which
will be presented in the following.

Here we make the security level of SDS-OTS as specified in [40] more concrete than
the rather simplified arguments in subsection 3.3.2. The Python script sds_ots.py
in our GitHub repository implements a simulation of SDS-OTS with message length
512 bits and w = 16. The simulation generates random messages and looks at how
often each possible number of hash cycles appears. This is central to the security of
SDS-OTS because the number of cycles for each position uniquely identifies a signature
under a specific keypair. Therefore, if there are fewer than 2n possible signatures,
reaching n-bit security is impossible. And if any signature is significantly more likely
to occur than 2−n, then finding two messages for this signature is significantly less
expensive than 2n attempts.
Running this simulation for 10,000,000 rounds in one example gave the following

estimates:

Expected probability: 0.0078125
Max probability: [66] 0.015820000000007023
Median probability: 0.007159999999999268
Sum of probabilities: 1.0000000000002345
WC Security Level: 95.71370543941407
Max theoretical SL: 112

We see that the practically achieved security level is even significantly worse than the
theoretically possible 112 bits. Instead, only about 96 bits of security is achieved. This
is because signatures are not uniformly distributed over the messages. Specifically
values close to 64 are more likely to appear for the number of hash cycles, making
certain signatures more likely than others. For example, here we see the value 66 is
more than twice as likely as if values were uniformly distributed.
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If instead of summing the digits, we sum the numbers directly, we see that values are
much more uniformly distributed. One example, again running for 10,000,000 rounds,
gave us:

Expected probability: 0.0078125
Max probability: [1] 0.008124999999999327
Sum of probabilities: 0.9999999999998797
WC Security Level: 111.09466354614003
Median Security Level: 112.00000000000291
Max theoretical SL: 112

Now the worst case security starts to approach the theoretically possible security level.
The one bit still missing in security can most likely be regarded as a small constant
factor, and ignored. The bigger problem now is that the theoretical maximum of 112
is still much less than the 128 bits of security they wanted to achieve.
This final problem can be fixed by using 256 as modulus, instead of 128. One

example, also running for 10,000,000 rounds, gave us the following numbers:

Expected probability: 0.00390625
Max probability: [209] 0.004071250000000465
Sum of probabilities: 1.0000000000001317
WC Security Level: 127.0449995206519
Median Security Level: 127.99999999999687
Max theoretical SL: 128

We get a theoretical maximum security level of 128 bits (= log2 25616) now, which as
achieved within a factor of 2 (127 bit security in the worst case). This can finally be
considered as 128 bit classical security level. Though, now because we doubled the
modulus in the calculation for the number of cycles, we unfortunately also doubled the
computational effort necessary for keypair generation, signing, and verification.
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B. CryptoCell 310 Benchmark by
wolfSSL developers

Benchmark results taken from the following git repository:

https://github.com/wolfSSL/wolfssl/tree/master/IDE/CRYPTOCELL
Commit hash: c729318dddd33303ce62af2887c8f84df1836008

According to the included README file this benchmark data stems from a Nordic
nRF52840 development board (the same hardware used in this thesis) running the
Nordic nRF5-SDK of version nRF5_SDK_15.2.0_9412b96:

Benchmark Test Started
-----------------------------------------------------------

wolfSSL version 3.15.7
-----------------------------------------------------------
wolfCrypt Benchmark (block bytes 1024, min 1.0 sec each)
RNG 5 MB took 1.000 seconds, 4.858 MB/s
AES-128-CBC-enc 17 MB took 1.001 seconds, 17.341 MB/s
AES-128-CBC-dec 17 MB took 1.000 seconds, 17.285 MB/s
SHA 425 KB took 1.040 seconds, 408.654 KB/s
SHA-256 26 MB took 1.000 seconds, 25.903 MB/s
HMAC-SHA 425 KB took 1.049 seconds, 405.148 KB/s
HMAC-SHA256 24 MB took 1.000 seconds, 23.877 MB/s
ECC 256 key gen 55 ops took 1.017 sec, avg 18.491 ms
ECDHE 256 agree 56 ops took 1.017 sec, avg 18.161 ms
ECDSA 256 sign 50 ops took 1.004 sec, avg 20.080 ms
ECDSA 256 verify 48 ops took 1.028 sec, avg 21.417 ms
Benchmark Test Completed

Results for RSA and the additional measure ops/sec for the ECC schemes have been
omitted for brevity. Formatting, specifically spacing, was also adapted.
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