
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Security Analysis of the KNXnet/IP Secure
Protocol
Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Robert Gützkow
geboren am:
geboren in:

Gutachter/innen: Prof. Dr. Jens-Peter Redlich
Prof. Dr. Björn Scheuermann

eingereicht am: verteidigt am:

Abstract
KNX is a standard for building automation systems that supports communication over
IP. The KNXnet/IP protocol does not encrypt or authenticate the communication be-
tween devices. Connecting the KNX installation to an IP-network thus poses a high
risk. The KNXnet/IP Secure protocol is supposed to remedy these security short-
comings. In 2014 Judmayer et al. [1] published a security analysis of an early and
incomplete draft of the KNXnet/IP Secure protocol specification in which they iden-
tified several design flaws. In 2019 the finalized protocol specification of KNXnet/IP
Secure was published as international standard ISO 22510:2019. It has to be investi-
gated whether the past security issues have been adequately addressed and if it is a
secure cryptographic protocol. This work analyzes the standard for design flaws that
impact the security, including a formal analysis in eCK-PFS and model checking of
state machines. The configuration software ETS5 is tested for safe defaults and secure
storage of cryptographic secrets. Furthermore, black-box tests such as protocol state
fuzzing and boundary-value analysis are conducted to check whether certified devices
and the ETS5 conform with the specification. A risk analysis for common use cases of
KNX is performed. Both the unicast and multicast KNXnet/IP Secure protocols have
several conceptual security flaws. Additionally, the ETS5 stores cryptographic secrets
improperly by obfuscating them with a hard-coded password (CVE-2021-36799). One
tested KNX IP Secure router had a denial-of-service vulnerability (CVE-2021-37740).
The behavior of the KNX devices and the ETS5 also deviate from the specification in
parts that are not critical to security. Possible threats against KNX installations are
identified and improvement suggestions for the protocol specification, implementation
and network security are made. KNXnet/IP Secure is not a secure cryptographic
protocol.

i

Contents
List of Figures vii

List of Tables vii

List of Acronyms viii

List of Terms x

List of Symbols x

List of Operators and Functions xii

1. Introduction 1
1.1. Problem Statement . 2
1.2. Research Questions . 3
1.3. Research Methodology . 3
1.4. Thesis Structure . 5

2. Related Work 6
2.1. KNX . 6
2.2. Cryptographic Fundamentals . 7
2.3. Symmetric Cryptography . 7
2.4. Asymmetric Cryptography . 8
2.5. Guidelines for Cryptography . 8
2.6. Authenticated Key Exchange . 8
2.7. Group Key Exchange . 9
2.8. Cryptographic Models . 10
2.9. Attacks Against Weak Cryptography 10
2.10. Model Checking . 11
2.11. Black-Box Tests . 11
2.12. Risk Analysis . 12
2.13. Network Security . 12

3. Background 12
3.1. KNX Topology and KNXnet/IP . 12

3.1.1. Core . 16
3.1.2. Device Management . 19
3.1.3. Tunneling . 20
3.1.4. Routing . 21
3.1.5. Remote Diagnosis and Configuration 22
3.1.6. Insecurities and Design Flaws in KNXnet/IP 23

3.2. Cryptography . 26
3.2.1. CCM Cipher Mode . 26

iii

3.2.2. Elliptic Curve Cryptography and Curve25519 29
3.2.3. Key Derivation with PBKDF2-HMAC-SHA-256 33
3.2.4. Security Properties for Cryptographic Protocols 35
3.2.5. eCK-PFS Model . 36

3.3. KNXnet/IP Secure in ISO 22510:2019 39
3.3.1. CCM . 39
3.3.2. Unicast . 40

3.3.2.1. Security Goals . 41
3.3.2.2. Configuration . 42
3.3.2.3. Frame Formats . 43
3.3.2.4. Authenticated Key Exchange 46
3.3.2.5. Session Finite State Machine 49
3.3.2.6. Access Control . 50

3.3.3. Multicast . 51
3.3.3.1. Security Goals . 51
3.3.3.2. Configuration . 51
3.3.3.3. Frame Formats . 52
3.3.3.4. Communication . 53
3.3.3.5. Timer Synchronization Finite State Machine 54
3.3.3.6. Access Control . 55

3.4. Model Checking . 57
3.5. Protocol State Fuzzing . 59
3.6. Risk Analysis with BSI 200-3 . 60

4. Analysis of KNXnet/IP Secure in ISO 22510:2019 63
4.1. Unicast . 63

4.1.1. CCM Requirements . 64
4.1.2. Authenticated Key Exchange and Session 67
4.1.3. Formal Analysis with eCK-PFS 75
4.1.4. Model Checking of Session FSM 78
4.1.5. Improvement Suggestions . 80

4.2. Multicast . 82
4.2.1. CCM Requirements . 82
4.2.2. Group Communication . 84
4.2.3. Model Checking of Timer Synchronization FSM 87
4.2.4. Improvement Suggestions . 90

5. Device Management with the ETS5 90
5.1. Device Commissioning . 91
5.2. Offline Attack against Authentication 92
5.3. Insecure Storage of Cryptographic Secrets 93
5.4. Updating the ETS5 . 96
5.5. Analysis with Test Software . 96
5.6. Improvement Suggestions . 98

iv

6. Analysis of Certified Devices 99
6.1. Analysis with Test Software . 99
6.2. Protocol State Fuzzing and Model Checking 102
6.3. Improvement Suggestions . 106

7. Risk Analysis with BSI 200-3 106
7.1. Results of the Risk Analysis . 106
7.2. KNX Guidelines . 108
7.3. Improvement Suggestions . 109

8. Evaluation 109

9. Conclusion and Future Work 110

References 111

A. Appendix 124
A.1. Supplementary Analysis with eCK-PFS 124
A.2. Model Checking . 126
A.3. Device Configuration with the ETS5 136
A.4. Test Cases for the ETS5 and KNXnet/IP Secure Routers 137
A.5. Test Results for the ETS5 . 143
A.6. Test Results for the KNXnet/IP Secure Routers 144
A.7. Software, Models and Logs . 151

v

List of Figures
1. The KNX topology, based on [96, p. 10] 13
2. Structure of IA [97, p. 6] . 13
3. KNXnet/IP in KNX installation . 15
4. KNXnet/IP protocol stack [6, p. 39, p. 102] 16
5. CCM encryption, based on [3] . 28
6. CCM decryption, based on [3] . 28
7. ECDH . 31
8. ECDH with X25519, based on [7] . 33
9. PBKDF2-HMAC-SHA-256, based on [8] 34
10. HMAC-SHA-256, based on [116] [117] 34
11. Formatting function, based on interpretation of ISO 22510:2019 41
12. Counter generation function, based on interpretation of ISO 22510:2019 41
13. Structure of KNXnet/IP Secure header [6, pp. 103-104] 43
14. Structure of SESSION_REQUEST frames [6, pp. 125-126] 43
15. Structure of SESSION_RESPONSE frames [6, p. 126] 44
16. Structure of SESSION_AUTHENTICATE frames [6, p. 129] 45
17. Structure of SECURE_WRAPPER frames [6, pp. 106-108] 45
18. Structure of SESSION_STATUS frames [6, p. 131] 46
19. Session state machine for the server, based on [6, pp. 123-125] 50
20. Structure of SECURE_WRAPPER frames [6, pp. 106-108] 52
21. Structure of TIMER_NOTIFY frames [6, p. 118] 53
22. Timer synchronization state machine, based on [6, pp. 113-117] 56
23. NuXMV syntax . 58
24. Finite state machine . 58
25. Risk classification matrix, based on [85, p. 22] 62
26. Simplified depiction of the authenticated key exchange (AKE) 69
27. Result of protocol state fuzzing for SCN-IP100.03 104
28. Result of protocol state fuzzing for KNX IP Router 752 Secure 105
29. Setting a project password . 136
30. Device properties for KNXnet/IP Secure 137

List of Tables
1. Implementation requirements for device classes, based on [6, p. 8]. . . . 16
2. Timer synchronization parameters, based on [6, pp. 113-114] 55
3. Model checking of the session FSM in NuXMV - Part 1 79
4. Model checking of the session FSM in NuXMV - Part 2 79
5. Model checking of the timer synchronization FSM in NuXMV - Part 1 88
6. Model checking of the timer synchronization FSM in NuXMV - Part 2 88
7. Brute-force attack against device authentication code 93
8. Key and IV for (de)obfuscation of cryptographic secrets in ETS5 . . . 94

vii

9. Brute-force attack against exported project 95
10. Test results for the ETS5 . 97
11. Test results for the KNXnet/IP Secure routers - Part 1 101
12. Test results for the KNXnet/IP Secure routers - Part 2 101
13. Model checking inferred session FSMs - Part 1 103
14. Model checking inferred session FSMs - Part 2 103
15. Tests for the session FSMs . 131
16. Tests for the timer synchronization FSMs 136
17. Test cases for the ETS5 and KNXnet/IP Secure routers 143
18. Explanation of test results for the ETS5 144
19. Explanation of test results for the KNXnet/IP Secure routers 151

List of Acronyms

AEAD authenticated encryption with associated
data x, 8, 26, 63, 67, 73, 81, 86, 98

AKE authenticated key exchange vii,
x, 9, 10, 23, 29, 32, 40, 42, 43, 46, 49, 50, 63, 67, 68, 69,
70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 86, 87, 90, 92, 107

ART asynchronous ratcheting trees 9
ASIC application-specific integrated circuit 35, 68
BACS building automation and control systems 1, 6
BDD binary decision diagrams 11, 57, 58, 87
BMC bounded model checking 11, 57, 58, 87
BSI Bundesamt für Sicherheit in der Informationstechnik 5, 8, 12, 60, 67
cEMI common external message interface 19, 20, 21, 22, 23, 24
CGKA continuous group key agreement 10, 90
CIA confidentiality, integrity and authentication 61
CRI connection request information 101, 149, 150
CSPRNG cryptographically secure pseudorandom number generator . . . 91
CTL computation tree logic . 11, 58
CVD coordinated vulnerability disclosure 94, 95, 98, 100
DoS denial of service 68, 69, 70, 100, 101, 107, 110, 146
ECC elliptic curve cryptography 7, 8, 9, 29, 31
ECCDHP elliptic curve computational Diffie-Hellman problem 30, 31
ECDDHP elliptic curve decision Diffie-Hellman problem 30, 31
ECDH elliptic curve Diffie-Hellman . vii, xiv, 29, 31, 32, 33, 68, 73, 74, 75

viii

ECDLP elliptic curve discrete logarithm problem 30, 31, 32, 70, 73, 74, 75, 81
eCK extended Canetti-Krawczyk . 10
EIB European Installation Bus . 1
ETS engineering tool software i, vii, viii,

2, 3, 4, 5, 10, 11, 16, 18, 19, 20, 22, 23, 24, 25, 39, 42, 51, 72, 81, 85,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 107, 108, 109, 110, 143, 144, 151

FDSK factory default setup key 42, 70, 81, 91, 93, 109
FSM finite state machine vii, viii, 49, 54, 55, 57,

58, 59, 60, 63, 78, 79, 80, 82, 87, 88, 89, 99, 102, 103, 104, 105, 126,
127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 141, 142, 145, 147

GKE group key exchange . 9, 10, 90
HBES home and building electronic systems 1
HPAI host protocol address information 17,

18, 22, 25, 46, 68, 81, 102, 141, 148
HVAC heating, ventilation and air conditioning 1
IA individual address . vii,

12, 13, 14, 15, 18, 19, 20, 21, 42, 50, 101, 149, 150
IDS intrusion detection system . 109
IoT internet of things . 60
IP internet protocol 1, 6, 14, 15, 19, 21, 25
ISMS information security management system 12
ISO International Organization for Standardization 81
IV initialization vector . vii, 94
KCI key-compromise impersonation 10
LTL linear temporal logic . 11, 58
MAC message authentication code xii,

47, 48, 49, 67, 70, 71, 72, 74, 103, 124, 125, 138, 139, 144
MFA multi-factor authentication 109
MitM man-in-the-middle . 9, 32, 68
NAC network access control 107, 108, 109
NIST National Institute of Standards and Technology 8, 12
PFS perfect forward secrecy 35, 63, 74
PID property identifier . 42
PKI public key infrastructure 81, 90
PL powerline . 14, 19
PPT probabilistic polynomial-time x, 37, 38, 39, 77, 124, 125

ix

PRF pseudo-random function xv, 33, 34, 42, 66
RCE remote code execution . 107
RF radio frequency . 14, 19
SIEM security information and event management 109
STS station-to-station . 9, 70, 80, 81
SUT system under test . 59, 60, 102
TP twisted pair 1, 2, 7, 12, 14, 15, 19, 21, 24
UX user experience . 4

List of Terms
CCM AEAD cipher mode introduced in [2] and standardized in [3]

xi, xii, xiv, 8, 26, 27, 39, 40, 44, 45, 46, 47, 48, 63,
64, 65, 66, 67, 69, 71, 72, 73, 75, 77, 81, 82, 86, 124

eCK-PFS Formal security model for the analysis of AKE protocols introduced
in [4] . i,
x, xi, xii, xiii, 5, 10, 12, 26, 36, 63, 75, 76, 77, 78, 82, 124, 125, 126

List of Symbols

N The set of natural numbers without zero. Also denoted as Z≥1 in definition
3.34. x, 37

R The set of real numbers. 39
λ Security parameter λ ∈ N is used in the application of eCK-PFS

to define the negligible function and the advantage of a PPT adver-
sary. See definition 3.33 for details. It is equivalent to k specified in
[4]. xii, 38, 39, 76, 77, 78, 125, 126

A Adversary used in the application of eCK-PFS to refer to an attacker
modelled as PPT Turing machine. See definition 3.29 for details. It is
equivalent to E specified in [4]. xi, xii, 37, 38, 39, 76, 77, 124, 125, 126

P Finite set of n parties’ identities P = {P̂1, P̂2, ..., P̂n} in eCK-PFS [4]. See
definition 3.28 for details. xi, 37, 75, 76, 77, 124, 125

I Initiator I is a value for the session role srole in eCK-PFS [4]. It indicates
that the party acts as client and thus initiates the session. See definition
3.28 for details. xi, xiii, 37, 77, 124, 125

x

R ResponderR is a value for the session role srole in eCK-PFS [4]. It indicates
that the party acts as server and thus responds to requests. See definition
3.28 for details. xi, xiii, 37

s Session s at party P̂ is defined as tuple (P̂ , s) ∈ P×N and associated with
a variable Ts in eCK-PFS [4]. Note that a session in eCK-PFS is the view
of one party on the communication with another party. See definition 3.28
for details. xi, xiii, 37, 38, 76, 77, 124, 125, 126

Ts State Ts = (sactor, speer, srole, ssent, srecv) associated with a session s in eCK-
PFS [4]. See definition 3.28 for details. xi

sactor Identity of the actor sactor ∈ P of a session s in eCK-PFS [4]. The session
is defined from the perspective of the actor with regard to messages being
sent and received, the intended communication partner, and role. See
definition 3.28 for details. xi, 37, 38, 77, 125

speer Identity of the intended peer speer ∈ P of a session s in eCK-PFS [4]. Note
that the actual identity of a peer in s sending messages to sactor does not
have to be speer, it can also be an adversary A. See definition 3.28 for
details. xi, xiii, 37, 38, 77, 124, 125, 126

srole Role srole ∈ {I,R} the session s is executing in eCK-PFS [4]. It determines
whether the sactor initiates the communication with speer or waits for a
request. See definition 3.28 for details. . . . x, xi, xiii, 37, 77, 124, 125

ssent Concatenation of the chronologically ordered messages ssent ∈ {0, 1}∗ sent
by sactor in the session s in eCK-PFS [4]. See definition 3.28 for de-
tails. xi, 37

srecv Concatenation of the chronologically ordered messages srecv ∈ {0, 1}∗ re-
ceived by the sactor in a session s in eCK-PFS [4]. See definition 3.28 for
details. xi, 37

k Secret symmetric key. xi, xiii, xiv, 27, 28, 46, 47, 48, 53, 69, 76, 77, 124
ks Session key ks of a session s, used in the application of eCK-PFS. See

“3.3.2.4 Authenticated Key Exchange” and “4.1.3 Formal Analysis with
eCK-PFS” for details. . . xiii, 46, 47, 48, 49, 69, 72, 77, 124, 125, 126

epkP̂ Ephemeral public key epkP̂ of a party P̂ in the context of a session,
used in the application of eCK-PFS. See definitions 4.1 and 4.2 for de-
tails. 76, 77, 124, 125

eskP̂ Ephemeral private key eskP̂ of a party P̂ in the context of a session, used
in the application of eCK-PFS. See “3.3.2.4 Authenticated Key Exchange”
and definitions 4.1 and 4.2 for details. xiii, 46, 47, 69, 76, 77, 124, 125

N Nonce N used in CCM [3]. It should not be reused under a given key k.
See definition 3.1 for details. xiv,
27, 28, 29, 40, 41, 47, 48, 49, 53, 54, 64, 65, 66, 82

xi

P Plaintext P used in CCM [3]. Its content will be encrypted and authenti-
cated. See definition 3.1 for details. xiv,
27, 28, 29, 40, 41, 44, 45, 47, 48, 49, 52, 53, 64, 65, 66

A Associated data A used in CCM [3]. Its content will be authenticated.
See definition 3.1 for details. xiv,
27, 28, 29, 40, 41, 44, 45, 47, 48, 49, 52, 53, 64, 65

Bi The i-th block Bi in CCM [3]. Its content is determined
by a block formatting function β. See definition 3.1 for de-
tails. 27, 28, 29, 40, 41, 44, 45, 52, 53, 64, 65, 66, 82

Ctri The i-th counter block Ctri in CCM [3]. Its content is deter-
mined by a counter formatting function π. See definition 3.1 for de-
tails. 27, 28, 40, 44, 45, 52, 53, 64, 65, 82, 83

T Tag T in CCM [3]. It is the MAC for the authentication. See definition
3.1 for details. 27, 28, 65, 66

Tlen Tag length Tlen as bits in CCM [3]. See definition 3.1 for de-
tails. xiv, 27, 28, 46, 47, 48, 49, 53, 65, 66

S Keystream S used in CCM [3]. See definition 3.1 for details. . 27, 65
C Ciphertext C used in CCM [3]. It is the encrypted and authenticated result

of CCM. See definition 3.1 for details. . xiv, 27, 28, 47, 48, 49, 65, 66

List of Operators and Functions

AdvΠA(λ) Advantage of an adversary A to win adversary game in
the eCK-PFS model for protocol Π with regard to se-
curity parameter λ [4]. The parameter A and Π are
variables that can be replaced with the specific adver-
sary and protocol names. See definition 3.33 for de-
tails. 38, 39, 76, 77, 78, 125, 126

negl(λ) Negligible function (see [5, p.28]) with regard to the secu-
rity parameter λ, for the eCK-PFS model. See definition
3.35 and [5, p. 28] for details. . . 39, 77, 78, 125, 126

send(s,m) Query in the eCK-PFS model lets an adversary send a
message m to sessions s and receive the response [4]. See
definition 3.29 for details. It is equivalent to send(s, v)
specified in [4] except for the variable name of the mes-
sage. 37, 38, 77, 124, 125

xii

send(s, P̂) Query in the eCK-PFS model lets an adversary activate
a session s with peer speer = P̂ in srole = I by sending
a message m [4]. See definition 3.29 for details. It is
equivalent to send(s, Q̂) specified in [4] except for the
variable name of the party. 37

send(s, P̂ ,m) Query in the eCK-PFS model lets an adversary activate
a session s on behalf of speer = P̂ in srole = R by sending
a message m [4]. See definition 3.29 for details. It is
equivalent to send(s, Q̂,m) specified in [4] except for the
variable name of the party. 37, 77, 125

corrupt(P̂) Query in the eCK-PFS model lets an adversary reveal
the long-term secret key k of a party P̂ . See definition
3.29 and [4] for details. The definition is equivalent to
[4] except for the variable name of the long-term secret
key. 37, 38, 76, 77, 124, 125, 126

ephemeral-key(s) Query in the eCK-PFS model to let an adversary reveal
the ephemeral private keys {eskP̂1

, eskP̂2
} of a session

s. See definition 3.29 and [4] for details. The definition
is equivalent to [4] except for the variable name of the
ephemeral private keys. . . . 37, 38, 76, 77, 125, 126

session-key(s) Query in the eCK-PFS model to let an adversary reveal
the session key ks of a completed session s. See defi-
nition 3.29 and [4] for details. The definition is equiv-
alent to [4] except for the variable name of the session
key. 37, 38, 77, 124, 125

test-session(s) Query in the eCK-PFS model that randomly returns ei-
ther established session key of session s or a random key
that follows the probability distribution of keys generated
[4]. See definition 3.29 for details. 37, 38, 77, 125, 126

x← y Assign variable x the value of y, which can be another
variable, the result of a function or an expression. 27

X → Y Mapping from a set X to a set Y 39
x⊕ y Exclusive or operator that is applied bitwise on the

operands. 27
x∥y Concatenation of the bits in x and y. 27
⌈x⌉ Round x to the nearest integer greater than or equal to

x. 28, 41
len(x) Length of x in bits 27, 28, 34, 41, 65

xiii

β Formatting function that returns B0, B1, ..., Br for use in
CCM. The required parameters are not listed, because
the function is not standardized. See definition 3.1 and
[3] for details. xii,
xiv, 26, 27, 28, 40, 41, 47, 48, 49, 53, 64, 65

π Counter generation function that returns
Ctr0, Ctr1, ..., Ctrm for use in CCM. The required
parameters are not listed, because the function is not
standardized. See definition 3.1 and [3] for details.
xii, xiv, 26, 27, 28, 40, 41, 47, 48, 49, 53, 64, 65

MSBx(y) Most significant x number of bits from y 27,
28, 40, 46, 47, 64, 65, 66, 69, 77, 82, 124, 125

LSBx(y) Least significant x number of bits from
y 27, 28, 64, 65, 82

PADx(y) Pad y with zero bits until the length of y in bytes is a
multiple of x. 34, 40, 41, 64, 65

INT(x) The x encoded as big endian 32 bit integer. 34
Ciph(k, I) Block cipher Ciph applied to an input I under the key

k . 27, 28
CCM-ENC(k,π,β,Tlen,N,P ,A) CCM cipher mode encryption with AES-128 as block

cipher as specified in [6]. Note that KNXnet/IP Se-
cure uses different block and counter formatting func-
tions than the ones in [3]. See figure 5 for de-
tails. 28, 47, 48, 49, 53

CCM-DEC(k,π,β,Tlen,N,C,A) CCM cipher mode decryption with AES-128 as block
cipher as specified in [6]. Note that KNXnet/IP Se-
cure uses different block and counter formatting func-
tions than the ones in [3]. See figure 6 for de-
tails. 28, 47, 48, 49

X25519(n, q) X25519 for ECDH as specified in [7], where n is a 256
bit variable containing the private key and q is a 256 bit
variable containing the x-coordinate of a point on the
curve. . . . 32, 33, 46, 67, 68, 69, 75, 76, 77, 124, 125

xiv

PBKDF2(p,s,c,dklen) Key derivation function PBKDF2 as specified in [8]. The
password p is used to derive a cryptographic key. The
salt s hinders dictionary attacks, when chosen appro-
priately. The iteration count c determines the num-
ber of times the PRF is applied, with higher iter-
ations increasing the computational costs for an at-
tacker. dklen is the desired length of the derived key.
KNXnet/IP Secure uses HMAC-SHA-256 as the PRF
[6]. 33, 34, 42, 67, 68, 70, 71, 80, 81

SHA-256(x) SHA-256 hash function as specified in
[9]. 34, 46, 47, 69, 77, 92, 124, 125

xv

1. Introduction
KNX is a standard for home and building electronic systems (HBES) and building
automation and control systems (BACS) that is developed by the KNX Association.
It specifies the transmission media, hardware requirements and protocols for KNX
devices, like sensors and actuators. KNX installations can be used for the automation,
control and monitoring of applications such as heating, ventilation and air conditioning
(HVAC), lighting, shutters, energy metering, alarm systems and access control [10],
[11]. KNX is recognized as a European standard by EN 50090, EN 13321-1 and
EN 13321-2 [11, p. 27], [12]. Internationally, it is standardized in ISO/IEC 14543-3-
1 to 14543-3-7 and ISO 22510 [11, p. 27], [12], [6]. The KNX Association has also
self-published a freely accessible version of the standard in the past [13]. However,
the most recent version is v2.1 from 2013, which is missing more recent changes and
extensions specified in international standards.

KNX originates from the European Installation Bus (EIB)[10]. Hence, the main
transmission medium for KNX installations is twisted pair (TP). The benefit of the
TP-bus is that connected devices can not only communicate over it, but be supplied
with power as well. Even so, physical constraints for TP restrict the distance between
devices, thus limiting the extent of KNX installations [14, p. 6], [10]. Additionally, the
data rate is lower compared to other media such as Ethernet [10].

In 2008 the KNX Association extended its standard to support communication over
the internet protocol (IP) with KNXnet/IP [15]. This allows the use of Ethernet
(IEEE 802.3) and WLAN (IEEE 802.11) as transmission media in conjunction with
TP. KNX installations can also be connected to existing IP-networks, offering the
ability to perform remote configuration and management. However, this also increases
the attack surface compared to the previously air gapped architecture. Unlike with
KNX installation that only use TP, where an attacker would require physical access
to either the devices or the bus, KNXnet/IP devices could be exposed to remote
attacks, if no further security measurements are taken. Additionally, the KNXnet/IP
protocol does not provide any confidentiality or authentication [16], [17]. This means
when an adversary is able to gain access to the network, they could eavesdrop on the
communication, impersonate devices and inject commands to take over control in the
installation [17], [18]. Configuration of the devices is only protected by a password that
is sent as plaintext [16], [17]. Since use cases for KNX include security applications
such as alarm systems or access control, this poses a significant risk.

In order to address the lack of confidentiality and authentication the KNXnet/IP
Secure protocol was developed. Judmayer et al. [1] discovered several security flaws in
their analysis of the early draft proposal “Application Note 159/13 v02” in 2014. The
KNX standard v2.1 from 2013 contains a more recent version of the draft, “Application
Note 159/13 v04” [19]. It has largely the same security issues. Newer drafts are not
publicly available. The finalized protocol design was submitted to the International
Organization for Standardization in 2017 [20]. ISO 22510, published in 2019, is the
approved international standard that contains the specification of KNXnet/IP and
KNXnet/IP Secure [6]. KNX IP Secure devices have been commercially available

1

since [21, pp. 44].
KNXnet/IP Secure only protects communication over IP, hence a different solution

is necessary for TP and other media. The KNX Association developed KNXnet/Data
Secure for this purpose. It is meant to provide authentication, confidentiality and
access control [22, p. 9]. The combination of KNXnet/IP Secure and KNXnet/Data
Secure is referred to as KNX Secure [23]. According to the KNX Association “KNX
Secure is the only security standard for smart homes and buildings that meets the
world’s highest cyber security requirements.” [21, p. 5].

1.1. Problem Statement

According to ISO 22510:2019, KNXnet/IP Secure has the objective to ensure con-
fidentiality, authentication, data integrity and freshness [6]. In particular unicast
communication is supposed to provide mutual authentication and multicast commu-
nication the authentication of group membership [6]. Research by Judmayer et al.
[1] has shown security issues in an early draft of the protocol specification, that af-
fected both the confidentiality and authentication. This raises the question whether
ISO 22510:2019 specifies a secure cryptographic protocol. It appears that no security
analysis of the international standard has been published at the time of writing.

Devices with support for KNXnet/IP Secure are being marketed for their sup-
posed security properties [11]. The KNX Association showcased projects that use
KNXnet/IP Secure to protect the communication of applications such as intrusion
alarm systems and smoke detectors [11]. Uses case like these highlight that a failure
to ensure confidential and authenticated communication could pose a risk to both lives
and property. The KNX Association requires manufacturers to submit devices for a
certification process in order for them to use the KNX trademark [24]. However, it
is not publicly documented what requirements devices have to meet with regard to
KNXnet/IP Secure. Hence, it is unclear whether the software is thoroughly tested for
conformance with the protocol specification and if there are any measurements taken
to identify vulnerabilities in the implementation.

The KNX devices are configured and managed with the engineering tool software
(ETS) software developed by the KNX Association. Due to the protocol design of
KNXnet/IP Secure, the ETS has to store cryptographic secrets used by the KNX
devices. It is necessary that the ETS does so securely as it is a lucrative target for
attackers trying to gain control over KNX installations. There does not appear to be
a current audit or research published on the security of the ETS.

In summary, the general problem is that the finalized specification of KNXnet/IP
Secure and its implementations have not received substantial attention by security
researchers. This work seeks to address the problem by providing a security analysis of
the KNXnet/IP Secure protocol and its applications. The purpose is to identify issues
that can be solved in future version of the protocol and its software implementations,
improving the security of KNX installations.

2

1.2. Research Questions
The research questions this work intends to answer are the following:

1. Are the unicast and multicast protocol of KNXnet/IP Secure, specified in ISO
22510:2019, considered secure according to the current state of the art in cryp-
tography?

2. If design flaws with a security impact exist in the specification of KNXnet/IP
Secure, can they be practically exploited or are they only of theoretical nature?

3. Does the ETS5 (v5.7.x) have design flaws that impact the security, in particular
with regard to storage of cryptographic secrets, defaults for the configuration of
KNX devices and software updates?

4. Is the ETS5 (v5.7.x) conforming with the KNXnet/IP Secure specification?
5. Are certified KNX devices with KNXnet/IP Secure support conforming with the

specification?
6. If non-conformance with the standard occurs in either the ETS or KNX devices,

does this impact the security?
7. What risks are KNX installations exposed to and do recommendations by the

KNX Association for securing KNX installations mitigate them?
KNXnet/Data Secure is not being analyzed in this work. ETS6 (v6.0.0) was released

when the research was concluded, hence no in-depth analysis was conducted for this
version. Side-channel attacks on implementations of KNXnet/IP Secure are out of
scope.

1.3. Research Methodology
The research questions are centered around the protocol specification, ETS, certi-
fied KNX devices and risks KNX installations are exposed to. Each of these four
topics requires a different research methodology to answer the associated questions.
An overview is provided in this section, while a detailed explanation is given in the
respective chapters.

For the analysis of the KNXnet/IP Secure protocol, it is checked whether the crypto-
graphic primitives are used correctly. This is accomplished by verifying if the assump-
tions hold, under which the primitives have been proven to be secure. The claimed
security properties of the protocol can then be evaluated. Additionally, shortcomings
in the writing of the standard can be identified, which includes ambiguities and un-
defined aspects. It is problematic if the specification leaves room for interpretation in
parts that have an impact on the security, because a conforming implementation could
have worse security properties than intended. Furthermore, model checking is applied
to the state machines to formally verify if the textual description matches the specified
model and that security relevant states, such as the authentication of a peer, are only
reached when they are supposed to. Finally, a formal cryptographic model is used
to evaluate if an adversary with far-reaching capabilities would have a non-negligible

3

chance of compromising a session. Based on the results it can be concluded whether
ISO 22510:2019 specifies a secure cryptographic protocol from both an applied and
theoretic standpoint.

However, even when the specification is free of security issues, implementations
of KNXnet/IP Secure could be insecure. This refers to both the implementation
of the protocol, but also the surrounding systems it relies on. Hence, the second
topic is the analysis of the ETS. It serves as both an exemplary implementation of
a client in the KNXnet/IP Secure protocol and it is responsible for managing the
KNX devices, which is why it stores cryptographic secrets related to them. In order
to ensure that the implementation matches the specification, a series of black-box
tests with boundary-value analysis are performed. The test harness is created from
the specified requirements, frame formats and state machines in the ISO 22510:2019
standard. A black-box test is chosen over a white- or gray-box approach, because
the same implementation can be reused to test the KNX devices. Those do not have
binaries or source code are available, hence a black-box test is necessary. Behavior
that deviates from the standard can then be analyzed for its impact on the security.
Since the ETS takes on a special role as the device management software, responsible
for generating and safely storing cryptographic secrets used by KNXnet/IP Secure, the
analysis has to extend beyond the protocol implementation. Thus, the ETS is reverse
engineered, decompiled and deobfuscated to investigate whether the cryptographic
secrets are stored securely and if the update mechanism by the ETS ensures that
an adversary cannot trick the software into installing a malicious update. Moreover,
it is checked if the software uses defaults that ensure a secure configuration of the
KNX devices or if there is a potential for misconfiguration due to the provided user
experience (UX). The results allow to identify whether the implementation of the ETS
conforms with ISO 22510:2019 and if it has design flaws that impact the security.

The third topic is the analysis of certified KNX IP Secure routers, which take on
the role of servers for unicast communication. This test is conducted with the devices
SCN-IP100.03 by MDT and KNX IP Router 752 secure by Weinzierl. The choice for
these two device were made based on features, availability, and budgetary limitations.
Black-box testing is employed to check for conformance with the specification. The
test harness is similar to the one for the ETS, except that it implements tests for the
server-side. A black-box test is necessary, as no source code, open firmware or debug
interfaces are available. Protocol state fuzzing is used to determine the state machines
that the devices implement. The inferred finite state machines are then compared
to those from the specification through model checking. Behavior that deviates from
the intended handshake can be identified. Based on the results it can be determined
whether the certification process ensures conformance with the standard and if the
tested KNX devices have design flaws that can be practically exploited.

A risk assessment is the fourth and final topic. It is supposed to determine threats
that KNX installations are exposed to. The analysis process from a national standard
is applied. The uses cases are inspired by real projects the KNX Association has
showcased. Based on the findings it can be evaluated whether the recommendations
by the KNX Association are adequate to ensure safe operation. In particular, it

4

can be determined if KNXnet/IP Secure fulfills its intended purpose of addressing
the shortcomings of KNXnet/IP or if additional measurements are necessary because
previous parts have identified issues in the protocol design or implementation.

In summary, the methodology ranges from practical software tests to formal cryp-
tographic models. The results are reproducible and verifiable. Problems identified
through this approach are of general significance for KNX and not strictly limited to
specific devices.

1.4. Thesis Structure
“Related Work” shows the research this thesis builds upon and places it in the
context of related publications. This includes research about the security of KNX,
cryptographic primitives, formal cryptographic models, authenticated key exchange,
group key exchange, model checking, black-box testing and risk assessment.
“Background” gives an overview of knowledge that the reader will likely require
to understand the thesis. It explains the basic concepts of KNXnet/IP, which pro-
vide insight into the problems KNXnet/IP Secure is supposed to solve. Furthermore,
cryptographic primitives used by KNXnet/IP Secure are introduced as well as the
eCK-PFS model for analyzing the security of key exchange protocols. The key ele-
ments of KNXnet/IP Secure are explained to give an outline of how the unicast and
multicast protocols work. Additionally, an overview of model checking with NuXMV,
protocol state fuzzing and risk analysis with BSI 200-3 is given.
“Analysis of KNXnet/IP Secure in ISO 22510:2019” examines both the unicast
and multicast protocol of KNXnet/IP Secure for design flaws. The security properties
of the protocols are determined and ambiguities identified that could affect how manu-
facturers implement the protocols. Model checking with NuXMV is used to determine
whether the state machines are properly specified. A formal analysis is conducted in
the eCK-PFS model.
“Device Management with the ETS5” analyzes the configuration process of KNX
devices with the ETS5. It is checked whether the program provides safe defaults that
ensure a secure operation of KNX installations. Furthermore, the ETS5 is reverse
engineered to investigate the storage of cryptographic secrets and the update mech-
anism. A conformance test with boundary-value analysis is performed based on the
ISO 22510:2019 standard.
“Analysis of Certified Devices” performs black-box testing with protocol state
fuzzing and boundary-value analysis to check for conformance with the specification.
Ambiguities that have been identified in the standard are used to test edge cases.
The result of the protocol state fuzzing is evaluated by applying model checking with
NuXMV, in order to compare the finite state machines with the specification. Ad-
ditionally, the devices are checked for behavior that could indicate the presence of
vulnerabilities.
“Risk Analysis with BSI 200-3” applies the standard by the Bundesamt für Sicher-
heit in der Informationstechnik (BSI) to identify threats that KNX installations face
and whether guidelines provided by the KNX Association are enough to ensure secure

5

operation. The risk assessment uses scenarios based on real projects presented in the
KNX journals.
“Evaluation” verifies whether the posed research questions have been answered and
summarizes the findings.
“Conclusion and Future Work” draws conclusions from the findings, in particu-
lar whether KNXnet/IP Secure is a suitable solution to address the shortcomings of
KNXnet/IP. Areas that require further research are identified, including approaches
that could lead to more insights that were not covered in this work.

2. Related Work
This chapter provides an overview of the literature that the thesis builds upon. Con-
tributions made in this work are placed into context. The publications include prior
research about the security of KNXnet/IP and the draft of KNXnet/IP Secure as well
as methods used to analyze the standard and its applications in later chapters. Hence,
papers from a wide range of research areas are included, from cryptographic primitives
to risk assessment.

2.1. KNX
In 2006 Granzer et al. [16] published their research about security shortcomings in
BACS protocols, including LonWorks, BACnet and KNX/EIB. They proposed the
EIBSec protocol to address the issues in KNX/EIB [16]. Their research demonstrates
the long-existing problem of insecure communication in BACS and KNX in particular.
It is an important publication that has sparked research into the security of KNX.

The KNX standard was extended to include support for communication over IP
in 2008 [15]. BACnet and LonWorks provide protocols based on IP as well [25].
Hence, Granzer et al. [25] analyzed existing solutions and provided a generic security
concept that could be transparently applied to different BACS protocols to improve
their security, including KNXnet/IP. They note that KNXnet/IP does not provide
effective protection, but rather relies on guidelines for isolating the installation and
security by obscurity [25]. This publication from 2009 tries to solve the same problems
as KNXnet/IP Secure specified in ISO 22510:2019. Therefore, it lends itself for a
comparison. Security by obscurity is also a design issue that will be revisited in this
work.

The lack of security in KNXnet/IP has been demonstrated with practical attacks
by Antonini et al. [17] and Molina [18] in 2014. Both have shown that an attacker
with access to the network can potentially control the KNX installation, if no addi-
tional security measurements have been taken. Antonini et al. [17] also explained in
detail how the password protection for device configuration, which is the only secu-
rity mechanism in KNXnet/IP, can be circumvented by observing the network traffic.
That is because the password is sent unencrypted. The publications highlight the need

6

for secure communication. Antonini et al. [17] concluded that fixing the underlying
weakness of the system requires a drastic improvement of the protocol and devices.

A central paper for this thesis is the publication by Judmayer et al. [1]. They ana-
lyzed the draft proposal “Application Note 159/13 v02” from 2013, which specifies an
early version of KNXnet/IP Secure. Issues in the protocol design were found that af-
fected the confidentiality and authentication [1]. However, given that the analysis was
conducted on a draft, the protocol specification was subject to change and problems
that have been found might not apply to ISO 22510:2019. Since the KNX Associa-
tion submitted the final protocol specification to the ISO in 2017, they had roughly
3 years to address the issues [20]. This thesis continues the research that Judmayer
et al. started. A key contribution in this work is the analysis of the finalized protocol
specification from ISO 22510:2019. The findings from Judmayer et al. are discussed in
the “Analysis of KNXnet/IP Secure in ISO 22510:2019” chapter, for both issues that
have been fixed or still exist.

There have only been a few publications since, that address security shortcomings in
KNXnet/IP or KNXnet/IP Secure. While KNXnet/IP Secure was not yet finalized,
Glanzer et al. [26] suggested modifications to increase the resilience against replay
attacks and introduce redundancy for high availability. Seifried et al. [27] identified
the issue of KNXnet/IP being only specified for IPv4 and suggested how IPv6 support
could be integrated. Furthermore, they compared the KNXnet/IP Secure draft from
“Application Note 159/13 v04” [19] to IPSec. A combination of the two was proposed
for securing the communication [27]. The thesis of Goltz [28] evaluates risks posed
to the TP-bus of KNX. While not directly related, it inspired the inclusion of a risk
analysis with BSI 200-3 in this work. Similar to the research by Antonini et al. [17],
Vacherot [29] demonstrates the risk of plain KNXnet/IP communication. The paper
presents a fuzzer which can be used to test KNXnet/IP devices and consequentially
find vulnerabilities. Identifying non-conforming behavior is one of the goals of this
thesis, and thus closely related. However, a different approach was chosen as explained
in the “2.11 Black-Box Tests” section and “Analysis of Certified Devices” chapter.

2.2. Cryptographic Fundamentals
Cryptography is a field that is at the core of the KNXnet/IP Secure analysis. Basic
knowledge of cryptography is required to understand the thesis, as it is not within the
scope of this work to explain the fundamentals. Readers are referred to the publications
of Boneh and Shoup [5], Katz and Lindell [30], Menezes et al. [31] and Hankerson et
al. [32] for elementary information on topics such as hashing, ciphers, key derivation,
message authentication codes, security notions and elliptic curve cryptography (ECC).

2.3. Symmetric Cryptography
Bellare and Namprempre [33], and Krawczyk [34] provided insight into security notions
and analyzed the properties of authenticated encryption based on generic composition

7

of encryption and authentication. The findings are helpful to assess the security no-
tions symmetric encryption in KNXnet/IP Secure should satisfy.

Whiting et al. [2] developed the CCM cipher mode, which is used by KNXnet/IP
Secure [6]. It provides authenticated encryption with an authenticate-and-encrypt
composition [2]. A security proof for it was provided by Jonsson [35]. While Rogaway
[36] criticized design choices made for CCM as well as security claims made by the
original authors, no “grave or urgent problems” [36] were found that affect the cipher
mode. The assessment of Rogaway is relevant for the analysis of KNXnet/IP Secure as
there are pitfalls to applying CCM properly with regard to the parametrization. CCM
was made a standard by the National Institute of Standards and Technology (NIST)
with Special Publication 800-38C [3] which requires it to be used with AES [37] as
block cipher. In [38] Rogaway renewed his criticism of CCM, while acknowledging that
it is a provably-secure AEAD scheme. One particular problem that the publication
highlights, is that the NIST standard does not require the use of the canonical format-
ting and counter-generating functions [38]. Not relying on them, and using custom
functions instead, can adversely affect the security properties. Hence, this is an issue
that may concern KNXnet/IP Secure and is thus investigated in this work.

2.4. Asymmetric Cryptography
KNXnet/IP Secure relies on an elliptic curve for asymmetric cryptography [6]. Notable
work about them has been published by Miller [39], Koblitz [40], and Koblitz, Menezes
and Vanstone [41] among many others. While those publications and related work are
relevant to the field, the thesis is mainly focused on Curve25519 specified by Bernstein
[42]. This is the curve used by KNXnet/IP Secure. Similar to CCM, the thesis
is concerned with the correct application of it. As previously stated, side-channel
attacks on the implementation are out of scope. Hence, publications such as Genkin
et al. [43] are not considered in this work.

2.5. Guidelines for Cryptography
National institutions like NIST and the BSI publish guidelines for the use of cryp-
tography to ensure that reasonable security standards are met. The BSI provides
recommendations for cryptographic primitives and key lengths in TR-02102 [44], as
does NIST in Special Publication 800-131A [45]. Guidelines for ECC can be found in
TR-03111 [46]. KNXnet/IP Secure is compared to the recommendations set forth by
these documents to determine whether they are fulfilled or even exceeded.

2.6. Authenticated Key Exchange
When two parties want to ensure confidentiality of the communication between each
other, they need to agree on a key that they can use to encrypt their messages. The key
needs to be known only to them. Key-agreement protocols solve this problem. One
of the most notable publications on asymmetric cryptography is [47] by Diffie and

8

Hellman. The Diffie-Hellman key exchange allows to establish a shared secret [47].
However, the plain Diffie-Hellman key exchange is susceptible to an active attacker
that acts as man-in-the-middle (MitM), because it does not provide authentication.
The attacker can impersonate the respective communication partner of the parties
and thus establish shared secrets with both, while the legitimate parties are unaware
that they are not communicating with the intended partner. Messages that were
supposed to be exchanged confidentially between the parties can therefore be read by
the attacker. An authenticated key exchange (AKE) tries to ensure that the involved
parties can verify the identity of the communication partner [48]. One of the early
AKE protocols is the station-to-station (STS) protocol by Diffie et al. [48]. This
particular AKE is referenced by drafts of KNXnet/IP Secure [19][49] and thus of
interest. Publications by Wilson and Menezes [50], Choo [51], Cremers [4] and Lipp
et al. [52] provide insight into the security properties that can be expected from AKE
protocols and need to be evaluated for KNXnet/IP Secure.

Contributions to the research on the security of AKE protocols are made with the
analysis of KNXnet/IP Secure in chapter “Analysis of KNXnet/IP Secure in ISO
22510:2019”.

2.7. Group Key Exchange
Secure communication does not have to be limited to two parties. If keys are not
pre-shared, then multicast and broadcast communication require a way to establish
a key for the group as well. Protocols that solve this problem are called group key
exchange (GKE).

KNXnet/IP Secure supports multicast communication, which is supposed to ensure
confidentiality and authentication of group membership [6]. In order to place the
protocol design into context, it has to be compared to past and present research. This
allows to identify issues and potential for improvements.

The GKE protocols not only have to perform the contributory key agreement, but
also face the challenge of scalability in relation to the number of members in the group,
including communication and computational complexity. Steer and Strawczynski [53]
published a protocol that allows to establish a shared secret. However, the STR pro-
tocol only supports static groups and scales linearly in complexity with the number
of group members [54]. GKE for dynamic groups that also push for more efficient
solutions are the protocol by Burmester and Desmedt [55], CLIQUES by Steiner et al.
[56], TGDH by Kim et al. [57], [58] and the extended STR by Kim et al. [54], which en-
hances the work by Steer and Strawczynski [53] to include support for dynamic groups
and improve efficiency. Manulis [59] published optimizations for the aforementioned
protocols and modified them to use ECC. Each of the protocols has trade-offs between
the required number of messages and rounds to perform the GKE, computational and
memory complexity, and handling of dynamic changes to the group membership [59].

More recent publications provide advances in security, such as Cohn-Gordon et al.
[60]. They showed how forward secrecy and post-compromise security can be accom-
plished in group messaging with asynchronous ratcheting trees (ART) [60]. Similarly,

9

Alwen et al. conducted research on continuous group key agreement (CGKA). This
resulted in publications about the analysis of the TreeKEM protocol [61], CGKA as
cryptographic primitive [62] and the security of the Tainted TreeKEM protocol [63].

The thesis contributes the analysis of the multicast protocol of KNXnet/IP Secure
in chapter “Analysis of KNXnet/IP Secure in ISO 22510:2019”, which includes a com-
parison with GKE protocols as well as suggestions to improve its design based on the
previously mentioned research.

2.8. Cryptographic Models
Evaluating whether cryptographic protocols are secure, requires a precise definition of
what that term means. Additionally, a sensible abstraction is required that allows to
perform the analysis. This can be accomplished by formulating a model that defines
an adversary and their abilities as well as conditions that they must reach to break
the protocol. If it can be proven that the adversary is unable to break the protocol,
then it is considered secure in the given model.

Notable models for formally proving the security of protocols have been published
by Dolev and Yao [64], Bellare and Rogaway [65], and Canetti and Krawczyk [66]. The
Canetti-Krawczyk model has been refined by LaMacchia et al. [67] to include further
attack classes, including key-compromise impersonation (KCI). This is known as the
extended Canetti-Krawczyk (eCK) model. Further enhancement were developed by
Cremers et al. [4] which resulted in the eCK-PFS model. It allows to prove that a
protocol provides perfect forward secrecy [4]. An updated version of the same paper
with minor corrections has been published in [68].

The eCK-PFS model is utilized in chapter “Analysis of KNXnet/IP Secure in ISO
22510:2019” to analyze KNXnet/IP Secure. An introduction is provided in the “Back-
ground” chapter. Swanson’s thesis [69] serves as inspiration for the formal analysis,
as it applies the eCK model on other AKE protocols.

2.9. Attacks Against Weak Cryptography
KNXnet/IP Secure uses password-based authentication and derives cryptographic keys
from the passwords using PBKDF2 with HMAC-SHA-256 [6]. It is of interest to
evaluate if the protocol is susceptible to offline attacks, where an attacker records the
communication of parties and attempts to determine what the password is. If such an
attack is theoretically possible, it can indicate a design flaw, but it does not necessarily
mean that it can be practically exploited. The required time, computation power and
financial resources might not be attainable. The thesis seeks to answer whether there
is a realistic risk of the KNXnet/IP Secure authentication being broken. Hence, the
research by Visconti et al. [70], [71] and Choi et al. [72] are of interest for the optimized
implementation of password cracking should an offline attack be possible.

The ETS5 provides the option to export project information, including crypto-
graphic secrets. It applies the PKZIP stream cipher to encrypt the sensitive infor-
mation. Biham and Kocher [73] discovered that the PKZIP cipher is susceptible to a

10

known plaintext attack. The research by Stay [74] provides further improvements on
the attack, in particular to address the challenge of compression being applied prior to
the encryption. These publication are relevant because it is evaluated if the exported
projects by the ETS5 can be decrypted with the described attacks.

2.10. Model Checking

The NuXMV software [75] is used in chapter “Analysis of KNXnet/IP Secure in ISO
22510:2019” to check properties of the state machines specified in KNXnet/IP Secure,
and in chapter “Analysis of Certified Devices” to compare the inferred state machines
of real devices against the specification. Although no new methods for model checking
are contributed in this work, the literature that forms the basis of NuXMV is relevant
for the correct application of the tool and for interpreting the results.

Temporal logics are utilized in NuXMV to express conditions for the formal verifi-
cation of a given model. One is linear temporal logic (LTL) developed by Pnueli [76]
and the other computation tree logic (CTL) by Clarke and Emerson [77]. Important
underlying techniques for the symbolic model checking of CTLs are Bryant’s binary
decision diagrams (BDD) [78] and Biere et al.’s bounded model checking (BMC) [79]
for LTL. The work by Clarke et al. [80] determined how the bound for BMC has to be
chosen in order to ensure that a counter example can be found, if one exists. This is
important, because if BMC does not produce a counter example, it does not necessarily
mean that the LTL formula is satisfied. It could be that the bound is too low to find
a counter example. Definitions and background information required to understand
the model checking with NuXMV are provided in the “Background” chapter.

2.11. Black-Box Tests

Testing embedded devices like the KNX IP Secure routers, without using a debug
interface or having knowledge about the firmware, is a challenge. All checks have to
be performed over the network and responses or lack thereof need to be interpreted.
The goal of the black-box testing in this thesis is primarily to check whether the KNX
devices conform with the specification and if deviations from it have security implica-
tions. De Ruiter and Poll [81] developed a technique called “protocol state fuzzing”
that allows to infer the state machine of a device. Their open source implementation
of the StateLearner [82] based on LearnLib [83] provides a foundation for the confor-
mance tests in this work. A protocol state fuzzer for KNXnet/IP Secure is developed
in this work, which can be used to infer the state machines of KNX devices. The re-
sult can be compared with the specification, which allows to identify non-conforming
behavior. Further research that applies protocol state fuzzing has been published by
Fiterău-Broştean et al. [84]. Their work on identifying issues in implementations of
DTLS serves as a reference for the type of problems that can be discovered with this
technique.

11

2.12. Risk Analysis
The risk analysis in this work is based on the standard BSI 200-3 [85], [86] which
specifies the methodology. It builds upon the standard BSI 200-1 [87], [88] for in-
formation security management systems (ISMSs), BSI 200-2 [89], [90], that specifies
the process for creating a security concept, and the “IT-Grundschutz” compendium
[91], which provides building blocks for the risks analysis and mitigation. This con-
tribution allows to determine what risks KNX installations are exposed to and how
well the guidelines provided by the KNX Association protect against them. Addition-
ally, it helps to determine whether KNXnet/IP Secure mitigates prevalent risks or if
additional measurements are required.

2.13. Network Security
The BSI publishes guidelines for securing the internal network and providing safe
remote access. The former is ISi-LANA [92], the latter ISi-Fern [93]. A more recent
approach to network security, called “Zero-Trust”, is presented in NIST’s Special Pub-
lication 800-207 [94] and CISA’s draft [95]. Since KNX installations that are connected
to an IP-network are exposed to the similar risks as regular computers, the literature
is relevant for building a secure architecture and evaluating if existing solutions are on
par with the requirements. This knowledge is applied as part of the risk analysis and
informs the improvement suggestions for the KNX installation guides contributed in
this work.

3. Background
Knowledge about the KNX topology and internal workings of KNXnet/IP are nec-
essary to understand KNXnet/IP Secure and its analysis. Therefore, this chapter
illustrates the features of KNXnet/IP and how it integrates into KNX installations,
as well as the security problems that arise. The cryptographic primitives used by
KNXnet/IP Secure are introduced, followed by the security properties and eCK-PFS
model for the analysis. Essential parts of the KNXnet/IP Secure specification from
ISO 22510:2019 are summarized. Additionally, it is detailed how model checking with
NuXMV, protocol state fuzzing and risk analysis with BSI 200-3 work.

3.1. KNX Topology and KNXnet/IP
KNX specifies a logical topology for its installations, which is depicted in figure 1.
Each device is identified by a 16 bit individual address (IA) [96], [6]. It is possible
for devices to have additional IAs [6, p. 52], for services that they provide. Hence,
there can be at most 65536 devices in one KNX installation [96]. The logical topology
describes a hierarchy consisting of lines, areas and the backbone [96]. It resembles the
physical topology of installations that use TP as medium. Hence, the terminology and
architecture shown in figure 1 are best explained based on it. The TP cable creates

12

0.0.255

Area 15
15.0.0

Area 2
2.0.0

Area 1

Line
Coupler

K
N
X

D
ev

ic
es

Router/Backbone
Coupler Main line 1.0

1.0.0

1.1.0 1.2.0 1.15.0

1.1.1

1.1.2

1.1.254

1.1.255

1.2.1

1.2.2

1.2.254

1.2.255

1.15.1

1.15.2

1.15.254

1.15.255

1.0.1

1.0.2

1.0.254

1.0.255

0.0.1
Ba

ckb
on
e L

ine
(0.

0)

Figure 1: The KNX topology, based on [96, p. 10]

a physical segment which is referred to as a line [96]. Two lines can be connected to
each other with a device called router, which routes frames from one line to another
if the recipient is not located in the same line as the sender [96]. An area is formed
when multiple lines are connected to an additional line. This single line is referred
to as the main line of the area [96]. Routers that are used to form an area are
known as line couplers [96]. Multiple areas can also be combined with routers, by
connecting their main lines to the main line of one particular area [96]. Those routers
are called backbone couplers [14, p. 22]. The main line of that area is referred to as
the backbone line of the KNX installation [96]. Devices can be directly connected to
all lines, including the backbone line and other main lines [14, p. 23], [96, p. 10].

0123456789101112131415

Area Address Line Address Device Address

Figure 2: Structure of IA [97, p. 6]

13

The logical topology is a tree, as can be seen in figure 1. This structure is defined
by the IA, shown in figure 2. It is important to note that the logical topology applies
regardless of the medium being used and does not have to be identical to the physical
topology. All data structures of KNX are specified as big endian, such as figure 2,
unless otherwise indicated. The least significant byte of the IA contains the area and
line, both encoded in 4 bit respectively [97, p. 6]. Hence, there can be at most 16
areas and within each 16 lines. This part of the IA is referred to as the subnetwork
address [97, p. 6]. The remaining byte allows 256 unique addresses for the devices
within the subnetwork. For the textual representation of the IA, as shown in figure
1, the area, line and device address are each converted from binary to decimal and
separated by dots.

There are additional rules for the IA assignment. The area that contains the back-
bone line has the area address set to zero [97, p. 7]. Main lines are required to have
the line address set to zero [97, p. 7]. Hence, the backbone line is identified by the 0.0
subnetwork address. Routers and line couplers are required to have the device address
set to zero [97, p. 6]. All other device types may not have a device address of zero [97,
p. 6].

KNX specifies twisted pair (TP), powerline (PL) and radio frequency (RF) as com-
munications media [96, p. 7], which all adhere to the logical topology. They can be
combined within the same installation [96, p. 7]. KNXnet/IP is an extension of the
standard that introduces communication based on the internet protocol (IP) [15]. It
allows using additional media, such as Ethernet (IEEE 802.3) and WLAN (IEEE
802.11) [96, p. 7]. IP already provides a logical topology in the form of IP addresses.
IPv4 and IPv6 also allow to address many more devices than the IA. KNXnet/IP thus
not only specifies a protocol and the services it provides, but also the integration of
IP into the logical topology of KNX. A short introduction to KNXnet/IP is given in
the following paragraphs.

Since the KNXnet/IP protocol stack introduces new physical layers, additional sys-
tem devices with matching interfaces are required for the use as backbone and line
couplers. They are referred to as KNXnet/IP routers [6, p. 8]. Commonly these de-
vices provide one RJ-45 interface for Ethernet and a TP interface. Unlike other com-
munication media, such as TP, the specification does not permit using KNXnet/IP
throughout the KNX installation [15, p. 4], [6, p. 81]. It has to be used in conjunction
with TP, PL or RF [15, p. 4]. Hence, this poses the question of where KNXnet/IP
fits into the logical topology. KNXnet/IP is meant to be used as a fast backbone
[6, p. 81]. Therefore, the specification restricts where KNXnet/IP is allowed to be
used. KNXnet/IP routers may not be utilized as line couplers when there is already a
KNXnet/IP router in place as backbone coupler for the same area [6, p. 81], [98, p. 5].
The inverse is also not permitted. When there is already a KNXnet/IP router used as
line coupler, then KNXnet/IP router may not be placed as backbone coupler in the
same area [6, p. 81], [98, p. 5]. This disallows any KNXnet/IP routers to be located
in the hierarchy below another KNXnet/IP router. Furthermore, if a KNXnet/IP
device is assigned an IA, then all parts of the subnetwork leading to the device are
required to only contain KNXnet/IP devices [98, p. 5]. In practice this means that

14

KNXnet/IP is used for the backbone line, down to either a KNXnet/IP router that
provides an interface to another communication medium or a non-system KNXnet/IP
device. Figure 3 illustrates this with an example topology, where both KNXnet/IP
and TP are used.

0.0.255

Area 15
15.0.0

Area 2
2.0.0

Area 1

Line
Coupler

K
N
X
D
ev
ic
es

KNXnet/IP Router
Main line 1.0

1.0.0

1.1.0 1.2.0 1.15.0

1.1.1

1.1.2

1.1.254

1.1.255

1.2.1

1.2.2

1.2.254

1.2.255

1.15.1

1.15.2

1.15.254

1.15.255

1.0.5

1.0.6

1.0.254

1.0.255

0.0.1
Ba
ckb
on
e L
ine
(0.
0)

KNXnet/IP Devices

172.16.0.1

172.16.1.1

172.16.1.2

172.16.1.15

172.16.0.255

Ethernet Twisted Pair

Figure 3: KNXnet/IP in KNX installation

Besides the IAs that identify the KNXnet/IP devices, they are also assigned IP
addresses. Since the IAs are used for the identification of the device within the logical
topology of the KNX installation, the larger space of the IP addresses does not permit
to use more KNX devices. However, the KNXnet/IP devices can coexist with any
number of devices on the IP-network that are not part of the KNX installation.

The KNXnet/IP protocol stack is depicted in figure 4. It is an application layer
protocol, that may use both TCP and UDP in the transport layer. Supporting TCP
is optional for devices that do not implement KNXnet/IP Secure [6, p. 7]. It also
relies on additional protocols that are not shown in the figure, including ARP, ICMP,
IGMP, and DHCP or BootP [6, p. 7], [99, p. 8]. The ISO 22510:2019 standard specifies

15

the services that KNXnet/IP router, devices, and management tools, like the ETS,
have to provide [6, p. 8]. The requirements are depicted in table 1. The following
subsection summarize the features that these services provide, when KNXnet/IP Se-
cure is not used. The purpose is to give a picture of how the KNXnet/IP devices
operate, including security issues that arise. Changes to the KNXnet/IP layer that
are introduced with KNXnet/IP Secure are explained in the section “3.3 KNXnet/IP
Secure in ISO 22510:2019”.

KNXnet/IP

Application Layer

TCP UDP

 Transport Layer

IP

Network Layer

Ethernet (IEEE 802.3) and others

Data Link Layer
Physical Layer

Figure 4: KNXnet/IP protocol stack [6, p. 39, p. 102]

Service Families
Device Class

Management
Tools

KNXnet/IP
Router

KNXnet/IP
Device

Core M M M
Device Management M M M
Tunneling M M O
Routing M M O
Remote Diagnosis and Configuration M O∗ O
Secured Communication M O O

Table 1: Implementation requirements for device classes, based on [6, p. 8].
“M” stands for mandatory and “O” for optional. The entry marked with ∗ may not be implemented

when secure communication is supported.

3.1.1. Core

The Core service family defines the way KNXnet/IP devices can find each other, learn
which services they offer and how to access them. The specification introduces the

16

abstraction of endpoints for this purpose. Each device needs to have one discovery
endpoint, through which it can be found by other devices and supply information about
itself [6, pp. 10-12]. For every subnetwork the device is connected to, it has to provide
a service container which implements at least one service related to the subnetwork [6,
p. 11, p. 49]. The service container is represented by its control endpoint [6, p. 11]. It
shall allow to establish and control a connection for accessing services offered by the
container [6, p. 13]. Furthermore, the control endpoint needs to provide self-description
of the hardware, state and features of the device with regard to the service container
[6, p. 12, pp. 22-26, p. 34]. Once a connection is established, the communication is
conducted over a data endpoint, that is associated with the communication channel
[6, p. 13]. Data endpoints do not have to be connection-oriented though [6, p. 47], the
term is generally used for endpoints that exchange data with a subnetwork.

The ISO 22510:2019 standard specifies the implementation of the endpoint abstrac-
tion on top of the protocol stack shown in figure 4 [6, p. 39]. It does not require all of
the endpoints to be implemented through a single well-known port on the server-side
[6, p. 46]. Instead, clients and servers announce their endpoints to communication
partners, indicating where further requests or replies shall be send to [6, p. 27-33].
This is accomplished through the host protocol address information (HPAI) structure
that is part of certain frames in KNXnet/IP protocol [6, pp. 27-33, p. 45]. It consists
of an IPv4 address, port and whether TCP or UDP needs to be used [6, p. 45]. Natu-
rally, one fixed port that servers listen to is required for the initiation of KNXnet/IP
communication, as otherwise clients would not know how to contact them. Hence,
the discovery endpoint has to be implemented through a well-known port, unlike the
other endpoints. The specification requires port 3671 to be used and it shall only be
reachable through UDP [6, p. 46]. All KNXnet/IP devices have to join the multicast
group of the KNX installation through IGMP and listen to incoming requests on this
port [6, p. 8, p. 44]. Multicast allows a client to send a single frame to all devices in
the group, without knowing their individual IP addresses. This is the basis for the
device discovery [6, p. 11]. Both the control endpoints and data endpoints have to be
implemented with UDP and may optionally be provided through TCP [6, p. 47]. Only
clients are permitted to initiate TCP connections [6, p. 40]. The server implementation
may use any port for control endpoints, but it has to be the same for both UDP and
TCP [6, p. 47]. If the data endpoint is used for the communication of a connection
established through a control endpoint, then any port can be used by the server [6,
p. 46]. Connectionless communication for routing requires multicast through UDP on
port 3671 [6, p. 82]. No restrictions are imposed on the client’s choice of ports in all
cases.

The specification claims that the concept of endpoints would result “[…] in a big
flexibility of the actual implementation using the specific host protocol” [6, p. 46].
However, this approach is significantly more complex to implement than requiring a
single well-known port to be used for all endpoints on the server-side and the benefits
are questionable. Hence, issues with this design choice are discussed in subsection
“3.1.6 Insecurities and Design Flaws in KNXnet/IP”.

The device discovery works by sending a request with UDP to the configured mul-

17

ticast address at port 3671, which is then delivered to the discovery endpoints of all
members in the multicast group [6, p. 27, p. 46]. Contained in the client’s request is
the HPAI that the replies shall be sent to via unicast [6, p. 28, p. 47]. Servers send
separate responses for each of their control endpoints, containing the associated HPAI
under which services for the subnetwork can be reached [6, p. 12, p. 28]. The response
also contains information about the device configuration and which service families,
including their versions, are supported by the control endpoint [6, p. 28]. The de-
vice information include its IA, serial number, device name, MAC address, connected
KNX medium for the subnetwork and whether the programming mode is enabled [6,
pp. 24-26]. The latter is required for the configuration of a device’s IA [100, p. 16].
ISO 22510:2019 specifies the second version of the Core service family which includes
the option to request only replies from servers that are in programming mode, have a
specific MAC address or support a certain service family [6, pp. 29-32]. This allows to
reduce the number of replies down to the relevant devices by filtering for the criteria
on the server-side [6, pp. 30-31]. Furthermore, the client can request additional details
about the server, including information about the manufacturer, IAs and their status
for tunneling, whether KNXnet/IP Secure is supported, and general information about
the IP configuration, such as the subnet mask and default gateway [6, pp. 23-26]. Dis-
covering devices is of particular interest for the configuration and device management
with tools such as the ETS [6, p. 19].

Self-description is accomplished through point-to-point communication with a de-
vice’s control endpoint to learn information about the service container and its subnet-
work [6, p. 12]. It can retrieve a subset of the information from the device discovery
of Core v2 [6, p. 12, p. 27]. The client has to include the HPAI to where the reply
shall be sent to in its request [6, p. 33]. According to the standard it can be useful to
determine if a service family is supported by the control endpoint before attempting
to establish a connection for it, in order to avoid trial and error [6, pp. 12-13, p. 11]. It
is also more efficient than device discovery when the intended communication partner
is already known.

KNXnet/IP implements the creation of communication channels in the application
layer on top of TCP or UDP [6, p. 13, p. 47]. This is the basis for other services, such
as tunneling or device management [6, p. 13]. Connection-oriented communication
allows to logically separate the interaction with different clients, manage their access to
limited resources, and handle stateful communication with services. Each connection
in KNXnet/IP is established for the use of one respective service type [6, p. 13]. Hence,
a client has to indicate which service it intends to use in the initial connect request
sent to a server’s control endpoint [6, p. 34]. The subnetwork for which the service
is accessed and its associated control endpoint is known from the device discovery.
The client’s request also contains its control and data endpoint HPAIs [6, p. 35]. The
control endpoint is used for managing the connection, whereas the data endpoint is
used for the communication within the connection [6, p. 13]. On reception, the server
can decide whether to accept the request and send a reply to the client’s control
endpoint [6, p. 35]. The server’s response contains a status code that shows whether
the connection was established successfully, the ID of the new communication channel

18

and the allocated data endpoint for it [6, pp. 35-36]. The client can then start to use
the communication channel, to interact with the service through the data endpoint.
Each frame in the connection has a sequence counter, initially starting at zero [6, p. 15].
It is incremented with every frame sent, for each communication channel respectively,
if UDP is used on the transport layer [6, p. 15]. In case frames arrive out of order,
they could be discarded if their sequence number is lower than the expected value [6,
p. 68]. The protocol allows to check the status of a connection [6, p. 36]. This can be
used to perform a “heartbeat” check, ensuring it is still alive, in particular when a
client uses UDP [6, p. 15]. A single TCP connection may contain multiple KNXnet/IP
connections [6, p. 42]. Regularly, a connection is terminated by the client, although
the server is also able to close the channel when an error occurs [6, p. 41].

3.1.2. Device Management

The device management service family facilitates the configuration of KNXnet/IP de-
vice with a management client, such as the ETS [6, p. 48]. A point-to-point connection
has to be established on the KNXnet/IP layer for this purpose, as specified by the
core service family [6, p. 34]. It is initiated through the control endpoint of the service
container that is supposed to be configured. If the device provides access to more than
one subnetwork, it has to implement a service container for each, which are treated
as independent entities [6, p. 49].

Once the connection is established and communication commences through the
negotiated data endpoints, the client is able to send a device configuration request
[6, p. 50]. It wraps a common external message interface (cEMI) frame, which is a
medium independent message format for KNX [101, p. 57]. It provides an interface
to the KNX protocol layers of another device [101]. The KNX standard specifies the
protocol stack from the physical layer to the application layer for its communication
media TP, PL and RF [14], [102], [103], [97], [104], [105], [100]. This stack has to be
provided for every service container to communicate with the respective subnetwork.
Part of its functionality is to configure the device [100, p. 54]. KNXnet/IP leverages
this through the cEMI by acting as a host protocol for its frames [101, p. 58]. In the
context of device management a subset of cEMI frames may be used by the client.
This includes frames to access the interface objects that represent the configuration
of the KNXnet/IP server [101, pp. 100-102], [6, p. 50, p. 61]. They contain properties
a client can read and write, if they are not read-only [101, pp. 100-102], [6, p. 58].
For instance, information such as the manufacturer ID, product ID, serial number,
version and hardware type of the device can be retrieved [106, p. 28, p. 33, p. 39,
pp. 67-68]. Writable properties include for example the assigned IAs, default gateway
or IP address [6, p. 175]. Additionally, an interface object supports functions that can
be called on it [101, pp. 103-104], [6, p. 58]. A list of the available interface objects
and properties is provided in the “Resources” document of the KNX v2.1 standard
[106] that is extended by the ISO 22510:2019 standard [6, pp. 175-177]. A client can
reboot the server through cEMI [101, p. 105], [6, p. 58]. Changes to the configuration
are required to take effect after a restart of the server and an additional 30 s have past

19

[6, p. 50].
Within the device management connection, the server implicitly prepares a connec-

tion on the transport layer for cEMI, giving the client access to server’s application
layer [6, p. 58], [101, pp. 96-97]. It may be required to perform the insecure authoriza-
tion procedure analyzed by Antonini et al. [17] before commands can be issued, if it
is enabled [100, pp. 89-90]. The application layer permits operations such as resetting
the device to the factory default state [100, p. 47], reading and writing the memory of
the communication and application controller [100, pp. 71-76, pp. 79-83], and changing
the keys for the authorization as well as their permission levels [100, pp. 91-92].

The ETS can fully configure the KNXnet/IP device through a device management
connection, including the application running on the device and its parameters [6,
p. 49].

3.1.3. Tunneling

The tunneling service family provides the ability for a KNXnet/IP client to create a
tunnel into a subnetwork through a KNXnet/IP server. It is used for device configura-
tion and diagnostics inside the subnetwork, in particular by the ETS [6, p. 64]. Similar
to the device management, it requires a KNXnet/IP connection to be established, as
specified by the core service family [6, p. 34]. When the client creates the connection
for the purpose of tunneling, it has to choose one of the three available modes: data
link layer, cEMI raw mode and busmonitor [6, p. 71]. Every device that supports the
tunneling service family has to implement the data link layer mode, the others are
optional [6, pp. 65-67]. The modes will be explained later in this section. Besides the
tunneling mode, the client may optionally indicate which IA of the KNXnet/IP server
it wants to use for the tunnel [6, p. 71]. The server has an IA that identifies it in the
KNX installation as well as additional IAs that can be used for tunneling [6, p. 65,
p. 176]. Clients can retrieve the server’s IAs and their availability through an extended
search request from the device discovery of the core service family [6, pp. 76-77]. If
the server accepts the connection request, the positive reply contains the IA assigned
to the created tunnel [6, p. 71-72]. If no more unassigned addresses are available for
tunneling the server will refuse, as the IA must be unique within the installation [107,
p. 5]. Frames from the KNXnet/IP client send through the tunnel into the subnetwork
appear to logically originate from a device in the subnetwork with the tunnel’s IA [6,
p. 65].

In the data link layer mode the KNXnet/IP client sends tunneling requests that
contain cEMI frames for the data link layer [6, p. 64]. This is the lowest layer with
a medium independent frame format [101, p. 16]. The cEMI frame itself may wrap
frames from the higher layers, starting with the network layer and up to the application
layer [101, p. 75], [104, p. 6], [105, p. 6], [100, p. 8]. The KNXnet/IP server passes these
in the correct, medium specific format into the subnetwork. Acknowledgments are sent
by the KNXnet/IP server, not the client [6, p. 65]. Frames from the subnetwork are
only passed to the client if the address the IA of the tunnel or a group that the IA
is in [6, p. 65]. If the KNXnet/IP server returns its own IA during the connection

20

establishment and uses this for a tunnel, then no management of it is permitted
through the tunnel or from the subnetwork [6, p. 65]. Furthermore, if the KNXnet/IP
server is a router, then it may not use its own IA and has to use one of the additional
IA meant for tunneling [6, p. 65].

In the raw mode the KNXnet/IP client has full control over the frame format and
content that is sent into the subnetwork [6, p. 65], [101, p. 92]. The KNXnet/IP server
passes all frames received from the subnetwork to the client. It does not acknowledge
received frames. This mode is not allowed when the KNXnet/IP server is a router [6,
p. 67]. It is intended for testing or diagnostics [101, p. 91].

When the busmonitor mode is active, the KNXnet/IP server passes all received
frames from the data link layer upwards to the client [6, p. 65], [101, p. 93]. The
KNXnet/IP client is cannot send frames into the subnetwork [6, p. 65]. There may
only be one tunnel per subnetwork and no other services may be provided for it [6,
p. 67]. Since this requirement would disable routing, busmonitor mode may not be
used by KNXnet/IP routers [6, p. 67].

Through the described tunneling modes a KNXnet/IP client, such as the ETS, is
able to send both arbitrary frames into the subnetwork and monitor the communica-
tion within in its entirety. Hence, a client can use tunneling to modify the configura-
tion of KNX devices in the subnetwork similar to how device management works for
KNXnet/IP devices. In the same way it also possible to prepare frames that control
the state of actuators.

3.1.4. Routing

The routing service family enables the routing of frames in the KNX installation over
KNXnet/IP. The KNXnet/IP routers are required to implement it, in order to provide
similar functionality to line- and backbone couplers used for TP [6, p. 8, p. 78]. When
a KNX device in a subnetwork attempts to send a KNX frame over TP, all devices
connected to the same line are able to receive it. However, if the target is located
in another line or area, it has to be passed further along. Line couplers are used to
connect different lines, for instance to the main line of their area. They can pass the
frame to the line higher up in the hierarchy if the target is known not to be located
within the subnetwork. Thus a frame can reach other line couplers, for example those
connected to the main line. Each receiving line coupler can then decide whether the
frame was meant for their subnetwork and filter accordingly. If a KNX installation
uses IP as medium alongside TP and the target of a frame is not located within
the same area, it will eventually reach the KNXnet/IP router connecting the area of
the sender to the IP backbone. All KNXnet/IP routers of an installation are part
of a multicast group which they join through IGMP [6, p. 82]. They are required
to implement a data endpoint for the routing service that is accessible through port
3671 [6, p. 47, p. 82]. Frames received from the subnetwork that require routing are
transferred as a cEMI frame, containing the information from the data link layer and
upwards, wrapped in a routing indication frame [6, p. 90, p. 92]. The KNXnet/IP
router sends the resulting frame via UDP to all members of the multicast group. Like

21

line- and backbone couplers, the recipients of the multicast filter incoming routing
frames and pass matching ones into their subnetwork [6, pp. 88-89]. The cEMI frames
contain a counter for the number of retransmissions that have occurred [101, p. 74].
Each KNXnet/IP router has a configurable limit for the retransmissions after which
a frame is dropped [6, p. 177]. In principle the frame should eventually reach its
destination, unless KNXnet/IP routers have to drop frames due to overflowing queues
or exceeded retransmission limits. UDP does not provide reliable transport [6, p. 2].
The service provides lost message indication and flow control to address the issue of
overflowing queues [6, pp. 83-84]. KNXnet/IP clients can send routing frames as well,
which are handled in the same manner as those sent by another KNXnet/IP router.

Additionally, ISO 22510:2019 specifies the system broadcast, which is supposed
to reach every device in the KNX installation [6, p. 85]. Unlike the regular routing
indication frames, the system broadcast is not supposed to be filtered. All routers pass
its valid frames into their subnetwork if they support it [6, p. 86]. The system broadcast
permits to retrieve the serial number of devices, synchronize state required for Data
Secure, send encrypted and authenticated Data Secure frames and configuring the IP
address of the routing multicast group [6, p. 87]. If the latter is conducted through
Data Secure, then it may also change a cryptographic key used by KNXnet/IP Secure
to protect multicast communication or disable secure communication altogether [6,
pp. 87-88]. Since the system broadcast relies on Data Secure to ensure confidentiality
and authentication for security critical configuration and does not permit to wrap the
frames in KNXnet/IP Secure [6, p. 85], it is not further analyzed as Data Secure is
not within the scope of this work.

3.1.5. Remote Diagnosis and Configuration

The remote diagnosis and configuration service family is intended to be used by the
ETS when a device is not reachable through a unicast connection or device discovery
is not working properly [6, p. 95]. This situation can occur when required information
about the device are unknown or if the device is misconfigured. Requests are sent
through UDP to the multicast group [6, p. 95]. Broadcasting may optionally be used
if multicast fails [6, p. 95].

A KNXnet/IP client may send a diagnostic request to retrieve information about
the current configuration of a device in the KNX installation. For this purpose the
frame includes a selector that indicates which device is supposed to answer the request
[6, p. 96]. This can either be a specific MAC address or an active programming mode
[6, p. 100]. Additionally, the frame contains the HPAI for the data endpoint replies
shall be sent to [6, p. 96]. The KNXnet/IP server that matches the selector sends its
reply to the data endpoint containing information about the current configuration of
the device [6, p. 95]. Unlike device discovery, it does not restrict the reply to specific
device information. It is supposed to send them in their entirety [6, p. 95], [6, p. 23].

A configuration request can be sent by a KNXnet/IP client in order to change the
configuration of a specific KNXnet/IP server. Similar to the diagnostics request it
contains a selector and HPAI for its data endpoint [6, p. 97]. Furthermore, the frame

22

includes entries for every property that is supposed to be changed [6, p. 97]. The
receiving device that matches the selector is supposed to apply the submitted values,
if the respective property it is not read-only [6, p. 97]. KNXnet/IP server acknowledge
the changes with a reply that contains its current configuration [6, p. 95].

A KNXnet/IP client may also request a restart or factory reset of KNXnet/IP device
[6, p. 95]. This frame uses a selector to identify the intended recipient as well [6, p. 98].

3.1.6. Insecurities and Design Flaws in KNXnet/IP

The protocol design of KNXnet/IP is lacking in security because it does not pro-
vide confidentiality, authentication of frames and their origin, or properly implement
authorization. The lack of confidentiality enables an adversary to eavesdrop on the
communication. Missing authentication of frames allows to manipulate their content
without the recipient noticing. When the origin of the frame is not authenticated the
recipient cannot verify which party has sent it. Additionally, KNXnet/IP itself does
to implement authorization. Therefore, any client, including an adversary, can use the
services it provides. The only time authorization may be required is when accessing
the KNX application layer through the cEMI [100, p. 89]. In this case KNXnet/IP
relies on the existing authorization feature provided by the KNX stack. It is insecure
as the required key is transmitted as plaintext [16], [17], [100, p. 89]. In contrast to the
missing security in the protocol design, KNXnet/IP defines extensive services for the
ETS to manage and monitor the devices. However, due to the lack of access control
the adversary can use them too, risking both passive and active attacks against the
KNX installation. The previous sections have summarized the relevant parts of the
protocol specification from the point of view of their intended use. This section high-
lights problems from the perspective of an attacker, which would need to be addressed
by KNXnet/IP Secure.

The device discovery and self-description from the core service family provide in-
formation about each KNXnet/IP device, which may be enough for an adversary to
identify the exact model and make. Information that can be retrieved include the man-
ufacturer ID [6, p. 27], type of device (e.g. KNXnet/IP router) [6, p. 26], [106, p. 22],
serial number and display name (“friendly name”) [6, p. 25]. If certain KNXnet/IP
devices are known to have vulnerabilities, an attacker could use these information to
identify and pick specific targets. For a defense-in-depth approach the amount of infor-
mation disclosed to an unauthorized client should be limited to a minimum. The core
service family also specifies the creation of connections which are required to access
the device management and tunneling services [6, p. 34]. The handshake should have
included an AKE to establish session keys for the encryption, authenticate the client
and determine what services it is authorized to use within the connection. Without
these measurements an attacker is able to create a connection to use these services as
well. Similar challenges arise for the connectionless communication through multicast
for the core, routing, and remote diagnosis and configuration services. An adversary
should not be able to join the group and issues requests, but KNXnet/IP’s use of
IGMP does not provide any access control.

23

The device management connection gives access to the interface objects and asso-
ciated properties which would allow an adversary to both read and modify the con-
figuration of a device [6, p. 61]. Information that can be gathered about it are more
detailed than the replies of self-description and device discovery, thus they would al-
low to identify the specific product being used. Misconfiguration of the KNX devices
through the interface objects can hinder the operation of the installation. After passing
authorization the device management connection can use all services provided by the
KNX application layer through cEMI. As previously explained, the authorization is
insecure as the respective frames are sent unencrypted [6, p. 89]. Hence, an adversary
could be able to intercept these transmissions, for instance from a legitimate client like
the ETS, and gain knowledge of the keys. Consequentially, the attacker would then
be able to authorize itself with the obtained key material. This flaw was described by
Granzer et al. [16] and practically demonstrated by Antonini et al. [17]. The adversary
could also try an online attack against the system by attempting to brute force the 32
bit key space. Antonini et al. [17] tested this for devices located in the subnetwork,
connected to TP. They argued that the limited data rate caused a slow response by
the actuators of approximately a second per request and therefore concluded that an
online attack would not be feasible [17]. However, when the target is the KNXnet/IP
router and not a device in the subnetwork, the assumption about the strongly limited
data rate is no longer true. Hence, an online attack through a device management
connection could be possible, but the feasibility depends on the time required by the
target device to process the frame and send a reply. If an adversary is able to gain
access to the application layer through either method with a sufficient access level,
they can read and write the memory of the remote communication controller and re-
mote application controller [100, pp. 71-76, pp. 79-87]. Thus, the attacker would be
able to perform the same operations as the ETS. Whether the writable memory of
the application controller configures the application program or alters it, appears to
depend on the specific implementation of the device. The specification states that
“[...] Application Device Management may also influence directly or indirectly the
application program” and “[...] this has to be defined individually for each device”
[100, p. 79]. The security impact may therefore vary.

A tunneling connection permits interacting with the subnetwork connected to a
KNXnet/IP device [6, p. 64]. In the data link layer mode an adversary can configure
devices in the subnetwork, similar to the device management. The research by Molina
[18] demonstrates that actuators can be remote controlled through a tunneling connec-
tion. While the given example [18, pp. 7-8] uses lighting to demonstrate the problem,
more security sensitive use cases are equally affected when using KNXnet/IP. In raw
mode it is possible to send arbitrary byte sequences into the subnetwork [6, p. 65],
[101, pp. 91-92]. This could be useful for an adversary because they are not restricted
to specific frame formats predefined by the cEMI. An adversary can thus construct
unusual frame formats that are not conforming with the standard, which could help to
exploit bugs in the implementation of the KNX layers, if they exist. The busmonitor
mode allows to inspect all communication in the subnetwork [6, p. 67], [101, p. 93].
Hence, it can be used by an attacker to eavesdrop on it.

24

The routing in KNXnet/IP relies on a multicast group that the routers join through
IGMP [6, p. 82]. Since there is no access control specified, an adversary can join the
group as well. Frames that are being routed over the IP backbone can be eavesdropped
on and the attacker can send its own frames through multicast.

The remote diagnosis and configuration service family can be used to perform basic
configuration of devices through multicast or broadcast with KNXnet/IP [6, p. 95].
The risk is similar to device management, since the lack of access control permits an
adversary to read and alter parts of the configuration through this approach as well.
Any client can also trigger a reboot or factory reset of a KNXnet/IP device [6, p. 95].
The latter would be an effective tool for a denial of service attack against the KNX
installation.

The design of KNXnet/IP was criticized by Granzer et al. [25] in 2009 for relying
on “security by obscurity”. The most recent version of the publicly accessible KNX
standard v2.1 contains an overview document about KNXnet/IP, which was written in
2013 [15]. This version of the document still contains a chapter about security consid-
erations that greatly misjudges the risks as well as the need for secure communication.
More specifically, the document concludes: “It is quite unlikely that legitimate users
of a network would have the means to intercept, decipher, and then tamper with the
KNXnet/IP without excessive study of the KNX Specifications. Thus the remaining
security threat is considered to be very low and does not justify mandating encryp-
tion, which would require considerable computing resources.” [15, p. 12]. The KNX
Association has been slow in the adoption of security best-practice in the past. Hence,
it has to be thoroughly analyzed whether such issues still exist in KNXnet/IP Secure
and the ETS.

Besides the security problems, there is also a more general criticism of the KNXnet/IP
specification. It permits manufacturers to choose whether TCP is supported [6, p. 7].
The control and data endpoints can be implemented on the same port, but they are
not required to [6, p. 46]. As previously cited, the specification claims that the concept
of endpoints would provide flexibility for the implementation [6, p. 46]. However, it
complicates the protocol design because KNXnet/IP clients and servers cannot gener-
ally be sure how their communication partners chose to implement the protocol and
what optional aspects they support. For instance, the HPAI is necessary because the
devices have to announce under which IP, port and protocol their endpoints can be
reached. If KNXnet/IP had made it mandatory for all endpoints of the KNXnet/IP
servers to be implemented through a single well-known port and picked one trans-
port protocol, then this would not have been required. Even when a server has more
than one control endpoint, they could have been distinguished through a numerical
identifier. Furthermore, supporting the tunneling and device management services
through TCP and UDP, with UDP being mandatory, requires transport layer depen-
dent implementations of KNXnet/IP. UDP does not provide reliable transport, hence
the implementation of the services have to handle sequence numbers, acknowledg-
ments and retries [6, p. 50, pp. 67-68]. For TCP this is not needed. These examples
highlight the difficulty to ensure interoperability in the protocol design when certain
aspects are optional or only roughly specified, permitting manufacturers to implement

25

it in different ways. While there may be good reasons for the design choices made for
KNXnet/IP, the claimed flexibility and options provided to the manufacturers appear
to have significantly increased the complexity of the specification. Generally, it is not
beneficial for the avoidance of bugs when a specification and thus implementation is
more complex than technically necessary. Furthermore, ambiguities in the specifica-
tion can result in implementations that technically fulfill the requirements but solve
them in a suboptimal or even harmful way, because the developers had to guess what
the intended solution was meant to be. This approach towards specifying a protocol
should not be used for a cryptographic protocol such as KNXnet/IP Secure. If the
specification is not unambiguous and strict in its requirements, it either leaves room
for misinterpretation or permits options that may have a negative impact on security
properties. Therefore, the specification of KNXnet/IP Secure needs to be checked for
such issues.

3.2. Cryptography
Understanding the specification of KNXnet/IP Secure and its analysis in this work
requires knowledge about the cryptography used within. This section introduces the
relevant cryptographic primitives, the definition of security properties that KNXnet/IP
Secure can be evaluated against and the eCK-PFS model for a formal analysis. The
research is concerned with the correct application of cryptography, not an analysis of
the cryptographic primitives themselves. Hence, this section limits itself to definitions
of cryptographic primitives that are of interest due to their potential for misapplication
and resulting impact on the security.

3.2.1. CCM Cipher Mode

KNXnet/IP Secure uses the CCM block cipher mode in combination with AES-128
for all symmetric encryption [6, p. 102]. It provides AEAD even though it is an
authenticate-then-encrypt block cipher mode [38]. While the generic composition of
authenticate-then-encrypt is not secure [33], [34], this particular construction has a
security proof by Jonsson [35]. It combines a CBC-MAC for authentication with the
CTR cipher mode for encryption [2]. The encryption and decryption algorithm are
shown in figure 5 and 6 respectively. Both algorithms make use of two function, the
formatting function β and the counter generation function π. The former splits the
input into blocks over which the CBC-MAC is calculated, while the latter generates the
counter blocks that are used to generate the key stream. The NIST Special Publication
800-38C that standardizes CCM suggests implementations for them, but they are not
mandatory [3]. Therefore, the standard permits the use of custom formatting and
counter generation functions. This decision has been criticized by Rogaway [38]. Based
on the security proof [35], the standard defines conditions that the functions β and π
have to satisfy, as shown in definition 3.3. Additionally, it is required that the nonces
N are non-repeating under a given key as described in definition 3.2. The conditions
are important because the security proof relies on the assumption that they hold true.

26

Thus, any violations of them may affect the security properties.

Definition 3.1 (CCM notation). Below is the definition of the notation used in the
CCM encryption and decryption algorithms.

k Secret symmetric key k used for both the encryption of the plaintext
P and decryption of the ciphertext C.

N Nonce N which needs to be non-repeating for all invocations under a
given key k [35].

P Plaintext P that is encrypted/decrypted and authenticated with CCM.
A Associated data A that is authenticated but not encrypted/decrypted

with CCM.
Bi The i-th block Bi created with the formatting function β as input for

the CBC-MAC computation.
Ctri The i-th counter block Ctri created with the counter generation function

π as input for the keystream computation.
T Tag T that authenticates the content of the ciphertext C.
Tlen Tag length Tlen measured in bits.
S Keystream S for the encryption/decryption.
C Ciphertext C encrypted and authenticated result of CCM. It includes

the encrypted tag T .
x← y Assign variable x the value of y, which can be another variable, the

result of a function or an expression.
x⊕ y Exclusive or operator that is applied bitwise on the operands.
x∥y Concatenation of the bits in x and y.
len(x) Length of x in bits
β Formatting function that creates the blocks B0, B1, ..., Br for the CBC-

MAC computation. The definition is not standardized, but it is sup-
posed to fulfill the requirements listed in definition 3.3.

π Counter generation function that creates the Ctr0,Ctr1, ...,Ctrm from
which the keystream S is computed. The definition is not standardized,
but it is supposed to fulfill the requirements listed in definition 3.3.

MSBx(y) Most significant x number of bits from y.
LSBx(y) Least significant x number of bits from y.
Ciph(k, I) Block cipher Ciph applied to an input I under the key k. In case of

CCM the block cipher is AES-128 [3], [37].

27

CCM-ENC(k, π, β, Tlen, N, P ,A)

1 : B0, B1, ..., Br ← β(N,A, P)

2 : Y0 ← Ciph(k,B0)

3 : for i← 1 to r do
4 : Yi ← Ciph(k,Bi ⊕ Yi−1)

5 : T ← MSBTlen(Yr)

6 : Ctr0,Ctr1, ...,Ctrm ← π(N,m) where m = ⌈len(P)/128⌉
7 : for j ← 0 to m do
8 : Sj ← Ciph(k,Ctrj)
9 : S ← S1∥S2∥...∥Sm

10 : return C ← (P ⊕MSBlen(P)(S))∥(T ⊕MSBTlen(S0))

Figure 5: CCM encryption, based on [3]
with canonical formatting and counter generation functions

CCM-DEC(k, π, β, Tlen, N, C,A)

1 : if len(C) ≤ Tlen then
2 : return INVALID
3 : Ctr0,Ctr1, ...,Ctrm ← π(N,m) where m = ⌈(len(C)− Tlen)/128⌉
4 : for j ← 0 to m do
5 : Sj ← Ciph(k,Ctrj)
6 : S ← S1∥S2∥...∥Sm

7 : P ← MSBlen(C)−Tlen(C)⊕MSBlen(C)−Tlen(S)

8 : T ← LSBTlen(C)⊕MSBTlen(S0)

9 : if N,A or P not valid [3, p. 8] then
10 : return INVALID
11 : B0, B1, ..., Br ← β(N,A, P)

12 : Y0 ← Ciph(k,B0)

13 : for i← 1 to r do
14 : Yi ← Ciph(k,Bi ⊕ Yi−1)

15 : if T ̸= MSBTlen(Yr) then
16 : return INVALID
17 : return P

Figure 6: CCM decryption, based on [3]
with canonical formatting and counter generation functions

Definition 3.2 (Non-repeating nonce [3]). “A bit string called the nonce, denoted
N , is assigned to the data pair to be protected, i.e., the payload and its associated

28

data. The nonce shall be non-repeating in the sense that any two distinct data pairs to
be protected by CCM during the lifetime of the key shall be assigned distinct nonces.”

Definition 3.3 (Requirements for input formatting [3]).
1. The first block, B0, uniquely determines the nonce N .
2. The formatted data uniquely determines P and A; moreover, if (N,P ,A) and

(N,P ′, A′) are distinct input triples whose formatting is B0, B1, ..., Br and
B′0, B

′
1, ..., B

′
r′ , then Bi is distinct from B′i for some index i such that i ≤ r

and i ≤ r′.
3. The first block, B0, is distinct from any counter blocks that are used across all

invocations of CCM under the key.

3.2.2. Elliptic Curve Cryptography and Curve25519

KNXnet/IP Secure specifies an AKE for its unicast connections that uses ECDH to
determine the session key. It relies on Curve25519, which is an elliptic curve developed
by Daniel J. Bernstein [42], [6, p. 121]. Hence, this section provides a brief overview
of elliptic curves and their application in cryptography as well as Curve25519. Since
KNXnet/IP Secure is the focus of this work and not ECC, the reader is referred to the
works of Hankerson et al. [32], Boneh and Shoup [5], Bernstein [42] and BSI TR-03111
[46] for a detailed explanation.

Definition 3.4 (Elliptic curve). Let p be a prime number and Fp the finite field of
integers modulo p [32, p. 13], [5, p. 613]. A Montgomery curve E, defined over Fp, is
an equation

By2 = x3 + Ax2 + x (1)
for some A,B ∈ Fp where B(A2 − 4) ̸= 0 [5, p. 615].

Definition 3.5 (Points on the curve). Let E be a Montgomery curve defined over
Fp and e ≥ 1. Let ∞ be the point at infinity, which is the identity element [5, p. 614].
The set of points on the curve is defined as [42, p. 226], [5, p. 613]:

E(Fpe) = {∞} ∪ {(x, y) ∈ Fpe : By2 = x3 + Ax2 + x} (2)

When e = 1 the points of the curve are defined over the base field and if e > 1 they
are defined over the respective extension field [5, p. 613].

Definition 3.6 (Group law). E(Fpe) is an abelian group [5, p. 614]. The following
rules apply for all affine points P = (x, y) with P ∈ E(Fpe) in Montgomery curves

29

[108], [5, p. 614]:

−∞ =∞ (3)
∞+∞ =∞ (4)
∞+ P = P +∞ = P (5)
−(x, y) = (x,−y) (6)

(x, y) + (x,−y) =∞ (7)

Let P = (x1, y1), Q = (x2, y2) with P,Q ∈ E(Fpe) and P +Q = (x3, y3).
If x1 ̸= x2 then

(x1, y1) + (x2, y2) = −(x3, y1 + λ(x3 − x1)) (8)
λ = (y2 − y1)/(x2 − x1) (9)
x3 = Bλ2 − A− x1 − x2 (10)

If x1 = x2, y1 = y2 and y1 ̸= 0 then

(x1, y1) + (x1, y1) = −(x3, y1 + λ(x3 − x1)) (11)
λ = (3x2

1 + 2Ax1 + 1)/(2By1) (12)
x3 = Bλ2 − A− 2x1 (13)

The addition of a point P to itself for α times is defined as αP = (α − 1)P + P for
any positive integer α [5, p. 614].

The multiplication of a point with a scalar can be efficiently solved with the Mont-
gomery ladder algorithm [109] using only the x-coordinate of the point. Additionally,
scalar multiplication can be implemented as a constant-time ladder algorithm [108],
which is useful to reduce the chance of timing attacks. Elliptic curve cryptogra-
phy build on top of the arithmetic from definition 3.6 requires the intractability of
the elliptic curve discrete logarithm problem (ECDLP), elliptic curve computational
Diffie-Hellman problem (ECCDHP) and elliptic curve decision Diffie-Hellman problem
(ECDDHP).

Definition 3.7 (ECDLP based on [32, p. 153], [5, p. 615]). Let E be an elliptic
curve defined over Fpe with e ≥ 1. Given point P ∈ E(Fpe) of prime order q, so that
qP =∞, and a point Q = αP , determine the integer α ∈ [0, q − 1].

Definition 3.8 (ECCDHP based on [32, p. 171]). Let E be an elliptic curve defined
over Fpe with e ≥ 1. Given point P ∈ E(Fpe) of prime order q, and points Q = αP ,
R = βP , determine point S = αβP .

Definition 3.9 (ECDDHP based on [32, pp. 171-172]). Let E be an elliptic curve
defined over Fpe with e ≥ 1. Given point P ∈ E(Fpe) of prime order q, so that qP =∞,
and points Q = αP , R = βP , S = γP , determine whether S = αβP or equivalently,
whether γ ≡ αβ (mod q).

30

Whether the ECDLP and related problems are hard to solve depends on the domain
parameters of the specific curve used for ECC. Besides the coefficients for the curve
E, a base point P with prime order q has to be selected. The base point creates a
cyclic subgroup of E(Fpe) that is defined over the set {∞, P, 2P, 3P, ..., (q − 1)P} [32,
p. 13], where q is the smallest scalar factor for which qP =∞. Furthermore, |E(Fpe)|
is the number of points on the curve, which can be calculated efficiently [5, p. 614].
The cofactor of a curve is h = |E(Fpe)|/q [32, p. 172].

Based on the work of Victor Shoup [110], it is known that the lower bound of the
runtime complexity for solving the Diffie-Hellman problem in generic subgroups of
prime order q is Ω(

√
q). This lower bound also applies to the ECCDHP and ECD-

DHP [32, p. 171-172]. In order to prevent successful attacks against the elliptic curve
by solving the ECDLP with techniques such as Pollard’s rho, which has a runtime
complexity of O(√q), the q should be sufficiently large [32, p. 154, p. 172]. However,
there are attacks that can solve the ECDLP faster if the elliptic curve has specific
properties [5, p. 615]. For instance, if |E(Fp)| = p it can be solved in polynomial time
[5, p. 615], [32, pp. 168-169]. For a detailed overview of techniques that improve on the
runtime complexity of the generic solution for the ECDLP, see [111]. All these attacks
need to be considered when designing a elliptic curve for a cryptographic system in
order to ensure an adversary cannot solve the ECDLP. If the domain parameters are
chosen accordingly, the resulting elliptic curve can be used for asymmetric cryptogra-
phy. A private key is selected as a uniformly random α ∈ [1, q− 1] and the public key
Q is calculated through Q = αP . Since the assumption is that an adversary cannot
solve the ECDLP, they are unable to determine the private key from the public key.
On this basis the ECDH key exchange can be implemented, as shown in figure 7.

Client Server

α
R←− {1, 2, ..., q − 1}

Q← αP

Q

β
R←− {1, 2, ..., q − 1}

R← βP

S ← βQ

R

S ← αR

Figure 7: ECDH

The ECDH allows the two parties to arrive at a shared secret S due to the commu-
tativity of the operations in Fpe . Hence αR = α(βP) is equivalent to βQ = β(αP).
Same as the Diffie-Hellman key exchange, the ECDH only provide confidentiality and

31

not authentication. Therefore, it is susceptible to MitM attacks. However, it can
be used as the basis to construct an AKE. The design of the ECDH implementation
needs to consider small subgroup and invalid curve attacks as they could be used to
gain information about the private key [32, pp. 181-182]. One way to prevent them is
to perform input validation. For example the invalid curve attack can be avoided by
checking that the received point lies on the curve [32, p. 182].

Definition 3.10 (Curve25519 [42]). The Curve25519 is a Montgomery curve spec-
ified over E(p2) with p = 2255 − 19 by the equation

y2 = x3 + 486662x2 + x (14)

The base point is defined as (9, ...) with a positive y-coordinate and its order is a prime

2252 + 27742317777372353535851937790883648493 (15)

Bernstein [42] developed both an elliptic curve for the application in cryptography,
as shown in definition 3.10, and a function for the scalar multiplication for ECDH.
This thesis refers to the former as Curve25519 and the latter as X25519, following the
nomenclature of RFC 7748 [7]. The design of both the curve and the function were
evaluated for their security properties by Bernstein [42]. In particular the attacks with
Pollard’s rho and kangaroo method, batch discrete logarithms and small-subgroups
were considered [42]. Bernstein concludes that the “security level will remain com-
fortable for the foreseeable future” [42] with regard to Pollard’s rho and kangaroo
attacks. Given the runtime complexity of Pollard’s rho of O(√q) and the large prime
order of Curve25519 this claim appears to be accurate. Since the base point has prime
order, the Pohlig-Hellmann method cannot be used to solve the ECDLP faster [42],
[32, p. 155]. Additionally, the Curve25519 is supposed to provide secure twist [42],
thus preventing certain types of small-subgroup attacks. Since the security assertions
by Bernstein do not appear to be contested in scientific publications, Curve25519 and
X25519 are treated as secure primitives in this thesis.

The function X25519(n, q) implements the scalar multiplication using the Mont-
gomery ladder algorithm [7], [42]. It takes two 256 bit values as arguments, the private
key n and the x-coordinate of a point, q. In Bernstein [42] the values are defined as
n ∈ 2254+8{0, 1, 2, 3, ..., 2251− 1} and q ∈ {0, 1, ..., 2256− 1}. However, the function as
specified by RFC 7748 [7] permits n ∈ {0, 1, ..., 2256 − 1} as input and transforms the
otherwise forbidden values to suitable scalars internally. This is known as “private key
clamping” [112, p. 86], which maps the input to an n′ ∈ 2254+8{0, 1, 2, 3, ..., 2251− 1}.
X25519 returns the result of the scalar multiplication as an x-coordinate encoded in
256 bit. The function can be used to implement the ECDH key exchange as shown
in figure 8. Both the RFC 7748 [7] and the publication by Bernstein [42] require the
shared secret to be passed through a key derivation function to generate a symmetric
key. X25519 does not ensure contributory behavior, meaning that it is not guaranteed
that the private keys of both parties contribute to the resulting shared secret, due to
low order points being permitted as inputs [7]. An x-coordinate (public key) with this

32

property causes the shared secret to be zero. Such inputs may optionally be rejected
according to RFC 7748 [7]. This part of the X25519 design appears to be the subject
of discussions among cryptographers [113], [114], [112, p. 86].

Client Server

α
R←− {0, 1, ..., 2256 − 1}

x1 ← X25519(α, 9)
x1

β
R←− {0, 1, ..., 2256 − 1}

x2 ← X25519(β, 9)
x3 ← X25519(β, x1)

x2

x3 ← X25519(α, x2)

Figure 8: ECDH with X25519, based on [7]

3.2.3. Key Derivation with PBKDF2-HMAC-SHA-256

KNXnet/IP Secure specifies an authentication scheme for unicast connections, which
is build upon the password-based key derivation function PBKDF2 with HMAC-SHA-
256 as PRF [6, p. 135]. The purpose of PBKDF2 is the generation of a key for cryp-
tographic operations from a password, as a password string cannot be directly used
as a key [8]. A description of PBKDF2 is provided in figure 9. It takes a password
p, salt s, iteration count c, and derived key length dklen as arguments. The p is the
password that the key of length dklen is derived from [8]. The salt s is a byte string
that increases the possible numbers of keys that can be generated from one password.
It is not meant to be secret [8], but it should be different for every password associated
with an identity. This prevents the same key from being derived for two users who
happen to pick the same password. As a consequence it hinders an attacker from pre-
computing keys for passwords [8]. For a given password p they would have to generate
a key for every possible value of s. For a sufficiently large salts, it becomes infeasible
to compute and store the resulting combinations. Thus, it prevents the application
of dictionary attacks such as precomputed rainbow tables [115] for commonly used
passwords. RFC 8018 recommends a salt of at least 64 bits [8].

The salt increases the difficulty of both online and offline attacks. If a system applies
client-side hashing for its authentication and the adversary is unable to precompute
keys for common passwords because the salt varies with each user, then they can no
longer efficiently try to find accounts with weak passwords to compromise. If an ad-
versary is able to breach the password database, where the keys and salts are stored,
they would not be able to quickly identify users who picked a particular password or

33

PBKDF2(p, s, c, dklen)
1 : if dkLen > (232 − 1) · hlen do
2 : return derived key too long
3 : l← ⌈dklen/hlen⌉
4 : r ← dklen − (l − 1) · hlen
5 : for i← 1 to l do
6 : Ti ← 0

7 : U0 ← s∥INT(i)
8 : for j ← 1 to c do
9 : Uj ← HMAC-SHA-256(p, Uj−1)

10 : Ti ← Ti ⊕ Uj

11 : return dk ← T1∥T2∥...∥Tl⟨0, ..., r − 1⟩

Figure 9: PBKDF2-HMAC-SHA-256, based on [8]
INT(i) is i encoded as big endian 32 bit integer and

Tl⟨0, ..., r − 1⟩ denotes the substring of bytes 0 to r − 1

HMAC-SHA-256(k,m)

1 : b← 64

2 : opad← 0x36∥...∥0x36︸ ︷︷ ︸
b times

3 : ipad← 0x5c∥...∥0x5c︸ ︷︷ ︸
b times

4 : if len(k) > b · 8 then
5 : k̂ ← SHA-256(k)
6 : else
7 : k̂ ← PADb(k)

8 : SHA-256((k̂ ⊕ opad)∥SHA-256((k̂ ⊕ ipad)∥m))

Figure 10: HMAC-SHA-256, based on [116] [117]
SHA-256(x) as specified in [9]

selected the same password as another user. This assumes that the system does not
use a constant salt. A random, per user salt thus protects against efficient attacks tar-
geting a group of users and especially those among them that reuse weaker passwords
across different systems. However, if the adversary has access to the keys and their
associated salts, they could still try a dictionary or brute-force attack against a specific
entry, in an attempt to retrieve the original password. The computational complexity
of PBKDF2 depends on the iteration count c, which determines how often the PRF is
calculated for each block of the derived key, as shown in figure 9. In order to increase

34

the computational costs for an attacker, it should be sufficiently high. However, an
increase in c also affects the computational costs for a legitimate user, thus a trade-off
is necessary. NIST SP 800-132 recommends that “The number of iterations should be
set as high as can be tolerated for the environment, while maintaining acceptable per-
formance.” [118]. Password-cracking techniques utilizing GPUs for highly parallelized
attacks or application-specific integrated circuits (ASICs) have to be considered when
choosing the iteration count.

3.2.4. Security Properties for Cryptographic Protocols

The analysis of cryptographic protocols has the goal to identify potential weaknesses
that may affect its security. Such issues can take many forms, hence the definition of
desirable security properties can help guide the process. This section provides informal
definitions of security properties for the analysis of KNXnet/IP Secure.
Definition 3.11 (Confidentiality, based on [52][51, p. 2]). A protocol provides con-
fidentiality, if the encrypted communication between honest parties imparts no insight
about the plaintext to an adversary. This assumes that only authorized parties have
knowledge of the encryption keys.
Definition 3.12 (Data integrity, based on [31, p. 4, p. 361][51, p. 2]). A protocol
provides data integrity, if an adversary is not able to alter, delete or inject messages
in a communication between (authorized) honest parties, without the manipulation
being detected.
Definition 3.13 (Message authentication, based on [31, p. 25, p. 361][51, pp. 2-3]).
A protocol provides message authentication, if a party can be verified as the origin of
the message at some point in the past and data integrity is ensured.
Definition 3.14 (Entity authentication, based on [31, p. 24, p. 386]). A protocol
provides entity authentication, if one party is able to verify the identity of another
party and both are actively communicating, thus providing a timeliness and aliveness
guarantee.
Definition 3.15 (Mutual authentication, based on [65, pp. 232-233]). A protocol
provides mutual authentication when entity authentication is performed for every
party involved in the communication.
Definition 3.16 (Non-repudiation, based on [31, p. 4]). A protocol provides non-
repudiation, if a party is prevented from denying previous commitments or actions.
Definition 3.17 (Resistance against replay attacks, based on [52]). A protocol
provides resistance against replay attacks, if a recipient of a message can only accept
it once at most.
Definition 3.18 (Perfect forward secrecy, based on [31, p. 496][119]). A protocol
provides perfect forward secrecy (PFS), if the long-term (private) keys of one or more
parties are compromised and this does not affect the secrecy of past session keys
established between honest parties.

35

Definition 3.19 (Resistance to known session key attack, based on [120]). A
protocol provides resistance to known session key attacks, if the compromise of a
particular session key does not give an adversary any advantage in attacking other
unrelated sessions.

Definition 3.20 (Resistance against key compromise impersonation, based on
[120][119]). A protocol is resistant against key compromise impersonation if an adver-
sary has compromised the long-term keys of a party, but is not able to impersonate
other parties to it.

Definition 3.21 (Resistance against unknown key-share attack, based on [50],
[119]). A protocol is resistant against unknown key-share attacks (UKS) if an adver-
sary is unable to mislead one of the honest parties performing a key agreement into
believing that they are sharing a key with a different party while they are actually
communicating with the honest partner.

Definition 3.22 (Implicit key authentication, based on [31, p. 492][50]). A pro-
tocol provides implicit key authentication if among honest parties, one is assured that
no other party except one particular identified second party (and possibly additional
trusted parties), may gain access to a specific key.

Definition 3.23 (Key confirmation, based on [31, p. 492]). A protocol provides key
confirmation if one party is assured that a second, possibly unidentified, party is in
possession of a particular key.

Definition 3.24 (Explicit key authentication, based on [31, p. 492]). A protocol
provides explicit key authentication when both implicit key authentication and key
confirmation hold.

Definition 3.25 (Key freshness, based on [31, p. 494]). A protocol provides key
freshness when honest parties use a fresh, independent session key for every session.

Definition 3.26 (Key control, based on [31, p. 494]). A protocol provides unbiased
key control if neither party involved in the key agreement can control or predict the
key beforehand.

Definition 3.27 (Identity hiding, based on [52]). A protocol provides identity hid-
ing if a passive adversary that observes the traffic cannot infer the long-term keys used
in the handshake.

3.2.5. eCK-PFS Model

The eCK-PFS is a formal model for the security analysis of key exchange protocols
[68]. This section introduces the relevant definitions, so that it can be applied to
KNXnet/IP Secure in chapter “Analysis of KNXnet/IP Secure in ISO 22510:2019”.

36

Definition 3.28 (eCK-PFS notation, based on [4][68]). Let P = {P̂1, P̂2, ..., P̂n}
be a finite set of n parties’ identities. Each party can execute multiple instances
of a key exchange protocol, called session, concurrently. Session s at party P̂ is
denoted as the tuple (P̂ , s) ∈ P × N. Every session s is associated with a Ts =
(sactor, speer, srole, ssent, srecv) ∈ P × P × {I,R} × {0, 1}∗ × {0, 1}∗. The variable sactor
denotes the identity of the actor and speer the intended peer of session s. Note that the
actual peer does not have to be speer, it is only the party sactor intends to communicate
with. The values of the variables speer and srole are set upon activation of the session
s. The possible values for srole are {I,R}, where I stand for initiator and R for
responder. The protocol execution steps define the values of ssent and srecv. Messages
being send or received are appended to the respective variables. A session can only
be activated once.

Definition 3.29 (Adversary capabilities, based on [4][68]). The adversary A is
modeled as a PPT Turing machine (see [121]) that controls all communication between
parties through the following queries:

1. send(s,m) models the adversary sending a message m to session s. A is given
the response generated by the session according to the protocol. The variables
ssent and srecv are updated correspondingly. A is allowed to activate an initiator
session with a peer P̂ , through send(s, P̂) and a responder session by sending
a message m to session s on behalf of P̂ through send(s, P̂ ,m). In these cases
speer is set to P̂ and srole to I or R, respectively. The adversary is given the
session’s response according to the protocol and the variables ssent and srecv are
initialized correspondingly.

2. corrupt(P̂) reveals the long-term keys of party P̂ .
3. ephemeral-key(s) reveals the ephemeral secret keys of session s

4. session-key(s) reveals the session key for a completed session s.
5. test-session(s) picks a uniformly random bit b. If b = 0 the session-key estab-

lished in session s is returned. Otherwise, a random key is returned according to
the probability distribution of keys generated by the protocol. This query can
only be issued to a completed session.

Definition 3.30 (Origin sessions, based on [4][68]). A possibly incomplete session
s′ is an origin-session for a completed session s when s′sent = srecv

Definition 3.31 (Matching sessions, based on [4][68]). Two completed sessions s
and s′ are matching if all of the following conditions are true:

sactor = s′peer (16)
speer = s′actor (17)
ssent = s′recv (18)
srecv = s′sent (19)
srole ̸= s′role (20)

37

Definition 3.32 (Fresh session, based on [68]). A completed session s in an attack
game G is fresh if all of the following conditions are true:

1. G does not include the query session-key(s).
2. For all sessions s∗ such that s∗ matches s, G does not include session-key(s∗).
3. G does not include both corrupt(sactor) and ephemeral-key(s).
4. For all sessions s′ such that s′ is an origin-session for sessions s, G does not

include both corrupt(speer) and ephemeral-key(s′).
5. If there exists no origin-session for session s, thenG does not include a corrupt(speer)

query before the completion of session s.

Definition 3.33 (Attack gamme, based on [4], [68]). Security of a key-exchange
protocol Π is defined via an attack game G played by an adversary A, modeled as a
PPT algorithm, against a challenger. Before the experiment starts, each party P̂ runs
a key-generation algorithm that takes a security parameter 1λ as input and outputs the
long-term keys, which may include both symmetric keys and public/private key pairs.
The public keys of each party are distributed in an authenticated way to all other
parties. As an amendment to the description of eCK-PFS, this thesis assumes that
if the protocol requires pre-shared keys, they are distributed to the relevant parties
through a secure channel. The adversary A is given access to all public data. The
settings of the security experiment G can be described in four successive stages as
follows:

1. A can perform send, corrupt, ephemeral-key, and session-key queries.
2. At some point in the experiment, A issues a test-session query to a completed

session that is fresh at the time. The challenger chooses a uniformly random bit
b and provides A with either the real session-key of the test session, if b = 0, or
a random key from the key space, if b = 1.

3. A may continue to issue send, corrupt, ephemeral-key, and session-key queries,
under the condition that the test session must remain fresh.

4. A outputs a bit b′ as their guess for b.
A wins the attack game G if they correctly guess the bit b chosen by the challenger
during the test-session query. Success of A in the experiment is expressed in terms of
A’s advantage in distinguishing whether they received the real session-key in response
to the test-session query. The advantage of A in G against a key exchange protocol
Π for security parameter λ is defined as:

AdvΠG(λ) = |2P (b = b′)− 1| (21)

where P (b = b′) is the probability of A guessing correctly.

38

Definition 3.34 (Negligible function [5, p. 28]). A function f : Z≥1→R is negligible
if and only if for all c > 0:

lim
n→∞

f(n)nc = 0 (22)

Definition 3.35 (Secure in eCK-PFS, based on [4], [68]). A key exchange protocol
Π is said to be secure in eCK-PFS if, for all PPT adversariesA, the following conditions
hold:

1. If two parties successfully complete matching sessions, then they compute the
same session key.

2. A has no more than a negligible advantage in winning the attack game G in
eCK-PFS, that is, there exists a negligible function negl(λ) (see [5, p. 28]) in the
security parameter λ such that AdvΠG(λ) ≤ negl(λ).

3.3. KNXnet/IP Secure in ISO 22510:2019
ISO 22510:2019 is the international standard that specifies the KNXnet/IP Secure
protocol, which claims to provide secure communication for both unicast and multicast
traffic in KNXnet/IP [6, p. 101]. It’s stated goals are to ensure confidentiality, data
integrity, mutual authentication and resistance against replay attacks [6, pp. 101-102].
In the protocol stack, KNXnet/IP Secure is added as a layer between KNXnet/IP
and the transport layer [6, p. 103]. The protocol is contributing access control for
KNXnet/IP services [6, pp. 109-110]. This permits limiting capabilities, such as the
configuration a KNXnet/IP Secure devices, to specific authorized users. Furthermore,
communication of the KNXnet/IP services can be encapsulated by KNXnet/IP Secure
to provide encryption and authentication [6, pp. 104-105]. Supporting KNXnet/IP
Secure is optional for routers and devices, but mandatory for tools like the ETS [6,
p. 8].

This section provides an overview of how KNXnet/IP Secure is supposed to work
according to ISO 22510:2019, in preparation of the analysis in chapter “Analysis of
KNXnet/IP Secure in ISO 22510:2019”. The specification can be split into two parts,
unicast and multicast communication, as different approaches were used to address
the stated security goals. Hence, they are explained in different subsections. However,
both of them have in common that they use AES-128 with the CCM cipher mode
for symmetric encryption [6, p. 102]. This is why the KNX-specific adaptation of the
cipher mode is introduced first.

3.3.1. CCM

KNXnet/IP Secure does not use the canonical formatting and counter generation func-
tions from NIST SP 800-38C, Appendix A (see [3, p. 12]) [6, pp. 107-108, pp. 119-120,
pp. 127-128, pp. 130-131]. While this is permitted by the NIST standard, it requires
the custom functions to fulfill the requirements from definition 3.3 in order for CCM
to provide the same security properties. ISO 22510:2019 also does not directly specify

39

a formatting and counter generation function that applies to all frames. Instead, ev-
ery frame format that uses CCM specifies its B0 and counter blocks Ctri. While this
technically defines the counter generation function, it does not explicitly define the
nonce N for both functions. More importantly, the blocks beyond B0 are not defined
in ISO 22510:2019, hence the specification is incomplete. The missing information can
be found in the KNX Association’s own standardization document for KNXnet/IP
Secure, Application Note 159/13 v061, which includes a reference to the “Annex A” of
the Data Secure standard for the CCM implementation [49, p. 12]. The Data Secure
specification1 defines the remaining blocks, with the notation adapted to this thesis,
as [122, p. 126]:

B1, ..., Bn ← PAD16(a∥A∥P) (23)

Where a is a 16 bit value that contains the length of the associated data A measured
in byte [122, p. 126]. While ISO 22510:2019 does not provide a formal definition of
the nonce N , formatting function β and counter generation function π, it is possible
to derive unambiguous ones that are consistent with the specification. Since for each
respective frame format in KNXnet/IP Secure the B0 and Ctri are structured so
that MSB112(B0) = MSB112(Ctri), the nonce N is implied to be defined as N =
MSB112(B0). Therefore, the specification implicitly defines β and π as shown in figures
11 and 12, respectively. The descriptions assume that N is supposed to be 112 bit,
Q is 16 bit and i is 8 bit long. The specifications constructs B0 to be different
from the Ctri. Hence, the length of the plaintext P is limited by the length of i to
28 − 1 · 16 byte = 4080 byte, where 16 byte is the block size [6, p. 107]. Similarly, A
may not exceed 216 − 1 byte = 65535 byte due to the size of a. CCM is otherwise
applied as specified in NIST SP 800-38C and previously shown in figures 5 and 6.

3.3.2. Unicast

KNXnet/IP Secure specifies unicast connections that allow encrypted, authenticated
and access controlled communication with the existing KNXnet/IP services. The
concept of the unicast connections can be roughly summarized as follows. A client
establishes a TCP connection with a KNXnet/IP Secure server [6, p. 122, p. 126]. They
perform an AKE to derive a session key [6, p. 121, pp. 144-145]. During the AKE the
server authenticates itself to the client by using a password-based pre-shared secret
as the key [6, p. 127, p. 135]. Similarly, the client authenticates itself to the server
with a password-based pre-shared secret, which is associated with a particular user on
the server-side [6, pp. 129-130, p. 135]. If the authentication is successful, the server
can determine what permissions the user is granted, with regard to the KNXnet/IP
services it may access [6, pp. 109-110]. With the AKE completed both parties have
established a KNXnet/IP Secure session and derived the associated session key, which
is then used to encrypt and authenticate the communication for the duration of the
session [6, p. 121, p. 144]. Within the session the client may establish any number of

1 These documents are not available to the general public and were provided by the KNX Association

40

β(N,P ,A)

1 : if len(N) ̸= 112 then
2 : return Incorrect nonce length
3 : if len(P) > 4080 · 8 then
4 : return Incorrect plaintext length
5 : if len(A) > 65535 · 8 then
6 : return Incorrect associated data length
7 : Q← ⌈len(P)/8⌉
8 : a← ⌈len(A)/8⌉
9 : B0 ← N∥Q

10 : B1, ..., Bn ← PAD16(a∥A∥P)

11 : return B0, B1, ..., Bn

Figure 11: Formatting function, based on interpretation of ISO 22510:2019
For reference, see [6, pp. 107-108, pp. 119-120, pp. 127-128, pp. 130-131], [122, p. 126]

π(N,m)

1 : if len(N) ̸= 112 then
2 : return Incorrect nonce length
3 : if m > 0xff then
4 : return Counter limit exceeded
5 : for i← 0 to m do
6 : Ctri ← N∥0xff∥i
7 : return Ctr0, Ctr1, ..., Ctrm

Figure 12: Counter generation function, based on interpretation of ISO 22510:2019
For reference, see [6, pp. 107-108, pp. 119-120, pp. 127-128, pp. 130-131]

KNXnet/IP connections [6, p. 145]. It is also permitted to send KNXnet/IP requests
that were previously considered connectionless through the session [6, p. 145]. For
incoming requests the server has to ensure that the configured rules for access control
are obeyed [6, pp. 109-110]. Namely, the client cannot use KNXnet/IP services without
proper authorization and requests sent outside the secure session, with the insecure
KNXnet/IP, might not be permitted. The discovery services from the core service
family do not require the use of KNXnet/IP Secure [6, p. 136].

A more detailed explanation of unicast communication in KNXnet/IP Secure is
given in the following sections.

3.3.2.1. Security Goals
The ISO 22510:2019 standard claims that the password-based authentication scheme
provides mutual authentication [6, p. 121, p. 144]. Furthermore, it is supposed to be

41

resistant against both online and offline dictionary attacks [6, pp. 121-122, p. 144].
Resistance against replay attacks is claimed to be provided by the use of sequence
numbers [6, p. 122].

3.3.2.2. Configuration

The configuration of KNXnet/IP Secure is performed through interface objects and
their properties, like for KNXnet/IP and KNX in general. The relevant property
identifiers (PIDs) that reference the state held by KNXnet/IP servers for unicast
communication are the following ones.

The PID_DEVICE_AUTHENTICATION_CODE contains the key that the KNXnet/IP
server uses to authenticate itself to clients [6, p. 127]. The ETS generates it from a pass-
word p using PBKDF2(p, “device-authentication-code.1.secure.ip.knx.org”, 65536, 128)
with HMAC-SHA-256 as PRF, before writing to this property during configuration [6,
p. 135]. The default value of the device authentication code is the factory default setup
key (FDSK), which is printed on the label of the device [6, p. 15]. Clients need to either
know the password or the resulting key for each server they communicate with in or-
der to authenticate them during the unicast AKE. Therefore, a device authentication
code is a pre-shared secret between clients and a specific server.

The PID_PASSWORD_HASHES is an array of password-derived keys stored by the
KNXnet/IP server with which KNXnet/IP Secure clients can authenticate themselves
to it [6, p. 135]. The ETS generates each of them from a respective password p using
PBKDF2(p, “user-password.1.secure.ip.knx.org”, 65536, 128) with HMAC-SHA-256 as
PRF, before writing to this property during configuration [6, p. 135]. The default
value for each entry is the key derived from the empty password [6, p. 135]. The index
of the password hash in the array is the user ID, with the first entry being for the
management client [6, p. 135]. This is the user with the highest permissions, which will
be later explained in the “Access Control” section. There can be up to 127 passwords
[6, p. 135]. Clients need to know one of the passwords and the associated user ID for
their authentication to a KNXnet/IP Server during the unicast AKE. Therefore, the
password hashes are a pre-shared secret between clients and a specific server.

The PID_SECURED_SERVICE_FAMILIES controls whether KNXnet/IP services pro-
vided by the KNXnet/IP Secure server may only be accessed through KNXnet/IP
Secure or if plain KNXnet/IP may be used [6, p. 137]. This is separately configurable
for the KNXnet/IP device management and configuration, routing, and tunneling ser-
vices [6, p. 137]. Consequences of secure communication being required are explained
in the “Access Control” section.

The PID_TUNNELLING_USERS stores a mapping from user IDs to indices of entries
from the PID_TUNNELLING_ADDRESSES, which contains a subset of IAs from the ad-
ditional individual addresses that the KNXnet/IP Server may use for tunneling con-
nections [6, p. 142, p. 58]. Entries signify that the user with the respective used ID
may be given access to the associated IA for tunneling connections when the use of
KNXnet/IP Secure is required [6, p. 142]. The management user with ID 1 is implicitly
granted access to all tunneling IAs and is not listed in the tunneling users [6, p. 142].

42

The ISO 22510:2019 standard only specifies properties for the server. While the
KNXnet/IP Secure clients need to store device authentication codes and password
hashes as well, no properties or data structures are defined for them.

3.3.2.3. Frame Formats
Unicast communication requires a handshake to establish the session key and authen-
ticate the communication partners. As such, specific frames are required to conduct
the AKE and perform further communication in the session. This section introduces
the frame formats and the following sections about the AKE, finite state machine and
access control explain their applications as well as the meaning of particular fields in
the frames.

Definition 3.36 (KNXnet/IP Secure header [6, pp. 103-104]).
The KNXnet/IP Secure frames share a header with KNXnet/IP. Their structure is
identical, but KNXnet/IP Secure introduces new service type identifiers for its frames.

0123456789101112131415

Header Length (1 byte) Protocol Version (1 byte)

Service Type Identifier (2 byte)

Total Length (2 byte)

Figure 13: Structure of KNXnet/IP Secure header [6, pp. 103-104]

Definition 3.37 (SESSION_REQUEST [6, pp. 125-126]).
The SESSION_REQUEST frame is not wrapped in a SECURE_WRAPPER. It is sent without
any encryption or authentication.

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0951)

Total Length (0x26+sizeof(HPAI))

HPAI Control Endpoint (variable)
...

ECDH Client Public Value X (32 byte)
...

Figure 14: Structure of SESSION_REQUEST frames [6, pp. 125-126]

Definition 3.38 (SESSION_RESPONSE [6, pp. 126-127]).
The SESSION_RESPONSE frame is not wrapped in a SECURE_WRAPPER. The server au-
thenticates the values in A by using its device authentication code as key. The result

43

of CCM is stored in the “message authentication code” field.

A← KNXnet/IP Secure Header ∥ Secure Session Identifier ∥ X ⊕ Y (24)
P ← Empty (25)
B0 ← 0x00 ∥ ... ∥ 0x00︸ ︷︷ ︸

16 byte

(26)

Ctr0 ← 0x00 ∥ ... ∥ 0x00︸ ︷︷ ︸
14 byte

∥ 0xff ∥ 0x00 (27)

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0952)

Total Length (0x0038)

Secure Session Identifier (2 byte)

ECDH Client Public Value Y (32 byte)
...

Message Authentication Code (16 byte)
...

Figure 15: Structure of SESSION_RESPONSE frames [6, p. 126]

Definition 3.39 (SESSION_AUTHENTICATE [6, pp. 128-131]).
The SESSION_AUTHENTICATE frame has to be wrapped in a SECURE_WRAPPER. The
client authenticates the values in A by using the password hash for the provided user
ID as a key. The result of CCM is stored in the “message authentication code” field.

A← KNXnet/IP Secure Header ∥ 0x00 ∥ User ID ∥ X ⊕ Y (28)
P ← Empty (29)
B0 ← 0x00 ∥ ... ∥ 0x00︸ ︷︷ ︸

16 byte

(30)

Ctr0 ← 0x00 ∥ ... ∥ 0x00︸ ︷︷ ︸
14 byte

∥ 0xff ∥ 0x00 (31)

44

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0953)

Total Length (0x0018)

Reserved (0x00) User ID (1 byte)

Message Authentication Code (16 byte)
...

Figure 16: Structure of SESSION_AUTHENTICATE frames [6, p. 129]

Definition 3.40 (SECURE_WRAPPER [6, pp. 106-108]).
The SECURE_WRAPPER uses the established session key to encrypt and authenticate its
content. The result of CCM is stored in the “encapsulated KNXnet/IP frame” and
“message authentication code” fields.

A← KNXnet/IP Secure Header ∥ Secure Session Identifier (32)
P ← Encapsulated KNXnet/IP Frame (33)
B0 ← Sequence Information ∥ Serial Number ∥ Message Tag ∥ Q (34)

Ctri ← Sequence Information ∥ Serial Number ∥ Message Tag ∥ 0xff ∥ i (35)

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0950)

Total Length (2 byte)

Secure Session Identifier (2 byte)

Sequence Information (6 byte)
...

KNX Serial Number (6 byte)
...

Message Tag (2 byte)

Encapsulated KNXnet/IP Frame (variable)
...

Message Authentication Code (16 byte)
...

Figure 17: Structure of SECURE_WRAPPER frames [6, pp. 106-108]

45

Definition 3.41 (SESSION_STATUS [6, pp. 131-132]).
The SESSION_STATUS frame has to be wrapped in a SECURE_WRAPPER for the intended
session.

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0954)

Total Length (0x0008)

Status (1 byte) Reserved (1 byte)

Figure 18: Structure of SESSION_STATUS frames [6, p. 131]

3.3.2.4. Authenticated Key Exchange
The KNXnet/IP Secure handshake for establishing a session has to authenticate the
parties and derive a session key, hence it as an AKE protocol. It consists of the
following steps, which describe the process when no error conditions occur:

1. The KNXnet/IP Secure client establishes a TCP connection to a control end-
point of the KNXnet/IP Secure server [6, pp. 125-126]. Information about the
server and its control endpoint were previously retrieved through device discov-
ery, which does not require KNXnet/IP Secure [6, p. 109]. The client generates
an ephemeral secret key eskĈ

R←− {0, 1, ..., 2256−1}, which is its private key for the
session. The public key X is computed as X ← X25519(eskĈ , 9) [6, p. 125][42].
The client then sends a SESSION_REQUEST over the established TCP connection
to the server. It contains the public key X and its own control endpoint is
declared as “route back” HPAI [6, pp. 125-126]. This HPAI has the IP address
and port set to zero, which indicates that the server shall use the existing TCP
connection to reply [6, p. 46]. No other HPAI options are permitted to be used
by ISO 22510:2019 [6, p. 126].

2. The KNXnet/IP Secure server receives the client’s SESSION_REQUEST and ver-
ifies that the frame has a valid format. It reserves a secure session identi-
fier, which is an ID for the session [6, p. 122, p. 144]. An ephemeral secret
key eskŜ

R←− {0, 1, ..., 2256 − 1} is generated, which is the server’s private key
for the session. Its public key Y is computed as Y ← X25519(eskŜ, 9) [6,
p. 126][42]. The server derives the shared secret s ← X25519(eskŜ, X) [6,
p. 121], as previously explained in figure 8. The session key ks is determined
by ks ← MSB128(SHA-256(s)) [6, p. 121]. A SESSION_RESPONSE is prepared,
containing the secure session identifier and the server’s public key Y [6, p. 126].
CCM is applied to authenticate the frame’s content using the server’s device
authentication code kdac from PID_DEVICE_AUTHENTICATION_CODE [6, p. 127,
pp. 134-135]. The arguments are [6, p. 127-128]:
• Tlen ← 128

46

• A1 ← KNXnet/IP Secure Header ∥ Secure Session Identifier ∥ X ⊕ Y
• P 1 ← Empty
• N1 ← 0x00∥...∥0x00︸ ︷︷ ︸

14 byte

The content of the message authentication code field MAC1 is calculated as
MAC1 ← CCM-ENC(kdac, β, π, Tlen, N1, P 1, A1). The server sends the SESSION_-
RESPONSE to the client over the TCP connection.

3. The client receives the SESSION_RESPONSE and validates the frame size [6, p. 128].
It may verify the MAC, but is not required to [6, p. 128]. If the client has knowl-
edge of the device authentication code kdac, it can construct the arguments for
CCM like the server, as the KNXnet/IP Secure header, secure session identifier
and the server’s public key Y are contained in the SESSION_RESPONSE and X is
the client’s public key.
• Tlen ← 128

• A1 ← KNXnet/IP Secure Header ∥ Secure Session Identifier ∥ X ⊕ Y
• C1 ← Message Authentication Code
• N1 ← 0x00∥...∥0x00︸ ︷︷ ︸

14 byte

The MAC can then be verified through CCM-DEC(kdac, β, π, Tlen, N1, C1, A1).
If the MAC is valid or the validation has been skipped, the shared secret s is
determined by s← X25519(eskĈ , Y) [6, p. 121]. The session key ks is given by
ks ← MSB128(SHA-256(s)) [6, p. 121].
In order to authenticate itself to the server, the client prepares a SESSION_-
AUTHENTICATE frame. This requires the choice of a user ID and matching pass-
word hash that corresponds with the content of the server’s PID_PASSWORD_-
HASHES [6, p. 129]. The SESSION_AUTHENTICATE contains the chosen user ID [6,
p. 129]. CCM is applied to authenticate the frame’s content using the password
hash kpwd. The arguments are [6, pp. 130-131]:
• Tlen ← 128

• A2 ← KNXnet/IP Secure Header ∥ 0x00 ∥ User ID ∥ X ⊕ Y
• P 2 ← Empty
• N2 ← 0x00∥...∥0x00︸ ︷︷ ︸

14 byte

The content of the message authentication code field MAC2 is calculated as
MAC2 ← CCM-ENC(kpwd, β, π, Tlen, N2, P 2, A2).
The SESSION_AUTHENTICATE frame has to be encapsulated in a SECURE_WRAPPER
[6, p. 129]. The secure session identifier is assigned the value received in the
server’s SESSION_RESPONSE [6, p. 106], the sequence information/number starts
at zero [6, p. 122], the KNX serial number for the client device is inserted and

47

the message tag is set to 0x0000 [6, p. 106]. CCM is applied to encrypt and
authenticate the frame’s content using the session key ks. The arguments are
[6, p. 107]:
• Tlen ← 128

• A3 ← KNXnet/IP Secure Header ∥ Secure Session Identifier
• P 3 ← SESSION_AUTHENTICATE Frame
• N3 ← Sequence Information ∥ KNX Serial Number ∥ Message Tag

The content of the “encapsulated KNXnet/IP frame” and the MAC fields in the
SECURE_WRAPPER are the result of CCM-ENC(ks, β, π, Tlen, N3, P 3, A3), where
the ciphertext is logically split into the part that is the encrypted and au-
thenticated SESSION_AUTHENTICATE frame and the encrypted CBC-MAC. This
SECURE_WRAPPER is sent to the server.

4. The server receives the SECURE_WRAPPER and verifies that the frame has at least
the minimum required length [6, p. 108]. Furthermore, the secure session iden-
tifier has to match the current session [6, p. 108]. It decrypts the content and
verifies the MAC with the session key ks [6, p. 108]. The arguments are:
• Tlen ← 128

• A3 ← KNXnet/IP Secure Header ∥ Secure Session Identifier
• C3 ← Encapsulated KNXnet/IP frame ∥ Message Authentication Code
• N3 ← Sequence Information ∥ KNX Serial Number ∥ Message Tag

The encapsulated SESSION_AUTHENTICATE frame P 3 is decrypted and the MAC
verified by P 3 ← CCM-DEC(ks, β, π, Tlen, N3, C3, A3). The length of the result-
ing frame is validated [6, p. 131]. Within the SESSION_AUTHENTICATE is the user
ID with which the client attempts to authenticate itself [6, p. 129]. The server
checks that its value is within the expected range and looks up the associated
password hash kpwd in PID_PASSWORD_HASHES [6, pp. 144-145]. Validation of the
SESSION_AUTHENTICATE’s MAC is conducted by decrypting it with the kpwd [6,
p. 128]. The arguments are:
• Tlen ← 128

• A2 ← KNXnet/IP Secure Header ∥ 0x00 ∥ User ID ∥ X ⊕ Y
• C2 ← Message Authentication Code
• N2 ← 0x00∥...∥0x00︸ ︷︷ ︸

14 byte

The MAC is verified through CCM-DEC(kpwd, β, π, Tlen, N2, C2, A2). If this
steps is successful, the client is considered authenticated and given authoriza-
tion based on the permissions associated with the user ID [6, p. 131]. The
client is notified of this success through a SESSION_STATUS, with status code
0x00 (STATUS_AUTHENTICATION_SUCCESS), encapsulated in a SECURE_WRAPPER
[6, p. 145]. The server inserts its own sequence information and serial number,

48

while the message tag is set to 0x0000. The arguments are [6, p. 107]:
• Tlen ← 128

• A4 ← KNXnet/IP Secure Header ∥ Secure Session Identifier
• P 4 ← SESSION_STATUS Frame
• N4 ← Sequence Information ∥ KNX Serial Number ∥ Message Tag

The content of the “encapsulated KNXnet/IP frame” and the MAC fields in the
SECURE_WRAPPER are the result of CCM-ENC(ks, β, π, Tlen, N4, P 4, A4), where
the ciphertext is logically split into the part that is the encrypted and authen-
ticated SESSION_STATUS frame and the encrypted CBC-MAC. This SECURE_-
WRAPPER is sent to the client.

5. The client receives the SECURE_WRAPPER containing a SESSION_STATUS. It verifies
that the frame has the minimum required length and the secure session identifier
matches the current session [6, p. 131]. The client decrypts the content and
verifies the MAC with the session key ks [6, p. 108]. The arguments are:
• Tlen ← 128

• A4 ← KNXnet/IP Secure Header ∥ Secure Session Identifier
• C4 ← Encapsulated KNXnet/IP frame ∥ Message Authentication Code
• N4 ← Sequence Information ∥ KNX Serial Number ∥ Message Tag

The encapsulated SESSION_STATUS frame P 4 is decrypted and the MAC ver-
ified by P 4 ← CCM-DEC(ks, β, π, Tlen, N4, C4, A4). The status code in the
SESSION_STATUS frame informs the client about the success and the handshake
is completed.

Further communication in the established session uses KNXnet/IP frames wrapped
in SECURE_WRAPPER, which are encrypted and authenticated with the session key. Each
party has to include their current sequence number in every frame and increment it by
one after a frame being sent [6, p. 122]. They also have to store the last valid sequence
number that they have received in the session and discard incoming frames that do
not have a higher sequence number [6, p. 122].

3.3.2.5. Session Finite State Machine

ISO 22510:2019 specifies the unicast communication both textually and as a finite state
machine (FSM) for the KNXnet/IP server. The tabular notation from the standard is
visualized in figure 19. It describes the states and behavior of the server in the context
of a session [6, p. 123]. This depiction also includes the required error handling and
termination of the session, which was not included in the happy path description of the
AKE in the previous section. If a session is closed, then all KNXnet/IP connections
within that session are terminated as well [6, p. 145]. There is no FSM specification
for the KNXnet/IP clients in ISO 22510:2019.

49

(E06) The session_timer expired / (A5) Send
SESSION_STATUS with status field STATUS_TIMEOUT; Close
all contained secure connections (if there are any);

Deallocate session

(E01) Received valid SECURE_WRAPPER containing valid SESSION_AUTHENTICATE / (A1) Send SESSION_STATUS with status field
STATUS_AUTHENTICATION_SUCCESS; session_timer = timeoutSession

(E01) Received valid SECURE_WRAPPER
containing valid SESSION_AUTHENTICATE,
(E02) Received valid SECURE_WRAPPER

containing invalid SESSION_AUTHENTICATE
/ (A2) Send SESSION_STATUS with status
field STATUS_AUTHENTICATION_FAILED;

Deallocate session

(E03) Received valid SECURE_WRAPPER
containing SESSION_STATUS with status field
STATUS_CLOSE / (A3) Close all contained
secure connections (if there are any),
without explicit notification of the
connection close to the client; Send

SESSION_STATUS with status field
STATUS_CLOSE; Deallocate session

(E06) The session_timer expired / (A5) Send
SESSION_STATUS with status field STATUS_TIMEOUT;
Close all contained secure connections (if there

are any); Deallocate session

(E04) Received valid SECURE_WRAPPER containing
SESSION_STATUS with status field STATUS_KEEPALIVE,
(E05) Received valid SECURE_WRAPPER containing any
frame except SESSION_AUTHENTICATE and SESSION_STATUS

/ (A6) Send SESSION_STATUS with status field
STATUS_UNAUTHENTICATED; Close all contained secure
connections (if there are any); Deallocate session

(E03) Received valid SECURE_WRAPPER
containing SESSION_STATUS with status
field STATUS_CLOSE / (A3) Close all

contained secure connections (if there
are any), without explicit notification of
the connection close to the client; Send

SESSION_STATUS with status field
STATUS_CLOSE; Deallocate session

(E02) Received valid
SECURE_WRAPPER containing invalid

SESSION_AUTHENTICATE
/ (A2) Send SESSION_STATUS with

status field
STATUS_AUTHENTICATION_FAILED;

Deallocate session

(E00) Received SESSION_REQUEST / (A0)
Allocate session; Send SESSION_RESPONSE;
session_timer = timeoutAuthentication

(E04) Received valid SECURE_WRAPPER
containing SESSION_STATUS with status field
STATUS_KEEPALIVE, (E05) Received valid

SECURE_WRAPPER containing any frame except
SESSION_AUTHENTICATE and SESSION_STATUS /

(A4) session_timer = timeoutSession

AUTHENTICATED

IDLE

UNAUTHENTICATED

Figure 19: Session state machine for the server, based on [6, pp. 123-125]

3.3.2.6. Access Control

During the AKE the client authenticates itself with a user ID and password hash to the
server. This information is also used for access control, which determines the services
that the client may access, if the authentication is successful [6, p. 109]. The user ID
0x01 is for management level access and 0x02 to 0x7f for user level access [6, p. 129].
As previously explained, the PID_SECURED_SERVICE_FAMILIES configures whether it
is required to use KNXnet/IP Secure for the connection-oriented KNXnet/IP services
device management and tunneling. When KNXnet/IP Secure is not required, then
both service can be access through plain KNXnet/IP connections, without any encryp-
tion and authentication [6, pp. 109-110]. Clients may also create KNXnet/IP Secure
sessions, in which case all user IDs are permitted to establish device management and
tunneling connections within the session [6, pp. 109-110]. However, if PID_SECURED_-
SERVICE_FAMILIES enforces KNXnet/IP Secure for device management connections,
then plain KNXnet/IP is not permitted and only the user ID 0x01 may create de-
vice management connections in KNXnet/IP Secure sessions [6, pp. 109-110]. When
PID_SECURED_SERVICE_FAMILIES requires KNXnet/IP Secure for tunneling connec-
tions, then the user ID 0x01 may pick any IA from PID_TUNNELLING_ADDRESSES for
its tunnel [6, p. 142]. Users 0x02 to 0x7f may only request an IA for which they have
an entry in PID_TUNNELLING_USERS [6, p. 143]. If they do not request a specific IA
the server still has to check if an IA is available that given user ID is allowed to use
[6, p. 143]. The discovery services are not access restricted [6, p. 109].

50

3.3.3. Multicast

KNXnet/IP Secure specifies encrypted and authenticated multicast communication.
The concept can be roughly summarized as follows. Due to KNXnet/IP, all routing-
capable KNXnet/IP Secure devices are part of a multicast group that they have joined
through IGMP [6, p. 82, p. 111]. They can communicate via UDP by sending their
frames to port 3671 of the group’s multicast address [6, p. 82]. The definition of
group membership for KNXnet/IP Secure also requires knowledge of the backbone
key [6, p. 111]. Therefore, it is a pre-shared secret. This key is used to encrypt
and authenticate all multicast communication of the group [6, p. 134]. It has an
unlimited lifetime [6, p. 111], thus it is not updated after the initial configuration.
The KNXnet/IP Secure protocol specifies a procedure to synchronize timers among
the group members [6, p. 112]. The timer is used to reject old frames [6, p. 111], similar
to the sequence numbers in unicast communication.

3.3.3.1. Security Goals

Besides the general security goals for KNXnet/IP Secure, the specification claims that
synchronized timers would provide a defense against replay attacks [6, p. 111]. At the
same time ISO 22510:2019 also states that frames with “slightly past timer values” [6,
p. 111] will still be accepted. Multicast communication is supposed to provide mutual
authentication [6, p. 102].

3.3.3.2. Configuration

The previously introduced backbone key is configured through PID_BACKBONE_KEY [6,
p. 134]. During the setup of the project the ETS has to generate a backbone key for
each multicast group [6, p. 134]. It is set for the relevant KNXnet/IP Secure devices
during their initial configuration.

The PID_SECURED_SERVICE_FAMILIES controls whether the routing service family
is allowed to be accessed through KNXnet/IP or if KNXnet/IP Secure is required
[6, p. 109, p. 137]. Unlike unicast access to connection-oriented services, the use of
KNXnet/IP Secure for multicast communication is only allowed when secure commu-
nication is required [6, p. 110]. Details are provided in the “Access Control” section.

There are two configurable properties for the timer synchronization. The PID_-
MULTICAST_LATENCY_TOLERANCE determines how far in the past the received timer in
a frame is allowed to be in relation to the recipient’s multicast timer, during which
the frame will still be accepted [6, p. 113, p. 141]. The selection of this value is a
trade-off between handling network latencies and avoiding replay attacks [6, p. 141].
The default latency tolerance is 2 seconds [6, p. 141]. PID_SYNC_LATENCY_FRACTION is
the fraction of the latency tolerance that determines how far in the past or future the
received timers may be, relative to the recipient’s own timer, in order the cancel the
scheduled sending of a TIMER_NOTIFY to the group [6, p. 115, p. 141]. The default value
is 10.2% [6, p. 142]. Its value is supposed to represent the common case of latency [6,
p. 113]. Details are provided in the “Timer Synchronization” section.

51

3.3.3.3. Frame Formats

Multicast communication requires frames for the synchronization of timers and com-
munication with the KNXnet/IP routing service. This section introduces the frame
formats and the following sections about the communication, finite state machine and
access control explain their applications as well as the meaning of particular fields.

Definition 3.42 (SECURE_WRAPPER [6, pp. 106-108]).
The SECURE_WRAPPER frame is encrypted and authenticated with the backbone key.
Its structure is the same as in unicast, but the fields are used for a different purpose.
The secure session identifier is set to a constant 0x0000, the sequence information
contain the sender’s multicast timer and the message tag is assigned a random value
for each frame [6, p. 106].

A← KNXnet/IP Secure Header ∥ Secure Session Identifier (36)
P ← Encapsulated KNXnet/IP Frame (37)
B0 ← Sequence Information ∥ Serial Number ∥ Message Tag ∥ Q (38)

Ctri ← Sequence Information ∥ Serial Number ∥ Message Tag ∥ 0xff ∥ i (39)

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0950)

Total Length (2 byte)

Secure Session Identifier (2 byte)

Sequence Information (6 byte)
...

KNX Serial Number (6 byte)
...

Message Tag (2 byte)

Encapsulated KNXnet/IP Frame (variable)
...

Message Authentication Code (16 byte)
...

Figure 20: Structure of SECURE_WRAPPER frames [6, pp. 106-108]

Definition 3.43 (TIMER_NOTIFY [6, pp. 118-120]).
The TIMER_NOTIFY frame is not wrapped in a SECURE_WRAPPER. The values in A are

52

authenticated with the backbone key.

A← KNXnet/IP Secure Header (40)
P ← Empty (41)
B0 ← Timer Value ∥ Serial Number ∥ Message Tag ∥ 0x0000 (42)

Ctr0 ← Timer Value ∥ Serial Number ∥ Message Tag ∥ 0xff00 (43)

0123456789101112131415

Header Length (0x06) Protocol Version (0x10)

Service Type Identifier (0x0955)

Total Length (0x0024)

Timer Value (6 byte)
...

KNX Serial Number (6 byte)
...

Message Tag (2 byte)

Message Authentication Code (16 byte)
...

Figure 21: Structure of TIMER_NOTIFY frames [6, p. 118]

3.3.3.4. Communication
Since the multicast communication is connectionless each group member can send
SECURE_WRAPPER and TIMER_NOTIFY to all other group members without a prior hand-
shake. Group membership, as defined by KNXnet/IP Secure, requires knowledge of
the backbone key by all members [6, p. 111]. Hence, they are able to decrypt the
incoming frames. Encrypting the SECURE_WRAPPER with the backbone key kb through
CCM-ENC(kb, β, π, Tlen, N, P ,A) requires:

• Tlen ← 128

• A← KNXnet/IP Secure Header ∥ Secure Session Identifier
• P ← KNXnet/IP Frame
• N ← Sequence Information ∥ Serial Number ∥ Message Tag

Similarly the arguments for the TIMER_NOTIFY are:
• Tlen ← 128

• A← KNXnet/IP Secure Header ∥ Secure Session Identifier
• P ← Empty

53

• N ← Timer Value ∥ Serial Number ∥ Message Tag
The sequence information in SECURE_WRAPPER and timer value in TIMER_NOTIFY both
contain the current timer value of the sender. It could happen that two parties send
frames with identical timer values, hence the message tag is a random value for each
frame to prevent nonce reuse [6, p. 106, p. 108, p. 119].

3.3.3.5. Timer Synchronization Finite State Machine

KNXnet/IP Secure’s protection against replay attacks in multicast communication
relies on timers. Each device has a 48 bit timer that it increments monotonically at
least once a millisecond [6, p. 111, p. 133]. ISO 22510:2019 requires that it is stored
persistently [6, p. 133]. It may not decrease, even when the device loses power [6,
p. 111, p. 133]. If a device is not capable of immediately persisting the timer when a
low power condition is detected, it has to store the timer in regular intervals measured
in the multicast timer domain [6, p. 133]. On power-up the multicast timer then has
to be incremented by the persistence interval [6, p. 133].

The idea of rejecting frames, based on the detection of outdated timers contained
within, requires the synchronization of timer values among the multicast group mem-
bers. The general concept is that every device receiving a valid frame with a larger
timer value than its own, updates its internal timer to match the value [6, p. 111].
If frames are received with timers that are more than PID_MULTICAST_LATENCY_-
TOLERANCE behind the recipient’s own timer, they are rejected [6, p. 111]. TIMER_-
NOTIFY frames are supposed to be sent periodically, or when outdated timers are
received by members of the group, to synchronize the timers [6, p. 112]. Devices can
take on the role of “time keeper” when they have not received frames within the ex-
pected fraction of the latency tolerance determined by PID_SYNC_LATENCY_FRACTION.
In this case the device will send TIMER_NOTIFY frames more frequently until it receives
a larger timer value itself [6, pp. 112-113]. Device that are not time keepers are referred
to as “time followers” [6, p. 116]. This process is specified by the standard with a FSM
in tabular notation which is visualized in figure 22. Its parameters are defined in table
2.

Initially the timer synchronization starts in the SCHED_PERIODIC state and it picks
are random notify_timer as shown in figure 22. The purpose is to prevent a flood of
messages when all devices start simultaneously [6, p. 117]. If a previous value for the
multicast timer (mc_timer) has been persisted, then this value is restored and possibly
incremented by the persistence interval [6, p. 117]. Whenever a device is assigned a
new backbone key, which is semantically equivalent to joining a new multicast group,
the multicast timer is reset to zero [6, p. 112]. The reference in the FSM to “section
5.7.2.2.3” refers to the behavior described in this paragraph. Since the initialization of
the timer synchronization does not prevent replay attacks before the first authentic and
current multicast timer is received, the device may optionally implement a procedure
that supposedly allows to acquire an authentic timer [6, pp. 117-118]:

1. Set mc_timer_authentic = false.

54

2. Do not process SECURE_WRAPPER until mc_timer_authentic == true.
3. Send or schedule TIMER_NOTIFY and remember the used message tag.
4. Wait for maxDelayTimeFollowerUpdateNotify + 2 × latencyTolerance after

the first TIMER_NOTIFY or SECURE_WRAPPER is sent or received
a) If TIMER_NOTIFY is received that contains own serial number and remem-

bered tag, then mc_timer_authentic = true and stop waiting.
5. The most recent timer of all received TIMER_NOTIFY and SECURE_WRAPPER is

assigned to mc_timer and mc_timer_authentic = true.
These steps are not included in the FSM specification. ISO 22510:2019 assumes that
there is at least one other honest party that sends authentic timers [6, p. 118].

Variable Value
latencyTolerance PID_MULTICAST_LATENCY_TOLERANCE

syncLatencyTolerance PID_SYNC_LATENCY_FRACTION applied to
PID_MULTICAST_LATENCY_TOLERANCE

minDelayInitialNotify 0 s
maxDelayInitialNotify 10 s
minDelayTimeKeeperPeriodicNotify 0 s
minDelayTimeKeeperUpdateNotify 0.1 s
maxDelayTimeKeeperPeriodicNotify minDelayTimeKeeperPeriodicNotify

+ 3 × syncLatencyTolerance

minDelayTimeFollowerPeriodicNotify maxDelayTimeKeeperPeriodicNotify
+ syncLatencyTolerance

maxDelayTimeFollowerPeriodicNotify minDelayTimeFollowerPeriodicNotify
+ 10 × syncLatencyTolerance

maxDelayTimeKeeperUpdateNotify minDelayTimeKeeperUpdateNotify
+ syncLatencyTolerance

minDelayTimeFollowerUpdateNotify maxDelayTimeKeeperUpdateNotify
+ syncLatencyTolerance

maxDelayTimeFollowerUpdateNotify minDelayTimeFollowerUpdateNotify
+ 10 × syncLatencyTolerance

Table 2: Timer synchronization parameters, based on [6, pp. 113-114]

3.3.3.6. Access Control

The PID_SECURED_SERVICE_FAMILIES allows to configure whether secure communi-
cation shall be enabled for the routing service family [6, p. 137]. When it is, no plain

55

(E02) Received TIMER_NOTIFY
[received_timer_value <= mc_timer and

received_timer_value > mc_timer – syncLatencyTolerance]
/ (A9 + A3)

minDelayUpdateNotify = minDelayTimeFollowerUpdateNotify;
maxDelayUpdateNotify = maxDelayTimeFollowerUpdateNotify;

minDelayPeriodicNotify = minDelayTimeFollowerPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeFollowerPeriodicNotify;

Reschedule
notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E03) Received TIMER_NOTIFY
[received_timer_value <= mc_timer – syncLatencyTolerance and

received_timer_value > mc_timer – latencyTolerance]
/ (A0) Do nothing

(E05) Received multicast SECURE_WRAPPER
[received_timer_value > mc_timer]

/ (A1 + A2 + A3) mc_timer = received_timer_value;
Accept SECURE_WRAPPER and pass to upper layer;

Reschedule notify_timer = random(minDelayPeriodicNotify,
maxDelayPeriodicNotify)

(E06) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer and

received_timer_value > mc_timer – syncLatencyTolerance]
/ (A2 + A3) Accept SECURE_WRAPPER and pass to upper layer;

Reschedule
notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E07) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer – syncLatencyTolerance and

received_timer_value > mc_timer – latencyTolerance]
/ (A2) Accept SECURE_WRAPPER and pass to upper layer

(E09) Transmitted multicast SECURE_WRAPPER
/ (A3) Reschedule notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E10) notify_timer expired
/ (A5 + A8 + A3) Send TIMER_NOTIFY with own mc_timer as sequence

information, own serial number and random tag;
minDelayUpdateNotify = minDelayTimeKeeperUpdateNotify;
maxDelayUpdateNotify = maxDelayTimeKeeperUpdateNotify;

minDelayPeriodicNotify = minDelayTimeKeeperPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeKeeperPeriodicNotify;

Reschedule
notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E11) Device joins new domain
/ (A7) Restart the multicast timer synchronization, see ISO

22510:2019 section 5.7.2.2.3

(E01) Received TIMER_NOTIFY
[received_timer_value > mc_timer]

/ (A1 + A9 + A3) mc_timer = received_timer_value;
minDelayUpdateNotify = minDelayTimeFollowerUpdateNotify;
maxDelayUpdateNotify = maxDelayTimeFollowerUpdateNotify;

minDelayPeriodicNotify = minDelayTimeFollowerPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeFollowerPeriodicNotify;
Reschedule notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

/ notify_timer = random(minDelayInitialNotify, maxDelayInitialNotify) on power-up, zero otherwise;
mc_timer = value from persistent storage (only if valid and existant) + worst case time offset (if applicable),

zero otherwise

(E03) Received TIMER_NOTIFY
[received_timer_value <= mc_timer – syncLatencyTolerance and

received_timer_value > mc_timer – latencyTolerance]
/ (A0) Do nothing

(E04) Received TIMER_NOTIFY
[received_timer_value <= mc_timer – latencyTolerance]

/ (A0) Do nothing

(E05) Received multicast SECURE_WRAPPER
[received_timer_value > mc_timer]

/ (A1 + A2) mc_timer = received_timer_value;
Accept SECURE_WRAPPER and pass to upper layer

(E06) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer and

received_timer_value > mc_timer – syncLatencyTolerance]
/ (A2) Accept SECURE_WRAPPER and pass to upper layer

(E07) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer – syncLatencyTolerance and

received_timer_value > mc_timer – latencyTolerance]
/ (A2) Accept SECURE_WRAPPER and pass to upper layer

(E08) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer – latencyTolerance] /

(A0) Do nothing

(E09) Transmitted multicast SECURE_WRAPPER / (A0) Do nothing

(E01) Received TIMER_NOTIFY
[received_timer_value > mc_timer]

/ (A1 + A9 + A3) mc_timer = received_timer_value;
minDelayUpdateNotify = minDelayTimeFollowerUpdateNotify;
maxDelayUpdateNotify = maxDelayTimeFollowerUpdateNotify;

minDelayPeriodicNotify = minDelayTimeFollowerPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeFollowerPeriodicNotify;
Reschedule notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E02) Received TIMER_NOTIFY
[received_timer_value <= mc_timer and

received_timer_value > mc_timer – syncLatencyTolerance]
/ (A9 + A3)

minDelayUpdateNotify = minDelayTimeFollowerUpdateNotify;
maxDelayUpdateNotify = maxDelayTimeFollowerUpdateNotify;

minDelayPeriodicNotify = minDelayTimeFollowerPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeFollowerPeriodicNotify;
Reschedule notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E10) notify_timer expired
/ (A6 + A8 + A3) Send TIMER_NOTIFY with own mc_timer as

sequence information, but serial number and tag as remembered
in A4; minDelayUpdateNotify = minDelayTimeKeeperUpdateNotify;

maxDelayUpdateNotify = maxDelayTimeKeeperUpdateNotify;
minDelayPeriodicNotify = minDelayTimeKeeperPeriodicNotify;
maxDelayPeriodicNotify = maxDelayTimeKeeperPeriodicNotify;

Reschedule
notify_timer = random(minDelayPeriodicNotify,

maxDelayPeriodicNotify)

(E11) Device joins new domain
/ (A7) Restart the multicast timer synchronization, see ISO

22510:2019 section 5.7.2.2.3

(E04) Received TIMER_NOTIFY
[received_timer_value <= mc_timer – latencyTolerance]

/ (A4) Remember received serial number and tag of outdated
frame; notify_timer = random(minDelayUpdateNotify,

maxDelayUpdateNotify)

(E08) Received multicast SECURE_WRAPPER
[received_timer_value <= mc_timer – latencyTolerance]

/ (A4) Remember received serial number and tag of outdated
frame; notify_timer = random(minDelayUpdateNotify,

maxDelayUpdateNotify)

SCHED_UPDATESCHED_PERIODIC

Figure 22: Timer synchronization state machine, based on [6, pp. 113-117]

56

KNXnet/IP frames with routing indications may be accepted by the device [6, p. 110].
It enables the timer synchronization and all routing frames being sent have to be
wrapped in SECURE_WRAPPER [6, p. 110]. If the secure communication is disabled, then
only plain KNXnet/IP frames are allowed to be sent and received [6, p. 110]. Addition-
ally, the timer synchronization is disabled, since sending and receiving TIMER_NOTIFY
frames is prohibited [6, p. 110].

KNXnet/IP Secure disallows access to the remote configuration and diagnosis ser-
vice family when the use of Data Secure is required [6, p. 110], [122, p. 56]. The
PID_SECURED_SERVICE_FAMILIES does not provide an entry for this service [6, p. 137].
Hence, it is not possible to restrict access for KNXnet/IP through this property. ISO
22510:2019 does not specify limitations for accessing remote configuration through
KNXnet/IP when Data Secure is disabled.

3.4. Model Checking
Model checking is a technique for the formal verification of properties in a given model,
such as the FSMs in the specification of KNXnet/IP Secure. It is a software-aided
approach, where, given a model description and a desired property, the goal is to
find a counterexample that refutes the stated property, if it is not satisfied by the
model. Depending on the approach it may also be possible to infer that the property
is satisfied, if it can be proven that no such counterexample exists. Model checking is
useful because it allows to verify that the model fulfills the expected properties of the
real system it attempts to abstract. Under the assumption that the model is correct,
it is also possible to analyze properties in the model for a better understanding of the
real system. Since the software requires a formal description of the model, it also aids
in the identification of inconsistencies and ambiguities in the textual description of the
system’s specification.

As previously stated, this thesis applies the symbolic model checking software
NuXMV [75] in chapter “Analysis of KNXnet/IP Secure in ISO 22510:2019” to analyze
the properties of the FSMs in ISO 22510:2019 and in chapter “Analysis of Certified
Devices” to identify differences between the behavior of the certified devices and the
specification. This software was chosen over NuSMV and Uppaal because it permits
the modeling of infinite-state systems [75]. In particular, it supports unbounded data
types [75], which allow a straightforward transfer of the timer synchronization FSM
specification into the modeling language. Unlike Uppaal it can model clocks with
different growth rates. Furthermore, NuXMV handles the state complexity for both
BDD- and BMC-based model checking reasonably well for the applications in this
work.

NuXMV requires the description of the model in its input language, which is doc-
umented in the user manual [123]. A FSM can be described through state variables,
their initial values and assignment constraints that define under which conditions a
new state is reached. The conditions can for example contain boolean expressions,
comparisons, arithmetic and bitwise operations [123, pp. 13-14]. Random values can
be modeled through range constants or sets, which define the possible values a vari-

57

able may take. This is required for the description of the timer synchronization FSM.
Additionally, invariants can be defined that are required to hold for the model. Con-
straints such as timer progression having to be a positive value can be enforced like
this. A simple example of the NuXMV notation is provided in figure 23. It depicts a
FSM with three states that reacts to events modeled as an integer.

1 : MODULE fsm(event)
2 : VAR
3 : _state_ : { S1, S2, S3 };
4 :

5 : ASSIGN
6 : init(_state_) := S1;
7 : next(_state_) := case
8 : _state_ = S1 & event = 1 : S2;
9 : _state_ = S2 & event = 2 : S3;

10 : _state_ = S3 & event = 3 : S1;
11 : TRUE : _state_;
12 : esac;
13 :

14 : MODULE main
15 : VAR
16 : fsm : fsm(event);
17 : event : 1..3;

Figure 23: NuXMV syntax

S1

S2 S3

1/ 3/

2/

Figure 24: Finite state machine

The properties for the evaluation of the model are expressed through the temporal
logics CTL [77] and LTL [76]. The former can be evaluated based on BDD [78],
which can either provide a counterexample and if none can be found, proves that the
property holds. The latter is analyzed through BMC [79] with a SAT- or SMT-solver,
that can either provide a counterexample or prove that no counterexample for the
given bound exists. It does not prove that the property holds in general. This would
require the bound to be large enough to cover all possible states in the evaluation
that could produce a counterexample. The research by Clarke et al. [80] describes
the necessary conditions for the bound to ensure completeness for a given model. For
both approaches it is required that the execution finishes in order to draw conclusions.
The model complexity may cause a state explosion that exceeds available resources
and thus the computation does not terminate within a reasonable time frame.

This work uses a subset of the CTL and LTL for its evaluation of FSMs. Besides
the general boolean expressions, the semantics of the following NuXMV notation in
CTL and LTL are relevant.

Definition 3.44 (CTL quantifier subset in NuXMV based on [123, p. 40]).
Let p be a CTL expression:

• “EX p” is true in a state s if there exists a state s′ such that a transition goes
from s to s′ and p is true in s′.

58

• “AX p” is true in a state s if for all states s′ where there is a transaction from
s to s′, p is true in s′.

• “AG p” is true in a state s0 if for all infinite series of transitions s0 → s1, s1 →
s2, ..., s∞−1 → s∞ such that p is true in every si.

• “EF p” is true in a state s0 if there exists a series of transitions s0 → s1, s1 →
s2, ..., sn−1 → sn such that p is true in sn.

Definition 3.45 (LTL quantifier subset in NuXMV based on [123, p. 40]).
Let p be an LTL expression:

• “X p” is true at time t if p is true at time t+ 1

• “F p” is true at time t if p is true at some time t′ ≥ t

• “G p” is true at time t if p is true at all times t′ ≥ t

An example of checks that can be conducted with CTL on every FSM would be the
reachability of states, activation of transitions and whether the FSM is deterministic.
In the FSM shown in figure 23, the reachability check of the state S1 could be ex-
pressed as CTLSPEC EF _state_ = S1; and similarly for the other states. As per the
definition provided above, the property is satisfied if a series of transitions from the
initial state to the target state exist. A nearly identical check can identify whether a
transition is able to fire in the FSM. In the example FSM this would be CTLSPEC EF
event = 1; for the transition between S1 and S2. In more complex examples the re-
sult would be less obvious because the activation of the transition can depend on many
state variables and they may take different values depending on the order of events
that occur. Finally, it is also possible to check for non-determinism. This would gen-
erally require to evaluate if two transitions can be simultaneously active in the current
state. All combinations of possible pairings need to be evaluated for each respective
state. Practically this could be implemented by setting a variable nondeterministic
to true in an ASSIGN-statement when two transitions in a state can be active at the
same time. The combinations of pairings per state could be programmatically gen-
erated. This would allow to evaluate if the FSM is deterministic with CTLSPEC AG
!nondeterministic;. When a CTL or LTL statement is not satisfied and NuXMV is
able to identify a counterexample, it outputs a trace of variables and transitions that
lead to a state that proves the violation of the assumption. It should be noted that
by default the execution in NuXMV is deterministic, because it will always pick the
first listed transition that is active. This has to be considered when non-determinism
is intended.

3.5. Protocol State Fuzzing
Protocol state fuzzing is a black-box testing technique developed by de Ruiter and Poll
[81] to infer the FSM of a system under test (SUT) from its observable behavior. A
software that performs the protocol state fuzzing is referred to as the state learner. It
requires an alphabet based on which the inference of SUT’s FSM occurs. The alphabet

59

contains identifiers which represent frames that the SUT is expected to send or receive.
The state learner has to implement a mapping from elements of the alphabet to actual
frames and vice versa. In general, the FSM of the SUT is learned by iteratively refining
a hypothesis about its FSM through requests sent to the SUT and comparing the
received reply to the expected reply of the hypothesized FSM. During the process the
mapping between the alphabet and the frames is required, because the generated test
queries for the SUT are based on the alphabet and have to be transformed into frames
that can be sent to it. Similarly, frames received by the state learner from the SUT
have to be translated back to the alphabet for the comparison with the hypothesis.
If the state learner is able to find a counterexample, where the observed behavior
does not match expected model, it uses the information to improve the hypothesis
until either no difference can be found or configured limits are reached. Since the
inference of protocol state fuzzing is based on the observable reaction of the SUT to
requests, this method cannot properly learn the SUT’s internal state when it depends
on other factors than the requests sent by the state learner. This particularly includes
timer-controlled behavior as seen in the timer synchronization FSM.

The protocol state fuzzing in this work is based on the open source implementation
by de Ruiter and Poll [81], [82], hence it uses LearnLib [83] as well. Hypotheses about
the SUT’s FSM are generated with a version of Angluin’s L∗-method [124]. Equiv-
alence tests are conducted with a modified version of Chow’s W-method [125]. The
resulting counterexamples are used for the L∗-method to improve the hypothesis. Fur-
ther details about the methodology are provided in the “Analysis of Certified Devices”
chapter.

3.6. Risk Analysis with BSI 200-3
BSI 200-3 [85] is a standard by the Bundesamt für Sicherheit in der Informationstech-
nik (BSI) that specifies the methodology for risk analysis in organizations with regard
to IT-security. The prerequisite is the application of BSI 200-2 [89], which means the
following steps are suggested:

1. A security scope has to be chosen, which determines the extent of the assessment:
• “Basic protection” has the objective to ensure a broad and basic initial

safeguarding [89, p. 25].
• “Core protection” has the objective to protect assets that face a higher risk

[89, p. 26].
• “Standard protection” has the objective to protect all areas in depth [89,

p. 26].
2. A structure analysis has to be conducted that identifies business processes, appli-

cations, IT systems, industrial control systems, internet of things (IoT) devices,
rooms and buildings, and communications links, that are being used or are in
development [89, p. 65]. A network plan has to be created [89, p. 71]. It is meant
to visualize the components involved and their network connections.

60

3. The protection requirements of every target object has to be determined with
regard to confidentiality, integrity and authentication (CIA) [89, p. 78]. There
are three categories which represent the consequences that are expected when a
violation of one of the respective CIA-properties occurs [89, p. 79]:
• “Normal”, the effects of damage are limited and manageable.
• “High”, the effects of damage can be considerable.
• “Very high”, the effects of the damage can reach catastrophic levels that

threaten the existence of the organization.
4. Every target object needs to be mapped to a module provided by the “IT-

Grundschutz” compendium ([91]) [85, p. 8]. It contains threat scenarios for the
respective modules and security requirements that need to be met for the differ-
ent security scopes. This process is referred to as “modelling” [89, p. 94].

5. The “IT-Grundschutz check” should be performed to determine what require-
ments from the compendium have already been met and which issues remain
insufficiently addressed [85, p. 8] [89, p. 104].

Once the preparations with BSI 200-2 are completed, the risk analysis with BSI
200-3 can be conducted:

1. A threat overview needs to be created that determines for every target object
whether elementary risks listed in the “IT-Grundschutz” compendium apply
to it [85, p. 13]. For target objects that map to an existing module in the
compendium, it already provides a list of applicable elementary threats [85,
p. 13], [91]. Additional elementary threats that may apply to a target object
have to be categorized into “Directly relevant”, “Indirectly relevant”, and “Not
relevant” [85, p. 13].

2. A risk assessment has to be performed to determine the extent of damage and
frequency of occurrence for every relevant threat per target object [85, p. 21].
This could be conducted based on empirical data for a quantitative analysis or
with qualitative categories. The latter is the suggested approach [85, p. 21]. The
categories for the frequency are [85, p. 21]:
• “Rarely”, it is expected to occur at most every 5 years.
• “Medium”, it is expected to occur once a year to once every 5 years.
• “Frequently”, it is expected to occur once a month to once a year.
• “Very frequently”, it is expected to occur several times a month.

The categories for the severity of the damage are [86, p. 21-22]:
• “Negligible”, the damage is low and can be ignored.
• “Limited”, the damage is limited and manageable.
• “Considerable”, the damage is considerable.
• “Existence threatening”, the damage can reach a catastrophic level that

threatens the existence of the organization.

61

3. The risk for each threat is determined by the risk matrix depicted in figure
25. The target object does not provide adequate protection for those that are
classified as “high” and “very high” [85, p. 23].

4. Treatment of the risk can be accomplished through avoidance, reduction, transfer
or acceptance [85, pp. 27-28]. The choice of treatment and additional safeguards
should be documented. Afterwards, the risk category has to be estimated again,
with the risk treatment applied [85, p. 29].

5. Consolidation requires the evaluation of the additional security safeguard to
ensure that they are effective, appropriate, consistent and user-friendly before
they are integrated into the security concept [85, p. 32].

Medium

Medium

Low Low

Low Low Low Low

Medium

Medium

High Very
High

Very
High

Very
HighHigh

High

Potential Damage

Frequency of
OccurenceRarely Medium Often Very

Often

Existence
Threatening

Considerable

Limited

Negligible

Figure 25: Risk classification matrix, based on [85, p. 22]

The BSI 200-3 specifies a flexible method that can be applied to both existing
projects and those that are being planned. It guides the identification of security
risks and their classification. Therefore, it is used in chapter “Risk Analysis with BSI
200-3” to find potential risks KNX installations could be exposed to, despite using
KNXnet/IP Secure.

62

4. Analysis of KNXnet/IP Secure in ISO
22510:2019

The ISO 22510:2019 standard claims that KNXnet/IP Secure would provide confi-
dentiality, mutual authentication, data integrity and resistance against replay attacks
[6, pp. 101-102]. Only users with sufficient permissions are supposed to be able to
access the provided services [6, p. 109]. In summary, KNXnet/IP Secure is meant to
address the security shortcomings of KNXnet/IP. This chapter analyzes the standard
to determine whether it fulfills its own security goals, which were previously explained
in section “3.3 KNXnet/IP Secure in ISO 22510:2019”, as well as the current state of
the art in cryptography. Furthermore, ISO 22510:2019 is checked for ambiguities and
contradictions in the protocol specifications.

4.1. Unicast

In order to determine the security properties of the unicast protocol, it first has to be
evaluated whether cryptographic primitives are applied correctly. Since KNXnet/IP
Secure uses CCM for AEAD with a custom formatting and counter generation func-
tion, they are checked for their fulfillment of definitions 3.2 and 3.3 as required by
the standard NIST SP 800-38C [3] and Jonsson’s security proof [35]. A violation of
the requirements could indicate an issue that affects the confidentiality and authen-
tication of the cipher mode. Furthermore, the design of the AKE is analyzed. This
includes both the suitability of the selected cryptographic primitives and whether their
composition constitutes a secure protocol for the establishment of a session key. The
analysis takes a particular interest in the claimed security properties for the unicast
protocol, which are confidentiality, mutual authentication, data integrity, resistance
against replay attacks and dictionary attacks, as shown in section “3.3 KNXnet/IP
Secure in ISO 22510:2019”. The evaluation also verifies whether the flaws found by
Judmayer et al. [1] in early drafts of the protocol still exist in ISO 22510:2019. Ad-
ditionally, it is checked if the unicast session and its access control fully address the
security risks identified in KNXnet/IP, as previously discussed in subsection “3.1.6
Insecurities and Design Flaws in KNXnet/IP”. A formal analysis of the AKE is con-
ducted with Cremer et al.’s eCK-PFS [68]. This model was chosen because it improves
upon the work of Canetti and Krawczyk [66], and LaMacchia et al. [67] and permits
proving if the protocol ensures PFS. Model checking with NuXMV is applied to for-
mally verify whether the described behavior in ISO 22510:2019 matches the specified
session FSM. The purpose is to identify discrepancies which could potentially affect
the protocol’s security or indicate a quality problem in the writing of the standard.
Based on the identified issues, recommendations are made for the improvement of the
unicast protocol.

63

4.1.1. CCM Requirements

As previously explained in subsection “3.3.1 CCM” of the “Background” chapter, the
ISO 22510:2019 standard does not explicitly define a formatting and counter gener-
ation function like NIST SP 800-38C does with its canonical ones. Both functions
are implied by the B0 and Ctri specified for each frame type. In the unicast protocol
the frames SESSION_RESPONSE, SESSION_AUTHENTICATE and SECURE_WRAPPER make
use of CCM. This results in the definition of the formatting function β as shown in
figure 11 and the counter generation function π in figure 12. They have to satisfy the
requirements of definition 3.3 in order to ensure that the security proof holds.

The first requirements is that the B0 has to uniquely determine the nonce N . The
B0 and Ctri are equal in the 112 most significant bits for each respective frame type.
This can be seen in definitions 3.38, 3.39 and 3.40. Comparing the Ctri for different
frame types, it is evident that the 16 least significant bit always consist of 0xff∥i.
Since π is only supposed to take the nonce and block number as input, see figure 5,
the nonce has to be N = MSB112(Ctri), which is equivalent to N = MSB112(B0).
Since this function uniquely determines the nonce N for a given B0 the condition is
satisfied.

The second requirement is that the formatted data uniquely determines P and A.
Furthermore, β has to be prefix-free. The former part is fulfilled by the formatting of
blocks B1, ..., Bn ← PAD16(a∥A∥P), as previously defined in equation 23. Since a is
specified to have a fixed length of 16 bit and represents the length of A, and the length
Q of P is either known or can be derived from len(C) − Tlen, there exists a function
that splits the given blocks B1, ..., Bn back into a, A and P . The a is given by the
first 16 bit of B1, the contained value determines the number of subsequent bytes that
are A and the remaining bytes are the padded P . Removal of the padding is possible
given knowledge about the length of P . Thus P and A are uniquely determined by
the formatted data. For the latter part is has to be proven that β is prefix-free.
Proof 4.1. Let (N,P ,A) and (N,P ′, A′) be distinct input triples for β. Let the
outputs be β(N,P ,A) = B0, B1, ..., Br and β(N,P ′, A′) = B′0, B

′
1, ..., B

′
r. Assume

that β is not prefix-free, then there exists a case where no i ≤ min(r, r′) can be found
for which Bi ̸= B′i.

If (N,P ,A) and (N,P ′, A′) are distinct input triples because P ̸= P ′:
1. If P and P ′ have different lengths, then Q ̸= Q′. Thus B0 ̸= B′0, because

Q = LSB16(B0) and Q′ = LSB16(B
′
0). This covers the case when P is a prefix

of P ′ or vice versa.
2. If P and P ′ are of equal length, with P ̸= P ′, then there has to exist a Bi and

B′i with i ≤ min(r, r′) for which Bi ̸= B′i because B1, ..., Br ← PAD16(a∥A∥P)
and B′1, ..., B

′
r ← PAD16(a

′∥A′∥P ′).
If (N,P ,A) and (N,P ′, A′) are distinct input triples because A ̸= A′:
1. If A and A′ have different lengths, then a ̸= a′. Thus B1 ̸= B′1, because

B1, ..., Br ← PAD16(a∥A∥P) and B′1, ..., B
′
r ← PAD16(a

′∥A′∥P ′). This covers
the case when A is a prefix of A′ or vice versa.

64

2. If A and A′ are of equal length, with A ̸= A′, then there has to exist a Bi and
B′i with i ≤ min(r, r′) for which Bi ̸= B′i because B1, ..., Br ← PAD16(a∥A∥P)
and B′1, ..., B

′
r ← PAD16(a

′∥A′∥P ′).
In all cases where (N,P ,A) and (N,P ′, A′) can be distinct input triples there exists
an i ≤ min(r, r′) for which Bi ̸= B′i. Hence, by proof of contradiction, β is prefix-free.

For the different notation of the second requirement by Jonsson [35], it can also be
shown that when the input triples are expected to contain nonces N and N ′ respec-
tively, with N ̸= N ′, then B0 ̸= B′0 because N = MSB112(B0) and N ′ = MSB112(B

′
0).

Thus, in all cases were the input triples can be distinct, β is prefix-free.
The third requirement is that B0 may not be equal to any of the counter blocks

Ctri across all invocation of CCM under the same key. This is evident from the
constructions of B0 and Ctri as described in subsection “3.3.1 CCM”, and definitions
3.38, 3.39 and 3.40. SESSION_RESPONSE and SESSION_AUTHENTICATE frames have a
fixed length and their B0 as well as Ctr0 are constants. The B0 ̸= Ctr0 because
LSB16(B0) ̸= LSB16(Ctr0), as shown in definition 3.38 and 3.39. For SECURE_WRAPPER
frames the length of the plaintext Q and the counter i are contained within the 16
least significant bits of B0 and the Ctri respectively. ISO 22510:2019 requires that the
length of the plaintext does not exceed 65279 bytes, which is 0xfeff in hexadecimal
[6, p. 107]. Additionally, the counter is limited to a maximum of 28 − 1 = 255 or
0xff, which practically limits the plaintext length to 255 × 16 byte = 4080 byte [6,
p. 107]. Based on definition 3.40 the Q = LSB16(B0) and 0xff∥i = LSB16(Ctri).
Since Q cannot exceed a value of 4080, which is 0x0ff0 in hexadecimal, it follows that
B0 ̸= Ctri.

KNXnet/IP Secure fulfills all three requirements from definition 3.3 as originally
defined in NIST SP 800-38C. However, it should be considered that the different for-
matting and counter generation functions likely require manufacturers to implement
their own versions of CCM. This can pose an increased risk for subtle issues in the
implementation, if the code has not been extensively reviewed by experts in cryptogra-
phy and application security. The concerns of Rogaway in [38] about the non-binding
specification of the canonical formatting and counter generation function in NIST SP
800-38C appear to be justified.

It is also necessary to evaluate if definition 3.2 is fulfilled by KNXnet/IP Secure’s
usage of CCM. It requires that the nonce N is never repeated under the same key
for different input data. This requirement exists, because nonce reuse can break the
confidentiality of the encrypted plaintext. When N is repeated in invocations of CCM
under the same key, this leads to π generating the same Ctr0,Ctr1, ...,Ctrm, which
results in an identical key stream S and S0. This can be seen in figure 5. Since
encryption is accomplished through C ← (P ⊕ MSBlen(P)(S))∥(T ⊕ MSBTlen(S0)),
CCM has the same issue as the CTR cipher mode. The impact on the confidentiality
can be explained based on a simplified example. Consider two blocks of plaintexts P i

and P ′i, which are supposed to be encrypted by the same Si through C i = P i⊕Si and
C ′i = P ′i ⊕ Si. Both equation can be transformed into Si = P i ⊕ C i and Si = P ′i ⊕ C ′i
by applying the XOR of P i and P ′i respectively. Therefore, P i ⊕ C i = P ′i ⊕ C ′i

65

which is equivalent to P i ⊕ C i ⊕ C ′i = P ′i. An adversary that is able to monitor the
communication will have access to C i and C ′i. If they also have knowledge of one
plaintext, P i in the simplified example, they can decrypt all other ciphertexts under
the same nonce and key, up to the length of the known plaintext. Even if such a
plaintext is not known, information about it are revealed, because C i⊕C ′i = P i⊕P ′i.
The XOR of the ciphertexts will contain zeros whenever bits in the unknown plaintexts
are equal. The frequency of such matches may allow inferring information about the
content.

In SESSION_RESPONSE frames the B0 is constant, as shown in definition 3.38. Fur-
thermore, the key that is being used by the server for CCM is the static device authenti-
cation code. Therefore, the nonce is constant under the given key, asN = MSB112(B0),
which violates the requirement. However, SESSION_RESPONSE applies CCM only for
authentication of the KNXnet/IP Secure header, the secure session identifier and
X ⊕ Y . All of its content is unencrypted, besides tag T . Since T is never transmit-
ted in the clear, an adversary should not be able to obtain this intermediate value
of CCM. Thus, using a known tag to decrypt T ⊕ MSBTlen(S0) does not appear to
be possible, despite the reuse of the nonce. Furthermore, T contains the CBC-MAC,
which has been computed with AES. Since it is a PRF, frequency analysis should not
be able to recover meaningful information from different ciphertexts. Even under the
assumption that an adversary would be able to retrieve the T and S0, an adversary
would not be able to perform a MAC forgery with a length extension attack, because
B1 contains the length of the authenticated data and the content of the frame has a
fixed size. Therefore, the nonce reuse does not appear to have a negative effect in this
specific instance.

In SESSION_AUTHENTICATE frames the B0 is constant, as shown in definition 3.39.
The key that is being used by the client for CCM is the password hash for the user
it wants to authenticate itself as. Therefore, the nonce is constant under the given
key, as N = MSB112(B0), which violates the requirement. For the same reasons as
with the SESSION_RESPONSE this does not appear to be an issue. Additionally, the
SESSION_AUTHENTICATE is only allowed to be transmitted when encapsulated in a
SECURE_WRAPPER [6, p. 129].

In SECURE_WRAPPER frames the B0 consists of the sequence number, KNX serial
number, message tag and plaintext length, as shown in definition 3.40. As previously
explained in “3.3.2.4 Authenticated Key Exchange”, the message tag is required to
be 0x0000 for unicast communication and the KNX serial number is assumed to be
a fixed value for a given device. Hence, only the sequence number is a variable value
in the nonce, as N = MSB112(B0). Each party in the session has a sequence number
that is initialized to zero and incremented with each frame that they are sending [6,
p. 122]. This is the sequence number included in B0, which is 48 bit long, as shown
in definition 3.40. The recipient has to store the last valid sequence number that
they have received in the session. Incoming frames are only supposed to be accepted
“[…] if the sequence number is greater than the sequence number of the previously
successfully received frame on the same connection” [6, p. 122]. It could happen that
a KNXnet/IP Secure session is active long enough for the sequence number to reach

66

its maximum. ISO 22510:2019 does not specify how the sender should handle this
situation, it only states that under the assumption that one million frames are being
sent per second the overflow would occur after 9 years [6, p. 122]. Depending on the
maximum data rate supported by the medium and network interface, the queue size
of the devices, and their processing speed, the required time could also be an order of
magnitude less. Since the specification does not state what the resulting value of the
sequence number is after an overflow, it is assumed that it wraps around to zero. This
would cause a nonce reuse under the same session key. The same issue would also occur
if the sequence number would be stuck at the maximum value. While the recipient
would not accept such frames, because the sequence number is smaller (or equal) to
the stored one, it does not prevent the sender from creating them. As a consequence,
the confidentiality would be affected. An adversary could record frames sent at the
beginning of the session and after the overflow, so that they have access to pairs of
frames with the same nonce. It is not necessary for them to store all transmitted
frames to find a nonce reuse. The session would timeout shortly after the overflow,
because the recipient does not receive any valid frames anymore. Servers would close
the session after one minute, see figure 19 with action A4 in the “Authenticated”
state and event E06. This is why storing the more than 248 frames is not required,
since in this hypothetical scenario the frames with reused nonces would only be a small
fraction of the sequence number space. Even if a real occurrence of a sequence number
overflow is not considered likely by the KNX Association, the ISO 22510:2019 should
specify how this edge case is supposed to be handled, because it affects the session’s
confidentiality.

4.1.2. Authenticated Key Exchange and Session

The unicast protocol uses CCM, X25519, and PBKDF2 with HMAC-SHA-256 as its
cryptographic primitives for the AKE and session. CCM is one of the approved cipher
modes listed in BSI TR-02102-1 [44] and NIST SP 800-131A [45], standardized by
NIST SP 800-38C [3]. Besides the requirements checked in the previous section, the
BSI additionally recommends a tag length of at least 64 bit [44, p. 24]. KNXnet/IP
Secure fulfills this with a fixed tag length of 128 bit, as can be seen in definitions 3.38,
3.39 and 3.40, since the tag length is equal to the length of the MAC field. CCM is
a suitable cipher mode for AEAD, when applied correctly. As shown in the previous
section, nonce reuse could occur in the unicast protocol of KNXnet/IP Secure.

While Curve25519 is neither included in BSI TR-03111 [46] nor in NIST SP 800-56A
[126], it is an elliptic curve that is believed to be secure, as discussed in subsection
“3.2.2 Elliptic Curve Cryptography and Curve25519”. Wireguard [127] and Signal
[128] use Curve25519 in their protocols as well. There have been discussions among
cryptographers regarding the optional input validation for X25519 [113], [114]. The
criticism of the design is not justified for the usage of X25519 in AKE protocols. If
an AKE protocol ensures mutual authentication and data integrity, then an adversary
would not be able to force a shared secret of zero, as they cannot manipulate a public
key to be a low order point. When a legitimate client generates their public key as

67

specified in RFC 7748 [7], then it would not produce such a point either. Hence, this
would only happen if a client, that can authenticate itself, deliberately sends a low
order point as public key. In this case the client would only compromise confidentiality
in its own session. If the AKE cannot ensure mutual authentication and data integrity,
then the protocol is generally broken and susceptible to MitM attacks. Rejecting
certain inputs would not prevent this problem. Therefore, X25519 is a suitable choice
for asymmetric cryptography for ECDH in an AKE.

KNXnet/IP Secure relies on PBKDF2-HMAC-SHA-256 for password-based key
derivation and subsequent storage of the password hash / key. While the specific
application of PBKDF2 for the authentication in the AKE is evaluated later in this
section, it is no state-of-the-art algorithm for password hashing. Unlike scrypt [129]
or Argon2 [130], [131], PBKDF2 is not designed to withstand highly parallelized at-
tacks with ASICs or GPUs. Although, with a random salt per user, a high enough
iteration count and a strong password, it could still be computationally infeasible to
brute force. However, PBKDF2 does not appear to be a suitable building block for
authentication in an AKE though, especially when digital signatures algorithms based
on elliptic curves would be an option. If the authentication in an AKE is based on
symmetric cryptography, more than one party has to know the respective key. This
has security implication, in case one of the parties, that is meant to verify that another
party’s frames are authentic, gets compromised.

The AKE of the unicast protocol has been previously described in “3.3.2.4 Au-
thenticated Key Exchange”. A simplified description of the most important steps is
shown in figure 26. The initial frame is a SESSION_REQUEST sent by the client that
contains its public key X. While this frame is not encrypted or authenticated, this is
not a design error. The client authenticates itself to the server at a later point with
a wrapped SESSION_AUTHENTICATE, which is meant to ensure that the client is not
being impersonated. However, an issue in the ISO 22510:2019 specification is that
the SESSION_REQUEST format is specified as variable length, because supposedly the
HPAI could be of variable length [6, p. 125]. This is contradictory to the description
of the validation steps that only permit SESSION_REQUEST’s received over TCP with a
route back HPAI for TCP [6, p. 126]. Thus, the frame has to have a fixed length of 46
byte [6, p. 126]. Additionally, the order of the validation steps is incorrect. The length
check has to occur before any evaluation of the HPAI content, otherwise malformed
frames could get misinterpreted.

Judmayer et al. [1] claimed that in AN 159/13 v02 there was a risk of a denial of
service (DoS) attack. Since in this version UDP was permitted and the first frame in
the handshake could be spoofed, they argued that this would allow to both initiate
computationally costly operations on the server for the ECDH and the adversary
could exhaust the number of sessions that can be simultaneously active [1, pp. 6-7].
Since the current standard requires a TCP connection and the client has to respond
within 10 seconds to the SESSION_REQUEST or the session is terminated [6, p. 114], this
scenario would not apply in the same way to devices conforming with ISO 22510:2019.
Although, general attack vectors for DoS, such as saturating the link with requests
or attempting to interrupt existing connections by spoofing TCP resets, still exist.

68

Furthermore, bugs in the implementation may allow effective DoS attacks. Chapter
“Analysis of Certified Devices” provides a real world example caused by the incorrect
length validation of SESSION_REQUEST frames.

Client Server

eskĈ
R←− {0, 1, ..., 2256 − 1}

X ← X25519(eskĈ , 9)

SESSION_REQUEST

eskŜ
R←− {0, 1, ..., 2256 − 1}

Y ← X25519(eskŜ , 9)
s← X25519(eskŜ , X)

ks ← MSB128(SHA-256(s))
Use kdac for CCM

SESSION_RESPONSE

(Optional) Validate MAC with kdac

s← X25519(eskĈ , Y)

ks ← MSB128(SHA-256(s))
Use kpwd for CCM in SESSION_AUTHENTICATE
Use ks for CCM in SECURE_WRAPPER

SECURE_WRAPPER(SESSION_AUTHENTICATE)

Decrypt and validate with ks

Validate MAC with kpwd

Associate permissions with session
Use ks for CCM in SECURE_WRAPPER

SECURE_WRAPPER(SESSION_STATUS)

Decrypt and validate with ks

Figure 26: Simplified depiction of the AKE
Happy path without the frame construction or full validation

When the server receives a valid SESSION_REQUEST it can compute its own private
key eskŜ and public key Y for the session. The server determines the shared secret
with the received public key X of the client, as described in “3.3.2.4 Authenticated
Key Exchange”, and depicted in figures 26 and 8. The session key ks is derived with
ks ← MSB128(SHA-256(s)). This key derivation appears to be suitable, since SHA-256
is a cryptographically secure hash function, the server uses an ephemeral key and only
a single session key has to be derived. Hence, a more elaborate key derivation function,
such as HKDF [132], is not strictly required. This design change was introduced after
AN 159/13 v04, which used to truncate the shared secret directly to determine the
session key [19, p. 7]. Since the shared secret is not a uniformly random byte sequence,
this not advisable. This issue was first criticized by Judmayer et al. in the design of
AN 159/13 v02 [1, p. 6].

69

The server answers the SESSION_REQUEST with a SESSION_RESPONSE only if it has
the available resources for an additional session [6, p. 128]. This prevents an DoS at-
tack on the client that was possible in v02 and v04, which was discovered by Judmayer
et al. [1, p. 6]. These previous draft versions required the server to respond in an unau-
thenticated frame to indicate an error [19, p. 18], which an adversary could forge to
prevent a legitimate client from connecting to a server. In v06 and ISO 22510:2019 er-
rors are only indicated with a SESSION_STATUS frame, wrapped in a SECURE_WRAPPER,
once the session is established.

When the server is able to create another session and has reserved a session iden-
tifier, it can send a SESSION_RESPONSE. In ISO 22510:2019 the SESSION_RESPONSE
authenticates the header, session identifier and X ⊕ Y , as shown in definition 3.38.
The authentication of X ⊕ Y instead of their concatenation is an unusual design
choice. A theoretical risk of a MAC forgery was identified by Judmayer et al. [1,
pp. 7-8]. According to them the MAC that authenticates X ⊕ Y could be reused to
impersonate the server, if for a SESSION_REQUEST containing X ′ the adversary would
be have knowledge of a Y ′ and its matching private key, for which X ⊕ Y = X ′ ⊕ Y ′.
Since the ECDLP and related problems apply, the adversary cannot determine the
private key for such a Y ′, they would already have to know it. Exhaustively gen-
erating key pairs is not an option, since the number of points on Curve25519 are
8 × 2252 + 27742317777372353535851937790883648493 [42, p. 214]. The chance of an
adversary picking a random private key, for which the resulting public key Y ′ fulfills
X ⊕ Y = X ′ ⊕ Y ′, is approximately zero. It is even more unlikely than finding a
collision in the resulting 128 bit MAC. Therefore, this is not a practicable attack and
this does not even consider the varying session identifiers. Despite the low probability
of an actual impact on the authentication, the concatenation of X and Y would be a
preferable design choice.

Application Notes v04 and v06 suggested that Diffie et al.’s STS protocol [48] would
be comparable to KNXnet/IP Secure’s AKE [19, p. 7], [49, p. 34]. It is unclear why
this reference was included, because the AKEs are quite different besides their ap-
plication of (EC)DH. KNXnet/IP Secure uses pre-shared symmetric keys for the
authentication, while the STS protocol relies on certificates and signatures. While
the reference to the STS protocol were removed in ISO 22510:2019, it shows that
the choice of symmetric over asymmetric cryptography for the authentication was
deliberate, despite the designers being aware of other, safer approaches. The con-
tent of the SESSION_RESPONSE is authenticated with the device authentication code,
or FDSK, when the server is in factory default settings. These keys have to be
known by all potential clients so that they can verify that the frames are authen-
tic. Judmayer et al. pointed out the obvious issue of device compromise with sym-
metric keys for authentication [1, p. 4]. If any of clients that store the server’s de-
vice authentication code are compromised and the adversary is able to extract this
key, they can impersonate the server. The problems are even more severe in ISO
22510:2019 as the device authentication code is “[…] derived from a user chosen shared
secret” with PBKDF2(p, “device-authentication-code.1.secure.ip.knx.org”, 65536, 128)
[6, p. 135]. A static salt is used, which means that if the same password is used for

70

different servers, they derive the same device authentication code. As explained in
“3.2.3 Key Derivation with PBKDF2-HMAC-SHA-256”, this is against best practice.
The compromise of one server could potentially break the authentication of other
servers. Furthermore, the standard claims that the symmetrical keys would be pro-
tected against offline dictionary attacks [6, p. 144]. This is categorically false, since
offline attacks can be conducted and it is possible to precompute a dictionary with
commonly used passwords, since the salt is static. All that is necessary for an offline
attack is to record the first two frames in an AKE with the target server. Since the con-
tent in the SESSION_RESPONSE frame is only authenticated and not encrypted, and the
public key of the client is known from the SESSION_REQUEST, all inputs for the CCM
encryption for the SESSION_RESPONSE are known, except for the key. The adversary
can guess passwords, derive the keys with PBKDF2 and check whether one of the keys
allows to successfully verify the MAC field in the SESSION_RESPONSE. The security of
the authentication hinges on the complexity of the password and the computational
resources of the adversary, as they determine whether it is practically possible to find
the key. An evaluation is conducted in chapter “Device Management with the ETS5”
with a modified version of the GPU-accelerated password cracking software hashcat
[133].

ISO 22510:2019 claims that KNXnet/IP Secure unicast would provide mutual au-
thentication [6, pp. 101-102, p. 144]. However, it is optional for clients to validate the
MAC in the server’s SESSION_RESPONSE [6, pp. 127-128]. If the authentication of the
server is not mandatory, then the protocol does not provide mutual authentication.
An adversary can impersonate any server to a client that does not verify that the
SESSION_RESPONSE frames are authentic.

With the SESSION_RESPONSE frame received, the client is able to determine the
shared secret and session key, based on the public key of the other party. The client has
to authenticate itself to the server with a password hash and associated user ID, where
the user ID determines the level of permissions granted by the server [6, pp. 129-130].
This is done through a SESSION_AUTHENTICATE frame, using a password hash as key
to authenticate its content with CCM. The frame is wrapped in a SECURE_WRAPPER,
encrypted and authenticated with the session key. Each password hash is derived
from a password p with PBKDF2(p, “user-password.1.secure.ip.knx.org”, 65536, 128)
[6, p. 135]. ISO 22510:2019 states that “For practical reasons, a user may choose to
opt for the same password set in all devices of his installation project” [6, p. 130]. While
this is technically true, it reads like a suggestion. This would be ill-advised, especially
give that the key derivation uses a static salt that is identical for all users and devices.
Therefore, the password reuse across devices would result in the same password hash
being generated. This issue already existed in AN 159/13 v02, as pointed out by
Judmayer et al. [1, p. 4], despite using a different approach for the key derivation. As
a consequence, the compromise of password hashes from one server would potentially
allow an adversary to impersonate the users to another server, where the password
has been reused. The static salt is a design flaw known as CWE-760 [134].

After a factory reset or before the initial configuration, all password hashes are de-
rived from the empty password and are thus a well-known static key, as explained in

71

“3.3.2 Unicast”. In this situation the server cannot perform an actual authentication
of the client, as the standard admits [6, p. 122]. Hence, it is advisable to configure
the device before installing them in the network. Otherwise, an adversary could au-
thenticate itself with the known key and change settings or use the provided services.
While it is possible to perform a factory reset with physical access or overwrite the
configuration, it is against best practice that the default credentials are hard-coded,
see CWE-798 [135]. It is unclear, why ISO 22510:2019 does not require a random,
device specific password set by the manufacturer, similar to the FDSK.

An adversary could attempt to gain knowledge about a password hash used by a
client, by impersonating a server that the client intends to communication with. Due
to the flawed authentication, the adversary could either send a SESSION_RESPONSE
with arbitrary content in the MAC field, if the client does not validate it, or attempt
to determine the device authentication code of the legitimate server through password
cracking, as previously described. If either approach is successful, the adversary is able
to complete an AKE with the client. Since the adversary obtains the actual session
key ks, because they pass as a legitimate party, they are able to decrypt the SECURE_-
WRAPPER that contains the SESSION_AUTHENTICATE frame. Therefore, the adversary
has access to the MAC field in the SESSION_AUTHENTICATE frame, that authenticates
the content of the frame with CCM, using a password hash as key. Similarly to the
password cracking for the device authentication code, the adversary has knowledge of
all inputs that were used to compute the MAC field, except for the key. An offline
attack can be conducted in the same fashion, by calculating the password hashes
for potential passwords and checking if the MAC can be successfully verified with
one of them. Again, the practical feasibility of the attack depends on the password
complexity and available computational resources. It is evident that the authentication
in KNXnet/IP Secure, as specified by ISO 22510:2019, cannot be considered secure
from a theoretical standpoint. Its practical security highly depends on the chosen
passwords and the clients voluntary authentication of the server. How the passwords
are generated with the ETS is explained in “Device Management with the ETS5”.

When a server is able to validate the MAC, contained in the wrapped SESSION_-
AUTHENTICATE frame, with the password hash stored in PID_PASSWORD_HASHES for the
given user ID, it determines whether management level access or user level access is
provided. This was previously explained in “3.3.2.4 Authenticated Key Exchange”
and “3.3.2.6 Access Control”. KNXnet/IP Secure implements access control based on
these two permission levels and the settings of PID_SECURED_SERVICE_FAMILIES. ISO
22510:2019 restricts the access to device management services, when PID_SECURED_-
SERVICE_FAMILIES requires KNXnet/IP Secure to be used. Only management level
access is allowed, this prevents configuration through plain KNXnet/IP and user level
access. Additionally, the configuration of KNXnet/IP Secure parameter objects re-
quires KNXnet/Data Secure and knowledge of the tool key [6, p. 129, p. 133]. Hence,
all KNXnet/IP Secure device need to support Data Secure to protect the cEMI frames
for the configuration of the server. Furthermore, if PID_SECURED_SERVICE_FAMILIES
requires KNXnet/IP Secure for tunneling, the service may not be accessed through
plain KNXnet/IP. Thus, access control addresses the concerns raised in “3.1.6 Insecuri-

72

ties and Design Flaws in KNXnet/IP”, although the design flaws in the authentication
undermine its goal of restricting access to authorized users. Device discovery remains
unrestricted with KNXnet/IP Secure, thus an adversary can still learn detailed infor-
mation about the devices that permit to identify the specific model and manufacturer
without any authentication. This may help an adversary to identify devices that are
known to be vulnerable.

Once the server informs the client about the successful authentication with a SECURE_-
WRAPPER containing the SESSION_STATUS frame, the AKE is completed. Further com-
munication in the session is only conducted through frames encapsulated in SECURE_-
WRAPPER that are encrypted and authenticated with the session key. Besides the
theoretical nonce reuse, no further flaws have been found in the session communica-
tion.

The evaluation of the security properties defined in “3.2.4 Security Properties for
Cryptographic Protocols” had the following results:

• Confidentiality is provided during the AKE under the assumption that both
parties are honest and therefore the adversary does not actively interfere. The
ECDH ensures through the ECDLP that an adversary is unable to determine
the private keys of both parties and thus the session key is secret. CCM is used
for AEAD. However, during the session it is theoretically possible that a nonce
reuse occurs, due to a sequence number overflow. Thus, ISO 22510:2019’s goal
of confidentiality is not generally fulfilled for the session. Furthermore, if the
adversary is permitted to actively attack by impersonating a party, then the
confidentiality is broken, as they are able to learn the session key.

• Data integrity is supposed to be provided by the application of CCM with
either a device authentication code, password hash or session key. As previously
explained, the client is not required to validate SESSION_RESPONSE frames. Ad-
ditionally, an adversary is potentially able to determine device authentication
codes and password hashes, hence able to forge frames that pass validation.
Thus, it is not ensured that altered or injected messages can be detected under
all circumstances. This goal of ISO 22510:2019 is not fulfilled.

• Message authentication is not ensured, as it is based on data integrity. Since
an adversary could learn device authentication codes or password hashes, they
would be able to forge frames that appear to originate from a particular party.
Thus, the identity of another party cannot be accurately verified, as the legit-
imate and forged frames cannot be distinguished. Therefore, an adversary can
impersonate parties. Additionally, the password-based key derivation uses static
salts, thus password reuse leads to the same keys being generated. As a con-
sequence, it is not always possible to distinguish the origin of a message. For
instance, servers could share the same device authentication code, resulting in
frames that could not be attributed to a single party.

• Entity authentication is not ensured, as the adversary is potentially able to
impersonate parties.

73

• Mutual authentication is a goal of ISO 22510:2019 that is also not fulfilled,
since entity authentication is not ensured. Furthermore, this is already con-
ceptually broken by making the MAC validation of SESSION_RESPONSE frames
optional.

• Non-repudiation is not ensured, since multiple parties are required to have
knowledge of the device authentication codes and password hashes to authen-
ticate each other. As a consequence, any of those parties could in theory have
created a particular frame. For instance, it is not possible to determine if a
SESSION_RESPONSE frame was created by a server or by one the clients that
know its device authentication code, just by considering the information con-
tained in the frame. A similar issue occurs when passwords have been reused
and the origin of the message is unclear, because more than one party shares
the same key for the authentication.

• Resistance against replay attacks is provided by the sequence numbers in-
tegrated into the SECURE_WRAPPER. A recipient does not accept replayed frames,
even in the edge case when the sender has a sequence number overflow. Frames
in the AKE cannot be effectively replayed, since ECDLP prevents an adversary
from learning the private from the public key. Hence, it is possible to replay
a SESSION_RESPONSE frame, but the adversary would not be able to derive the
session key. This goal of ISO 22510:2019 is fulfilled.

• Perfect forward secrecy is ensured, since both parties are required to generate
new key pairs for ECDH in every session [6, p. 121]. These ephemeral keys
are unrelated to the device authentication codes and password hashes, thus a
compromise of the long-term keys does not affect the confidentiality of past
session keys that have been established between honest parties.

• Resistance to known session key attack is also fulfilled, for the same reason
as PFS. Since every session requires fresh ephemeral key pairs by both parties,
the session key will be different to past sessions. Thus, knowing a particular
session key does not provide an advantage for attacking other sessions. The
likelihood of the exact same choice of key pairs repeating for both parties is
negligible.

• Resistance against key compromise impersonation is not ensured. If the
adversary has knowledge of the long-term keys of a party, this includes their
device authentication code(s) and password hashes. Since these keys are used
to authenticate their communication partners, the adversary can impersonate
them.

• Resistance against unknown key-share attack is not ensured, due to the
potential password reuse. An unknown key-share could occur, if there are two
servers Ŝ1 and Ŝ2 that have the same device authentication codes and password
hashes. When a client intends to communication with server Ŝ1, the adversary
could in theory redirect the communication to server Ŝ2, while the client believes
it communicates with Ŝ1. Since the device authentication code and password

74

hash match, both client and server would not notice the incorrect communication
partner.

• Implicit key authentication is provided, because ECDH ensures through the
ECDLP that only the client and server performing the AKE have knowledge of
the session key among honest parties.

• Key confirmation is ensured, since both parties are expected to derive the ses-
sion key and prove knowledge of it. The client has to apply CCM with the session
key to encrypt the SESSION_AUTHENTICATE frame in the SECURE_WRAPPER. The
server is able to verify that the session key was used by decrypting and validat-
ing the frame with said key. Confirmation of the successful establishment of the
session is sent by the server with an encrypted SESSION_STATUS in a SECURE_-
WRAPPER. The client can also verify that the server has knowledge of the session
key by decrypting and validating the encapsulated frame.

• Explicit key authentication is fulfilled since both implicit key authentication
and key confirmation hold.

• Key freshness is fulfilled, as ISO 22510:2019 requires both parties to generate
new key pairs for every session [6, p. 121].

• Key control is not fulfilled, because ISO 22510:2019 does not require the op-
tional input validation for X25519. Therefore, a party could deliberately send
a low order point to force the shared secret to be zero. However, this is not
practical attack, as previously explained.

• Identity hiding is not fulfilled, since a passive adversary can observe the
SESSION_RESPONSE of a server and attempt to infer its device authentication
code.

In summary, the unicast communication of KNXnet/IP Secure fails to fulfill a ma-
jority of the goals stated in ISO 22510:2019 from a theoretical standpoint. It does not
provide confidentiality, data integrity, mutual authentication, and resistance against
online and offline attacks under all circumstances. Only resistance against replay at-
tacks could be confirmed among the intended goals. Furthermore, several security
properties that are generally expected of a modern AKE protocol were not achieved.
Since both theoretical and practical attacks are possible, due to severe design flaws
in the authentication, it cannot be considered a secure protocol based on the current
state of the art in cryptography. However, the feasibility of offline attacks against the
authentication depends on the password complexity.

4.1.3. Formal Analysis with eCK-PFS

The unicast protocol of KNXnet/IP Secure is formally analyzed in the eCK-PFS model
as defined in “3.2.5 eCK-PFS Model”.

Definition 4.1 (Client). Let a client Ĉi ∈ P be a party that posses the following
key material.

75

• Long-term keys: Let kpwd
R←− {0, 1}λ be a password hash, uid ∈ [1, 127] a user

ID and Ŝj ∈ P a server. Let pwd = (kpwd, uid, Ŝj) be a triple that associates a
Ŝj with a kpwd and uid, which can be used to authenticate the user to the Ŝj.
Let PWDĈi

= {pwd1, ..., pwdn} be the first set of long-term keys for Ĉi, which
are revealed by a corrupt(Ĉi) query.
Let kdac

R←− {0, 1}λ be a device authentication code for a server Ŝj ∈ P . Let
dac = (kdac, Ŝj) be a tuple that associates the kdac with a Ŝj, which can be used
to authenticate it. Let DACĈi

= {dac1, ..., dacm} be the second set of long-term
keys for Ĉi, which are revealed by a corrupt(Ĉi) query. Since clients are not
required to validate the server’s device authentication code, the DACĈi

could
also be empty.

• Ephemeral keys: Let eskĈi

R←− {0, 1, ..., 2256 − 1} be the ephemeral secret key
and epkĈi

← X25519(eskĈi
, 9) the associated public key of Ĉi in a session s.

These keys are revealed by the ephemeral-key(s) query. The epkĈi
of a Ĉi was

previously referred to as X.

Definition 4.2 (Server). Let a server Ŝi ∈ P be a party that posses the following
key material.

• Long-term keys: Let kpwd
R←− {0, 1}λ be a password hash and uid ∈ [1, 127]

a user ID. Let pwd ′ = (kpwd, uid) be a tuple that associates a kpwd with a uid,
which can be used to authenticate a client Ĉi through its user. Let PWDŜi

=

{pwd ′1, pwd ′2, ..., pwd ′n} be the first set of long-term keys for Ŝi, which are revealed
by a corrupt(Ŝi) query.
Let kdac

R←− {0, 1}λ be the device authenticate code for Ŝi. This is another
long-term key that is revealed by a corrupt(Ŝi) query.

• Ephemeral keys: Let eskŜi

R←− {0, 1, ..., 2256 − 1} be the ephemeral secret key
and epkŜi

← X25519(eskŜi
, 9) the associated public key of Ŝi in a session s.

These keys are revealed by the ephemeral-key(s) query. The epkŜi
of a Ŝi was

previously referred to as Y .

The information about associated user IDs and servers are considered part of the
long-term keys, as the specified protocol requires this information alongside the pass-
word hashes and device authentication codes for the authentication. Additionally,
this does not change the advantage AdveCK-PFS

A (λ) for the adversary A. It is possible
to conduct an attack game without the associated information, but this would always
require to describe the iteration through clients, servers and/or user IDs, for which
the revealed key can be used. Therefore, this is mainly for a compact description of
the attack games and has no effect on the outcome.

This analysis in eCK-PFS assumes the best case scenario for ISO 22510:2019, where
clients do not skip the authentication of servers and passwords are not reused. If it
can be shown that the unicast protocol is insecure in the model under these condition,

76

then it will also be insecure when the server authentication is skipped or passwords
are reused. Attack games that prove this can be found in section “A.1 Supplementary
Analysis with eCK-PFS” of the appendix.

Attack Game 4.1 (Mutual authentication and no password reuse). Let attack
game G in model eCK-PFS be played by a PPT adversary A under the assumption
that all parties in P implement mutual authentication and there is no password reuse
in the key derivation of device authentication codes or password hashes.

1. A issues corrupt(Ĉ1) for a Ĉ1 ∈ P . It reveals PWDĈ1
and DACĈ1

. Since the
assumption is that Ĉ1 authenticates servers it communicates with, there exists
a dac ∈ DACĈ1

for which dac = (kdac, Ŝ).
2. A prevents the SESSION_REQUEST of a Ĉ2 ∈ P from reaching Ŝ, with which

it initiated a session s, where sactor = Ĉ2, speer = Ŝ and srole = I. A com-
putes eskA

R←− {0, 1, ..., 2256 − 1} and epkA ← X25519(eskA, 9). With the
epkĈ2

contained in the SESSION_REQUEST, A determines the session key with
ks ← MSB128(SHA-256(X25519(eskA, epkĈ2

))).
3. A uses send(s, Ŝ,m) to start the responder session s′ to s on behalf of Ŝ, where

m is a SESSION_RESPONSE frame, containing epkA. The kdac for Ŝ from the first
step is used as key for CCM.

4. Ĉ2 accepts this message as it is authenticated with the correct kdac for Ŝ. It
computes ks ← MSB128(SHA-256(X25519(eskĈ2

, epkA))). Ĉ2 replies with a
SESSION_AUTHENTICATE frame, which is encapsulated in a SECURE_WRAPPER that
is encrypted and authenticated with ks.

5. A issues send(s,m) where m is a SESSION_STATUS indicating successful au-
thentication, which is encapsulated in a SECURE_WRAPPER that is encrypted and
authenticated with ks. The session s is completed.

6. The session s is fresh because:
a) G does not include the query session-key(s).
b) There is no session-key(s∗) query issued for any session s∗ matching s.
c) G does not include the ephemeral-key(s) query.
d) For no origin session s′ to session s does G include a corrupt(speer) and

ephemeral-key(s′) query.
e) G does not use corrupt(speer) and there is an origin session s′ to s, namely

the one created by the adversary.
A issues test-session(s). The challenger provides either the real session key or
a random session key. A can determine with certainty which key they have
been given, since they know the session key ks. Thus, b′ is selected accordingly
and P (b = b′) = 1. A wins G with AdveCK-PFS

G (λ) = 1. The KNXnet/IP Secure
unicast protocol is not secure in eCK-PFS, because no negligible function negl(λ)
exists such that AdveCK-PFS

G (λ) ≤ negl(λ). This is evidently the case, because

77

any negl(λ) would have to fulfill definition 3.34 and AdveCK-PFS
G (λ) is a constant

non-zero value.

In summary, the AKE for unicast communication in KNXnet/IP Secure is proven
to be insecure in the eCK-PFS model by Cremers and Feltz [68]. Since the certain
success of the adversary in the eCK-PFS model is caused by the use of symmetric
keys for the authentication, the unicast protocol would also be considered insecure in
weaker security models, such as eCK by LaMacchia et al. [67] or the original Canetti
and Krawczyk model [66].

4.1.4. Model Checking of Session FSM

Model checking in this work has two purposes, the comparison of the textual descrip-
tion of KNXnet/IP Secure with its more formalized specification of the session and
timer synchronization FSMs as well as checking the conformance of real device with
the ISO 22510:2019 standard by comparing the protocol state fuzzing results with the
specified session FSM. The former is a topic in this chapter, while the latter is pre-
sented in the “Analysis of Certified Devices” chapter. In order to facilitate the model
checking, the FSMs from ISO 22510:2019 are translated into the NuXMV syntax. The
alphabet, on which the NuXMV models for the session FSM operate, is extended to
include categories of invalid frames, so that the same alphabet is reusable for the pro-
tocol state fuzzing. This allows a precise comparison between the session FSM and
the protocol state fuzzing results. Additionally, the adaptation of CTLs requires only
minor modifications.

In this section the model checking is conducted with the session FSM, visualized in
figure 19. Two NuXMV models were created from the specification in ISO 22510:2019.
The one labeled “Session FSM with Timer” is trying to replicate the specification ex-
actly, including the modeling of time progression and limits for the timer. The other
labeled “Session FSM” is a simplified version, that replaces the timer with a state vari-
able, which indicates whether the timer is running or has expired. While the simplified
version is not strictly required, it was originally created to reduce the complexity of
the model in order to avoid a state-space explosion and permit a faster evaluation in
NuXMV. Details about both models can be found in section “A.7 Software, Models
and Logs” of the appendix.

Test conditions for the model checking are derived from the requirements for the
server’s unicast implementation in ISO 22510:2019. The selection is based on the rel-
evancy of the requirements and the precision of their wording. The latter is necessary
to faithfully translate them to CTLs, because otherwise the required amount of inter-
pretation and context information would call into question whether the paragraphs in
ISO 22510:2019 are accurately represented by them. The model checking is conducted
with 23 tests, as shown in tables 3 and 4. The CTLs for every test are listed in table
15 of the appendix.

The majority of the tests are successful and the CTLs are proven to be satisfied by
NuXMV, which means that the description in ISO 22510:2019 and the session FSM

78

do not contradict each other. All states in the session FSM can be reached and all
transitions can be activated, which is proven in tests 21 and 23 respectively. However,
there are five cases that require further inspection.

The test 5 is about the termination of the AKE when the client fails to respond to
the server’s SESSION_RESPONSE within 10 seconds. The session FSM does provide a
transition from the UNAUTHENTICATED state to the IDLE state when the timer expires.
However, the session FSM as specified, is non-deterministic. This is proven in test
22. The timer can simultaneously expire as another event occurs, thus two transitions
would in theory be able to fire. This is an edge case and presumably the specification
intends the timer expiration to take precedence. However, checking if the timer reaches
zero in UNAUTHENTICATED always leads to the IDLE state, is not fulfilled due to non-
determinism. This has no real world consequences, because implementations would
be deterministic, since one of the possible options has to be picked. The session FSM
issue with non-determinism is thus rather pedantic albeit accurate.

Model
Test No.

1 2 3 4 5 6 7 8 9 10 11 12
Session FSM ✓ ✓ ✓ – – × ✓ ✓ ✓ ✓ ✓ ✓
Session FSM with Timer ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Model checking of the session FSM in NuXMV - Part 1
Symbols: ✓fulfilled, × unfulfilled; – not applicable

See table 15 for test details.

Model
Test No.

13 14 15 16 17 18 19 20 21 22 23
Session FSM – ◦ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓
Session FSM with Timer – ◦ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓

Table 4: Model checking of the session FSM in NuXMV - Part 2
Symbols: ✓fulfilled, ◦ ambiguous, × unfulfilled; – not applicable

See table 15 for test details.

Test 6 evaluates the veracity of the following statement: “If the client sends any
other SECURE_WRAPPER except a wrapped SESSION_AUTHENTICATE request before suc-
cessful authentication, the server shall respond with a SESSION_STATUS with status
field of STATUS_UNAUTHENTICATED” [6, p. 144]. This is evidently not true, when com-
paring it with the session FSM. When the server is in the UNAUTHENTICATED state,
the client could send a SECURE_WRAPPER containing a SESSION_STATUS frame with the
status field set to STATUS_CLOSE. This would trigger event E03, which means that the
server performs the action A3. Thus the servers sends a SECURE_WRAPPER containing a
SESSION_STATUS frame with the status field set to STATUS_CLOSE back to the client.
Another counterexample is that the client could send a SECURE_WRAPPER containing a

79

SESSION_STATUS frame with the status field set to STATUS_AUTHENTICATION_SUCCESS.
This would not happen with a client that conforms with the standard, but according
to the session FSM no transition from the UNAUTHENTICATED state would be triggered.
The quote from ISO 22510:2019 is therefore inaccurate and would have to be corrected
to match the session FSM.

According to ISO 22510:2019 the server is supposed to close the TCP connection
when the KNXnet/IP header is not well-formed [6, p. 41]. This is evaluated in test 14.
The specification of the session FSM does not mention this case. Thus, it does not sat-
isfy the test condition, as the reception of a malformed header in the UNAUTHENTICATED
state does not result in the immediate termination of the session or TCP connection.
However, it could be argued that the header should be validated before being pro-
cessed by the session and thus is not its responsibility. Therefore, the test result is
considered ambiguous, although the CTL is not fulfilled.

The standard states that when a SESSION_AUTHENTICATE frame has the reserved
field set to a non-zero value, it shall be discarded [6, p. 129]. In test 19, it is determined
that this does not match the specification of the session FSM. In other instances when
ISO 22510:2019 refers to discarding a frame, it means that the frame is ignored without
any further action. However, if the server receives a valid SECURE_WRAPPER with an
invalid SESSION_AUTHENTICATE frame in the UNAUTHENTICATED state, then this is event
E02 which triggers action A2. The server is supposed to reply with a SECURE_WRAPPER
containing a SESSION_STATUS with the status field set to STATUS_AUTHENTICATION_-
FAILED. This contradicts the statement that the frame shall be discarded. It is unclear
which behavior is the intended one.

In summary, the description of the server’s behavior for KNXnet/IP Secure unicast
communication mostly matches the session FSM specified in ISO 22510:2019. When
differences occurred, they were caused by oversimplifications or ambiguities in the
text, or edge cases that were not considered in the FSM. None of the identified issues
have an impact on the session’s security.

4.1.5. Improvement Suggestions

The core problem of the KNXnet/IP Secure unicast protocol is that the KNX Asso-
ciation decided to develop their own AKE, while disregarding scientific publications
about AKE protocols with security proofs and not fully addressing the criticism of
their early design draft by Judmayer et al. [1]. This resulted in a design with an
insecure authentication, that relies on symmetric keys shared among communication
partners. Additionally, the keys are derived from passwords with PBKDF2 using a
static salt for clients and servers respectively.

There are two general recommendation for the development process and future
versions of KNXnet/IP Secure unicast. Firstly, an AKE protocol from the literature
with suitable security properties should be integrated, instead of the KNX Association
developing their own. Despite being aware of the STS protocol by Diffie et al. [48],
which would have been a good choice, the KNX Association decided not to adopt
it. Secondly, criticism by security researchers should be taken serious. Several of the

80

conceptual flaws that still exist in ISO 22510:2019 were pointed out by Judmayer et
al. in their publication from 2014. The submission of the finalized KNXnet/IP Secure
design to the International Organization for Standardization (ISO) happened in 2017
[20]. This should have been ample time to address all design problems, but the KNX
Association chose not to. It also seems that the protocol design ideas by Granzer et
al. [25] were not used in KNXnet/IP Secure.

A specific suggestion for the next KNXnet/IP Secure version is to adopt asym-
metric cryptography for the authentication by integrating an AKE based on the STS
protocol [48] with pre-shared public keys and CCM for AEAD. Considering the ap-
plication on embedded hardware, Ed25519 [136] could be a suitable choice for the
signatures. During the initial configuration, each server would generate a key pair as
a replacement of the device authentication code. The ETS would be given the public
keys while the private keys do not leave the devices. Similarly, the ETS can generate
key pairs for the management users, replacing the password hashes. Other clients
would generate key pairs for their users too and provide the public keys to the ETS.
In the next step the ETS would distribute the public keys of the servers to potential
communication partners. Each server would also receive the public keys for its users.
Pre-sharing the public keys avoids the inclusion of a public key infrastructure (PKI)
and certificates into the protocol. The specification of the SESSION_RESPONSE and
SESSION_AUTHENTICATE would have to be modified. Both need to include a signature
of the concatenated public keys X and Y [48, p. 9], not X ⊕ Y as specified in ISO
22510:2019 for KNXnet/IP Secure. Additionally, the signature in SESSION_RESPONSE
would have to be encrypted with the session key.

The benefit of this approach is that a compromise of a device does not reveal secret
information about its communication partners anymore, preventing their imperson-
ation. It eliminates the risk of online and offline attacks on the authentication, under
the assumption that the ECDLP is intractable. The adapted STS with encryption
would also satisfy all relevant security properties, which excludes key control.

At a bare minimum, the KNXnet/IP Secure protocol should not use static salts,
replace PBKDF2 with a modern key derivation function such as Argon2id [131], and
enforce through the ETS that strong passwords are used. Additionally, the factory
default management passwords for the server should not be a static key. Instead, a
randomly generated per device value like the FDSK has to be assigned. However, as
these changes would already require an entirely new version for KNXnet/IP Secure
due to incompatibility with the current one and do not address the core problem, the
AKE has to be fixed properly as previously described.

It would also be advisable to address the ambiguities, unspecified parts and errors
that have been identified. This includes adding the missing parts of the formatting
function originally taken from KNXnet/Data Secure, properly specifying the client-
side, preventing nonce reuse due to session number overflow, and correcting the length
and HPAI validation of SESSION_REQUEST frames. Furthermore, the quality assurance
for documents like the ISO 22510:2019 has to be improved. For instance, figures 73,
74, 102 and 103 do not contain the correct images, they have been replaced with
already existing ones from the document.

81

4.2. Multicast
The security properties of the multicast protocol are analyzed in a similar fashion to
the unicast protocol. The application of CCM, with its custom formatting and block
generation function, is checked for the fulfillment of definitions 3.3 and 3.2 to identify
potential problems that may affect the confidentiality or authentication. Furthermore,
the group communication is examined with regard to the claimed security properties
of confidentiality, mutual authentication, data integrity and resistance against re-
play attacks, as previously highlighted in “3.3 KNXnet/IP Secure in ISO 22510:2019”.
The evaluation also determines whether flaws found by Judmayer et al. [1] in drafts of
KNXnet/IP Secure have been addressed in ISO 22510:2019. Furthermore, it is checked
if the access control solves design flaws of KNXnet/IP, discussed in subsection “3.1.6
Insecurities and Design Flaws in KNXnet/IP”. KNXnet/IP Secure’s multicast does
not implement an AKE, hence no formal analysis is conducted with eCK-PFS. Model
checking in NuXMV is applied to identify possible mismatches between the timer syn-
chronization FSM, depicted in figure 22, and the described behavior in ISO 22510:2019,
as well as potential errors in the model. Improvement suggestions for the multicast
protocol of KNXnet/IP Secure are made, based on the results of all previous steps of
the analysis.

4.2.1. CCM Requirements

ISO 22510:2019 implicitly defines the same formatting and counter generation func-
tion for both unicast and multicast, shown in figures 11 and 12. This has been
previously explained in “3.3.1 CCM”. The requirements from NIST SP 800-38C, as
shown in definition 3.3, have already been evaluated for unicast in “4.1.1 CCM Re-
quirements”. Since the first two requirements are only based on the definition of the
formatting function, which both protocols share, they are equally fulfilled for mul-
ticast. According to the third requirement B0 has to be different from all counter
blocks Ctri for all invocations of CCM under the same key. Multicast applies CCM to
the SECURE_WRAPPER and TIMER_NOTIFY frames. TIMER_NOTIFY frames have a fixed
length, requiring only one counter block for CCM. The B0 is not equal to Ctr0, because
LSB16(B0) ̸= LSB16(Ctr0), as shown in definition 3.43. Since the SECURE_WRAPPER’s
B0, Ctri, and length limits for the payload are identical to unicast, the B0 is different
to all Ctri, as explained in “4.1.1 CCM Requirements”. Hence, the third requirement
is fulfilled.

Lastly, it has to be checked in accordance with definition 3.2, that the nonce N
is never repeated under the same key for different input data. The backbone key,
that is used for CCM by all multicast group members, has an unlimited lifetime [6,
p. 111]. Thus, it can be assumed that the key is the same for all invocations of CCM
in multicast for the purpose of this analysis.

The nonce N for SECURE_WRAPPER frames in multicast consists of the timer value,
serial number and message tag, because N = MSB112(B0), as explained in “3.3.1
CCM”. The inclusion of the serial number and message tag in the nonce is a deliberate

82

choice to ensure different Ctri, even when the timer value is identical [6, p. 108]. This
rectifies a design flaw in AN 159/13 v02 discovered by Judmayer et al., where nonce
reuse would occur when frames were sent with the same timer value [1, p. 5-6]. In ISO
22510:2019 the nonces should be different even when two or more devices construct
their frames when their timer values are identical, because the serial number should be
unique for every device in the KNX installation and the 16 bit message tag is supposed
to be randomly chosen for every frame. If one device constructs two frames with the
same timer value, then there is a chance of 1/216 that the same message tag is picked
for both frames, which would cause a nonce reuse. From a theoretical standpoint
this still poses a significant risk to the confidentiality. This is a realistic problem,
if the implementation is able to construct frames faster than the update frequency
of the timer, which is “[…] one tick per millisecond real-time” [6, p. 114]. This risk
could be eliminated by requiring that a timer increase has to have taken place before
constructing the next frame, similar to the sequence numbers in unicast.

ISO 22510:2019 assumes that the multicast timer never overflows [6, p. 111]. It
is unclear how devices are supposed to handle the case when the timer reaches its
maximum as they cannot further monotonically increase it every millisecond and never
decrement it. This is a similar issue in the specification as with the sequence numbers
in the unicast protocol. There are two possible options, either the timer wraps around
to zero or it stays at the maximum value. In the former case, it does not necessarily
cause a nonce reuse, since the specific timer might not have been used in a frame before
and the message tag still contributes 16 random bit for each frame. However, if the
timer is stuck at the maximum and is not reset by changing the backbone key, then a
nonce reuse is expected. Since all subsequent frames use the same timer value, only
the message tag varies. However, due to its short length there are only 216 = 65536
possible values. Related to the birthday paradox, the probability of finding two frames
with equal message tags out of n random frames is:

P (n) = 1− 216!

(216 − n)!× 216n
(44)

The probability is larger than 50% for n = 302. Therefore, after 302 frames sent by
one device it is probable that nonce reuse can be seen, which breaks the confidentiality.

The KNX Association dismisses the risk of the timer reaching the maximum value
in ISO 22510:2019, stating that with “[…] timer ticks every millisecond, an overflow of
the timer would theoretically occur after 9 thousand years” [6, p. 111]. The standard
requires that devices that cannot immediately persist their timer during power-off have
to store it in regular intervals and to ensure that the timer does not run backwards,
they have to increment it by one interval on power-up [6, p. 133]. ISO 22510:2019
limits the persistence interval to a maximum of one hour [6, p. 133]. It thereby tries
to prevent an adversary with physical access from pushing the timer to its maximum
by continuously rebooting the device, as discussed in the appendix of AN 159/13 v06
[49, p. 78]. Since the maximum increase of the timer per reboot is 1 h = 3.6× 106 ms,
it takes at least 248/3.6 × 106 ≈ 7.819 × 107 reboots to reach the maximum. If each

83

reboot takes 1 s, then it would require approximately 905 days. This might not be a
practical attack, because the boot time could be significantly higher, the persistence
interval shorter or the devices might not use persistence intervals, because they are
able to store the timer on power-off. However, it should not be assumed that a
multicast timer cannot overflow. In theory there could be bugs in the software or
malfunctioning hardware that result in wrong timer values. Additionally, specialized
attacks against specific hardware or software could exist, that permit to influence the
timer. Therefore, it would still be important to specify how devices have to handle
the timer overflow, to avoid breaking the confidentiality of past, current and future
communication of the multicast group. From a theoretical standpoint the requirement
of definition 3.2 is not fulfilled.

Contrary to the SECURE_WRAPPER, nonce reuse for TIMER_NOTIFY frames is not rel-
evant, since when the timer value and message tag are identical in two frames, then
they are the same frame.

4.2.2. Group Communication

The multicast protocol encrypts and authenticates the communication among group
members with the backbone key. As explained in “3.3.3 Multicast”, this is a single
key with unlimited lifetime that is known to all group members. The compromise of a
single group member and its backbone key allows an adversary to decrypt all past and
future communication of the group and impersonate group members. This obvious
flaw already existed in AN 159/13 v02 and was pointed out by Judmayer et al. [1,
pp. 4-5]. It is also not possible to authenticate individual group members, since the
backbone key is the only key material used in the protocol.

In order to protect against replay attacks, every device has a multicast timer that
the group attempts to keep synchronized through the process described in “3.3.3.5
Timer Synchronization Finite State Machine”. However, frames are only rejected if
the contained timer value is more than PID_MULTICAST_LATENCY_TOLERANCE behind
the local timer. As ISO 22510:2019 states, this means that “frames with slightly past
timer values shall be accepted to account for network latency” [6, p. 111]. Hence, any
frame containing a timer value within this time span can be replayed to the respective
target device. PID_MULTICAST_LATENCY_TOLERANCE has a default value of 2 seconds
[6, p. 113]. The same issue already existed in AN 159/13 v02 according to Judmayer et
al. [1, p. 5]. They also claimed that a replay attack would be possible after a device is
booted [1, p. 5]. This risk is acknowledged by ISO 22510:2019, any SECURE_WRAPPER or
TIMER_NOTIFY with a timer more recent than the device’s unsynchronized timer, could
be replayed [6, p. 117]. The standard specifies an optional procedure to acquire an
authentic timer before accepting any frame, which was previously described in “3.3.3.5
Timer Synchronization Finite State Machine”. While no flaw could be identified in
the described steps, assuming that there is at least one other legitimate group member
that replies, it is not mandatory and as such standard conforming devices could still
be susceptible to the replay attack.

Another risk for replay attacks occurs should the multicast timer reaches its maxi-

84

mum. This was again first identified in [1, p. 5] and later considered in the appendix
of AN 159/13 v06 for when a warp around of the timer occurs [6, p. 78]. While the
KNX Association does not appear to consider this case likely to happen, it would
permit to replay all past frames with a higher timer value. Another interesting case
is when the timer would be stuck at the maximum. Assuming that the timer is syn-
chronized among group member, each of them would accept frames that contain a
timer value that is not more than PID_MULTICAST_LATENCY_TOLERANCE before the
maximum timer value. Thus, every frame that is sent after the timer reached its
maximum can be replayed indefinitely. While preventing replay attacks is one of the
goals of the multicast protocol, the standard concedes that Data Secure with device
specific counters is required to minimize the risk [6, p. 111]. The fairly complex timer
synchronization, depicted in figure 22, does not sufficiently solve the problem.

The access control for the routing service family is configured through PID_SECURED_-
SERVICE_FAMILIES, as previously explained in “3.3.3.6 Access Control”. The standard
requires that the routing service may not be accessed through plain KNXnet/IP frames
when secure communication is enforced. Thus, it addresses the security concerns that
were raised for KNXnet/IP with regard to routing in “3.1.6 Insecurities and Design
Flaws in KNXnet/IP”. The secrecy of the backbone key should prevent an adversary
from issuing requests that would pass authentication. However, the aforementioned
design flaws of the multicast protocol could allow a circumvention of the access control,
for instance through replay attacks.

According to ISO 22510:2019 the remote diagnosis and configuration service is not
supported when the security mode is enabled [6, p. 110]. This mode controls whether
certain service may only be accessed through Data Secure [122, p. 56]. It is not clearly
stated under which circumstances the security mode is required to be activated in
relation to KNXnet/IP Secure. ISO 22510:2019 specifies that properties, such as the
backbone key, password hashes and device authentication code, shall only be writable
through the application layer, secured with the tool key [6, pp. 133-135]. This means
Data Secure is mandatory for their configuration, but this appears to be generally
enforced and unrelated to the security mode. It seems that the security mode is
supposed to get enabled when a system broadcast is used to configure the routing
multicast address and backbone key through KNXnet/Data Secure [6, p. 88]. How-
ever, the relevant sentence in ISO 22510:2019 is incomplete, missing the crucial word:
“In addition, device security mode shall be.” [6, p. 88]. Therefore, it is not well-defined
if the security mode gets enabled when a device has been configured to use KNXnet/IP
Secure. Thus, considering ISO 22510:2019 as written, it would be possible that the
device has its KNXnet/IP Secure properties configured through KNXnet/Data Se-
cure, but the security mode is disabled. Presumably this is not intended, as access to
the remote diagnosis and configuration service would not be limited, thus permitting
unauthorized configuration of the device. Due to the ambiguous and incomplete spec-
ification the concerns raised in “3.1.6 Insecurities and Design Flaws in KNXnet/IP”
about access control are not fully addressed. In practice KNXnet/IP Secure devices
appear to activate the security mode when the ETS configures them with the “secure
commissioning” option enabled.

85

The discovery service does not require authorization [6, p. 109]. The implications
were already discussed in “4.1.2 Authenticated Key Exchange and Session” and equally
apply to multicast.

The evaluation of the security properties defined in “3.2.4 Security Properties for
Cryptographic Protocols” had the following results:

• Confidentiality is not always ensured, due to the possibility of nonce reuse
in the multicast protocol. Hence, this goal of ISO 22510:2019 is not generally
fulfilled.

• Data integrity is ensured through CCM for AEAD with the backbone key.
This goal of ISO 22510:2019 is fulfilled.

• Message authentication is not ensured, as the no particular member of the
group can be authenticated as the origin of a frame, since every member uses
the same key. The protocol can only authenticate that the group is the origin
of the frame.

• Entity authentication is not ensured, as message authentication for individual
members is not provided.

• Mutual authentication is not ensured, as entity authentication is not pro-
vided. ISO 22510:2019 stated the “[…] goal of mutual authentication of the
nodes involved in KNXnet/IP multicast communication […] is to establish a
trusted group of devices communicating together” [6, p. 102]. Evidently the pro-
tocol design only permits to prove knowledge of the backbone key and to this
extent membership of the group. However, since it is not possible to authen-
ticate that a particular members has sent a frame, mutual authentication as
defined in cryptography cannot be accomplished.

• Non-repudiation is not fulfilled, because a group member can plausibly deny
that they have sent a particular frame, since any other group member could have
created an identical frame, as they also know the backbone key.

• Resistance against replay attacks is not ensured, as previously shown. Re-
play attacks are always possible within a limited time span and when the mul-
ticast timer reaches its maximum. This goal of ISO 22510:2019 is not fulfilled.

• Perfect forward secrecy is not ensured, because a compromise of the backbone
key allows to decrypt all past frames of the multicast group.

• Resistance to known session key attack is not applicable, because there
is no session or AKE. If the backbone key is treated as a session key then its
compromise breaks both confidentiality and authentication.

• Resistance against key compromise impersonation is not ensured, be-
cause a compromise of the backbone key allows the adversary to pose as a group
member to any legitimate device in the group.

• Resistance against unknown key-share attack is not applicable, because
there is no AKE.

86

• Implicit key authentication is not fulfilled, because no individual group mem-
bers can be authenticated.

• Key confirmation is provided, since the shared knowledge of the backbone key
permits to verify that a frame has been encrypted and authenticated with the
correct key.

• Explicit key authentication is not fulfilled, because implicit key authentica-
tion is not provided.

• Key freshness is not fulfilled, because the backbone key has an unlimited
lifetime. ISO 22510:2019 suggests a manual change of the backbone key when
a compromise has been detected [6, p. 111]. This does not solve the problem in
the protocol design though.

• Key control is not applicable, as there is no AKE.
• Identity hiding is not applicable, as there is no AKE.
In summary, the multicast communication of KNXnet/IP Secure fails to fulfill a

majority of its goals stated in ISO 22510:2019. It does not fully protect against
replay attacks or provide mutual authentication. Confidentiality could be broken due
to potential nonce reuse. The only fulfilled goal is that data integrity is provided.
KNXnet/IP Secure multicast cannot be considered a secure protocol based on the
current state of the art in cryptography.

4.2.3. Model Checking of Timer Synchronization FSM

The model checking is continued with the timer synchronization FSM, depicted in
figure 22. The goal is to identify potential errors, ambiguities and deviations between
the description in the text of ISO 22510:2019 and the FSM model. For this purpose
two NuXMV models were created from the specified FSM. The first model is labeled
“Timer Sync FSM Integer Clock”. It tries to represent the specified FSM as closely
as possible, while modeling the time progression and multicast timer value through
integer ranges. This has the benefit that CTLs can be used to express properties and
prove whether they are true through BDD. However, the time range that can be effec-
tively evaluated is limited, because of the state-space explosion that would otherwise
occur. Thus, the time range has to be restricted. The second model is labeled “Timer
Sync FSM Real Clock”. It uses NuXMV’s Real data type that permits unbounded
variables that store rational numbers, contrary to its name. It can accurately express
the timer synchronization FSM, but NuXMV does not permit the evaluation of CTLs
on models that use the Real data type. Thus, LTLs with BMC have to be used. As
previously explained in “3.4 Model Checking”, BMC can generally only prove that a
condition is not fulfilled. The two models are therefore complementing each others by
addressing their respective shortcomings.

Test conditions for the model checking are derived from the description of the timer
synchronization process in ISO 22510:2019. The selection of statements from the
standard is based on their relevancy and precision. The latter is required to translate

87

them into CTLs and LTLs. It should be noted nearly all CTLs and LTLs had to
be modified to account for the non-determinism of the timer synchronization FSM,
as otherwise they would not have been fulfilled. This is an issue, because it is not
well-specified that only one of the events occurs at a time, as they a defined through
conditions that have to be met, which are based on external inputs and the current
values of internal state variables. Thus, there are cases where the requirements for
multiple events are fulfilled simultaneously and it is unclear which one is triggered.
Amending the CTLs and LTLs when necessary is the pragmatic solution to analyze
the timer synchronization FSM, with the knowledge that implementations would be
deterministic. The model checking is conducted with 16 tests, as shown in table 5 and
6. The respective CTLs and LTLs are listed in table 16 of the appendix.

Model
Test No.

1 2 3 4 5 6 7 8 9 10 11 12
Timer Sync FSM Integer Clock ✓ ✓ × ✓ × ✓ × × ✓ – ✓ ✓
Timer Sync FSM Real Clock ◦ ◦ × ◦ × ◦ × × ◦ × ◦ ◦

Table 5: Model checking of the timer synchronization FSM in NuXMV - Part 1
Symbols: ✓fulfilled, ◦ not refuted, × unfulfilled; – not applicable

See table 16 for test details.

Model
Test No.

13 14 15 16
Timer Sync FSM Integer Clock ✓ ✓ × ✓
Timer Sync FSM Real Clock ◦ – – –

Table 6: Model checking of the timer synchronization FSM in NuXMV - Part 2
Symbols: ✓fulfilled, ◦ not refuted, × unfulfilled; – not applicable

See table 16 for test details.

The majority of the tests are successful, with 10 out of 16 CTLs proven to be
satisfied by NuXMV. All states in the timer synchronization FSM can be reached and
all transition can be activated, which is verified with tests 14 and 16. However, there
are 6 cases that require further inspection.

Test 3 evaluated the statement: “The device timer shall not be decreased in any
case” [6, p. 112]. This is evidently not true, when considering the case where timer
wraps around to zero after reaching the maximum. While excluded in this test, chang-
ing the backbone key would also cause a reset to zero. While other parts of the
specification describe these cases, this specific statement overgeneralizes.

Test 5 checks the claim that “A TIMER_NOTIFY shall be sent by any device if no
recent-enough TIMER_NOTIFY or SECURE_WRAPPER frame has been received for about
10 s” [6, p. 112]. This statement could either be true or false depending on how lenient
the interpretation is. Initially, the current state could be SCHED_PERIODIC and a

88

TIMER_NOTIFY with a timer value larger than the multicast timer has been received,
thus event E01 with actions A1 + A9 + A3 is triggered causing the notify_timer to
be potentially set to 12.8 s, which is the maxDelayTimeFollowerPeriodicNotify. The
FSM remains in SCHED_PERIODIC and the period mentioned in the quoted statement
starts. After nearly 12.8 s have passed a not recent enough TIMER_NOTIFY is received.
This causes E04 with A4 to be triggered, which possibly resets the notify_timer to
a maximum of 2.7 s, which is the maxDelayTimeFollowerUpdateNotify. The FSM
transitions into the SCHED_UPDATE state and the notify_timer would then have to
expire first, before a TIMER_NOTIFY is sent. It should be noted though, that this is
the worst case and not the average case. Furthermore, the CTL and LTL test for the
sending of the TIMER_NOTIFY to occur at the very next step in the FSM, since the
semantics of “about 10 s” [6, p. 112] are rather vague. Thus, a TIMER_NOTIFY will be
sent eventually, but it may take more than 10 s of not receiving a recent enough frame.
Given that the FSM operates with time spans measured in milliseconds and seconds,
the 12.8 s were considered too big of difference compared to the quoted statement.

Test 7 evaluates the statement: “Any device receiving a valid outdated TIMER_-
NOTIFY or SECURE_WRAPPER frame shall schedule sending a TIMER_NOTIFY frame after
a random delay of usually up to around 3 s (maxDelayTimeFollowerUpdateNotify)” [6,
p. 112]. It is technically incorrect, because if the FSM is already in the SCHED_UPDATE
state, then receiving a valid outdated frame will not restart the schedule of sending a
TIMER_NOTIFY. It would have no effect as this is either event E04 or E08. However, the
statement would be correct if it specified that this applies in state SCHED_PERIODIC.

Test 8 evaluates the claim: “If a TIMER_NOTIFY or SECURE_WRAPPER frame with a
timer value greater than the sync latency tolerance (fraction of the overall latency
tolerance) behind the local timer value as time stamp field is received before the delay
elapses, the schedule shall be cancelled” [6, p. 112]. This statement is incorrect, as
when the received timer value is more than the syncLatencyTolerance behind the
multicast timer, then either event E03 with A0 or E07 with A2 is triggered in both
SCHED_UPDATE and SCHED_PERIODIC, as shown in the FSM in figure 22. The schedule
is not canceled in either case.

Test 10 checks if the following statement is true: “Devices that claim to be a time
keeper for their secure KNXnet/IP multicast group continue scheduling TIMER_NOTIFY
frames on outdated received TIMER_NOTIFY or SECURE_WRAPPER frames in a shorter and
earlier time window than the other devices” [6, p. 112]. This statement is technically
incorrect, because when current state is SCHED_UPDATE, then the reception of outdated
frames would not trigger the scheduling as there is already a schedule running, see E04
and E08 in figure 22. The non-determinism is proven in test 15. The events E01 to
E08 are correctly specified though, as they are mutually exclusive.

In summary, the description of the timer synchronization for KNXnet/IP Secure
multicast mostly matches the FSM specified in ISO 22510:2019. A majority of the
test failures stem from pedantic interpretation or vague descriptions in the text of
ISO 22510:2019 that could be fixed with minor modifications. Only one test identified
a factual error, which is test 8. None of the findings have a notable impact on the
security of the multicast protocol.

89

4.2.4. Improvement Suggestions

Due to the identified security flaws it would be advisable to redesign the multicast pro-
tocol. Secure GKE protocols are an ongoing topic of research. A core challenge is the
scalability with the number of group members and limited hardware resources, while
achieving desirable security properties such as forward secrecy and post-compromise
security. The former ensures that past sessions are not affected by a later compro-
mise, while the latter ensures that future sessions provide security guarantees despite
a current compromise, see Cohn-Gordon et al. [137] for details.

The section “2.7 Group Key Exchange” in the “Related Work” chapter already
introduced different GKE protocols that could be applied in KNX. This includes older
protocol designs such as Burmester and Desmedt [55], CLIQUES by Steiner et al. [56],
TGDH by Kim et al. [57], [58] and the extended STR by Kim et al. [54]. However,
CLIQUES, TGDH and extended STR do not include authentication in their design
[56, p. 18], [58, p. 66], [54, p. 233], an authenticated communication channel needs to
be provided by the surrounding protocol in which they are applied. As Mark Manulis
points out in [59], this could be accomplished through digital signatures, certificates
and a PKI. In theory, it would also be possible to pre-share public keys, but this
would require a static group and enough memory to store them on every device. While
the multicast group membership in KNXnet/IP Secure is not dynamic, the available
memory of the embedded devices would likely not be enough to store all keys for the
maximum number of KNXnet/IP Secure devices that could potentially be part of the
multicast group. Therefore, a PKI would likely be needed. More recent protocols that
implement CGKA are TreeKEM [61] and TTKEM [63], which are supposed to provide
both forward secrecy and post-compromise security. These protocols require a PKI
[61, p. 9], [62, p. 10], which would need a dedicated device in the architecture of the
KNX installation.

While existing GKE and CGKA protocols might not be a perfect fit for KNXnet/IP
Secure and a trade-off between available hardware resources and security may be nec-
essary, it is evident that solutions exist which would provide significant improvements
to the security compared to the current multicast protocol. Additionally, nonce reuse
should be prevented by disallowing identical timer values in subsequent frames sent
from the same device and not permitting the timer value to be stuck at the maximum
while continuing group communication. Ideally, the timer synchronization would be
replaced with a more robust method to prevent replay attacks. Furthermore, the stan-
dard should properly explain the interaction between KNXnet/IP Secure and Data
Secure.

5. Device Management with the ETS5
The device management is conducted through the ETS software. This chapter in-
vestigates how the passwords for the AKE of KNXnet/IP Secure are assigned by the
ETS5 v5.7.6 and under which circumstances the identified offline attack against the

90

authentication is practical. Furthermore, the ETS5 v5.7.6 has to store the symmetric
keys and passwords for the KNX installations that it manages. Thus, it is of interest
to check whether they are stored securely. This also applies to exported projects,
which contain the cryptographic secrets as well. The update process for the ETS5
is analyzed to ensures that an adversary cannot supply a malicious executable. An
evaluation of the conformance with the ISO 22510:2019 standard is conducted through
black-box tests. Lastly, improvements suggestions for future versions of the ETS are
provided, based on the findings.

5.1. Device Commissioning
The ETS5 provides a product database from which devices can be added to the project.
When the first KNXnet/IP Secure device is included, the ETS5 requires the user to
choose a project password. The UI claims, that it would be used to protect the stored
keys, as can be seen in figure 29 in the appendix. All password input fields allow
only characters from the printable ASCII range, see RFC 20 [138], and the length is
limited to a maximum of 20 characters. Additionally, the ETS5 displays a password
strength based on the estimated entropy provided by the input. The calculation
considers the length and whether uppercase, lowercase, numbers and special characters
are included. For instance, a password of length eight, that contains characters from
all the categories, is considered “good” by the ETS5.

With every added KNXnet/IP Secure device the ETS5 requests the device certificate
to be entered, which encodes the device’s FDSK and serial number in a QR code and
string. Typically, it is printed on a sticker placed on the device. The option for “Secure
Commissioning” is enabled by default and activates the use of KNXnet/IP Secure and
Data Secure for the configuration. The ETS5 automatically generates a tool key for
KNXnet/Data Secure. Once the device is added to the project, the user can adjust
device specific settings in the project. If the real device is connected to the local
network, its configuration and application can be modified by the ETS5 to match the
state of the project file. The UI refers to this process as a “download” onto the target
device. When a KNXnet/IP Secure device is configured for the first time, the ETS5
automatically generates a management user password and device authentication code.
It also creates the backbone key when the first KNXnet/IP Secure router is added to
the project. Furthermore, if the device supports tunneling and the “Secure Tunneling”
option is enabled, it will also create a user password for each supported tunnel. The
UI refers to the management user password as the “Commissioning Password” and the
password from which the device authentication code is derived as the “Authentication
Code”. The tool and backbone key are properly created with a cryptographically
secure pseudorandom number generator (CSPRNG). All generated passwords have 8
characters that are randomly chosen from the 95 printable ASCII characters. The
passwords can be changed by the user. There does not appear to be an option to reset
or regenerate the backbone key in the ETS5. This is contrary to the suggestion in ISO
22510:2019, that the backbone key could be changed when a compromise of a group
member is noticed, in order to restore security for the group [6, p. 111].

91

5.2. Offline Attack against Authentication
An offline attack against the authentication, which may permit an adversary to deter-
mine the device authentication code, was previously described in “4.1.2 Authenticated
Key Exchange and Session”. A custom module for the GPU-accelerated password
cracking software hashcat [133] was written to evaluate the difficulty of brute-force
and dictionary attacks against KNXnet/IP Secure’s authentication of the server. The
implementation adopts optimization techniques by Choi and Seo [72] and Visconti et
al. [70] for the HMAC computation. It was found that the optimization techniques
for SHA-256 suggested by Choi and Seo did not result in a measurable performance
improvement, because the compiler already made similar optimizations. The imple-
mentation has been contributed to the hashcat project and is included in official
releases since v6.2.0.

In order to determine the efficiency of brute-force attacks against the AKE, measure-
ments on real hardware are required that provide an estimate on the time needed to
complete an exhaustive search. The experiment was conducted on a NVIDIA GeForce
GTX 1080 Ti with passwords lengths from 1 to 10. The character set is assumed
to consist of the 95 printable ASCII characters. For each password length, ten mea-
surements of the hash rate are made, each after approximately one minute of the
brute-force attack running, to account for possible fluctuations. In this context the
hash rate refers to the number of passwords tested per second. The required time can
be estimated based on the number of possible passwords of length x, which is 95x,
divided by the median hash rate. The results are shown in table 7.

Device authentication codes based on passwords up to 6 characters can be checked
exhaustively on a single GPU in little over one year. Therefore, those passwords can
be practically attacked through brute-force. However, by default the ETS5 generates
password containing 8 characters. It is not practical to brute-force those passwords
on a single GPU. The question is whether it is realistically possible to build a GPU
cluster that could brute-force 8 character passwords. It would require 9371 NVIDIA
GeForce GTX 1080 Ti to iterate through all 8 character passwords within a year. The
power consumption of a single unit is supposed to be at most 250 Watt [139]. This
would mean a power consumption of 20.522 GWh per year. For comparison, a steel
mill with an electric arc furnace could have a power consumption of 572 GWh per
year [140]. According to the monitoring report of the Bundesnetzagentur from 2020,
the average price without taxes for customers in the industry with a consumption of
24 GWh were 16.54 ct/kWh [141]. This would mean a cost of 3.394 million euros for
power supply of the GPUs. When the GPU model was released, the price was 820 euro
per unit [142]. This would incur a cost of about 7.7 million euros. While this rough
estimation of costs and energy consumption does not include the building, cooling,
other hardware, labor costs and taxes, they are within an order of magnitude that
could be realistically achieved. While it would be highly uneconomical to construct
and operate such as GPU cluster to determine a single device authentication code,
a well-designed cryptographic protocol should have made it physically infeasible to
gain the required computational power to perform a brute-force attack within a year.

92

Thus, the default of 8 character passwords is too short, especially considering that
future generations of GPUs and ASICs will improve further upon the efficiency and
computational power. A default password length upwards of 10 characters should be
considered by the KNX Association or ideally a protocol design that does not rely on
passwords.

Performing a dictionary attack against KNXnet/IP Secure is much more efficient.
For instance, testing a list of 10 million common passwords would require less than 8
minutes on a single NVIDIA GeForce GTX 1080 Ti. If the KNX installation does not
use randomly generated, but user supplied passwords, this is a significant risk.

Password Length Median Hash Rate Approx. Required Time

1 (inaccurate) 1.0 H/s 1 min 6 s
2 150.0 H/s 1 min
3 6591.5 H/s 2 min 10 s
4 23238.5 H/s 58 min 25 s
5 22088.0 H/s 4 day 1 h
6 22980.0 H/s 370 days
7 22710.0 H/s 35591 days
8 22434.0 H/s 9371 years
9 22220.5 H/s 898801 years
10* 22220.5 H/s 8.5386100× 107 years

Table 7: Brute-force attack against device authentication code
Measurements are conducted on a NVIDIA GeForce GTX 1080 Ti with hashcat 6.2.4

The measurements are rounded
*Could not be executed, extrapolation based on previous hash rate

5.3. Insecure Storage of Cryptographic Secrets
The ETS5 has to store cryptographic keys and passwords for each project that it
manages, such as the backbone key, device authentication codes, FDSKs, management
and user passwords. The UI suggests that the ETS5 would protect them with the
project password, as shown in figure 29 in the appendix. The description implies that
the cryptographic secrets would be encrypted with a key derived from the project
password. Whenever the user tries to open the project, the ETS5 requires them to
enter the project password in order to unlock it. Furthermore, a support article about
the project passwords stated that “There is no way to recover your project data if the
password is lost, not even via KNX (there are no hidden master keys that would make
this possible).” [143]. While the article only explicitly mentioned encryption for the

93

export, the cited statement suggests that this is generally the case, including for the
locally stored projects.

However, the ETS5 does not store the cryptographic secrets securely. This was
noticed when investigating the XML files that contain the project information, located
in C:\ProgramData\KNX\ETS5\ProjectStore. The XML files are not encrypted as a
whole, instead the attributes for cryptographic secrets contain Base64 encoded values,
as specified in RFC 4648 [144]. When two projects use different project passwords, but
for instance the same FDSK or user password, the XML files contain identical values
for the respective attributes. Therefore, the project password is evidently not used to
encrypt the values of passwords and keys. The project files also contain an attribute
for the project password itself. Through decompiling and deobfuscating the ETS5 with
ILSpy [145] and de4dot [146] it was found that a hard-coded password and salt are used
to obfuscate the attributes. The password is “ETS5Password” and the salt is “Ivan
Medvedev”. A key and initialization vector (IV) are derived from the password and salt
with PasswordDeriveBytes [147] from the .NET Framework. The key derivation uses
SHA-1 as hash function, 100 iterations, “ETS5Password” as password and the ASCII
byte representation of “Ivan Medvedev” as salt. The resulting values are shown in
table 8, where the first 32 byte are used as a key and the following 16 byte as IV.

Key 22BD16CDBB96B0E18E977BB3FEFADD8886E7E38A2F8A6FD9D2F2F5663AC20371

IV 8E977BB3FEFADD88E6AE6CBEAE3E7CAF

Table 8: Key and IV for (de)obfuscation of cryptographic secrets in ETS5

The content of the attributes can be deobfuscated through the following steps:
1. The Base64 encoded attribute value is decoded according to RFC 4648 [144].
2. AES-256 with CBC cipher mode is used to decrypt the decoded value with the

key and IV from table 8.
3. The PKCS #7 padding [148] is removed to receive the original value of the

attribute.
The design is security by obscurity and not following best practice, as highlighted

by CWE-798 and CWE-321 [135], [149]. Since the C:\ProgramData directory does
not require elevated permissions [150] and the key and IV are static, any user or
process could read the files from the project store and extract the cryptographic secrets.
This is a risk, since the entire security of KNXnet/IP Secure and Data Secure hinges
on the secrecy of the passwords and key material. For instance, an employee with
an unprivileged user account could access the cryptographic secrets, even when the
ETS5 is only installed for the administrator. Furthermore, an adversary that is able
to execute code on the machine can achieve the same without requiring a privilege
escalation. Knowledge of the cryptographic secrets allows taking control over the
managed KNX installations.

Due to the potential security impact, the KNX Association was contacted for a co-

94

ordinated vulnerability disclosure (CVD). After not receiving any reply to the support
ticket for over a week, they were contacted again. In the following communication, the
KNX Association held the position that it would not be the responsibility of the ETS
to encrypt the keys and passwords when they are stored locally and suggested the use
of BitLocker or TrueCrypt [151]. The KNX Association forwent the 90 days disclosure
delay for the CVD and permitted an immediate public release of the vulnerability
[151]. It is registered as CVE-2021-36799. A proof of concept is available on GitHub2.

In follow-up emails it was explained to the KNX Association why the use of obfusca-
tion, and misleading description of security features in the UI and support articles are
harmful. Using a hard-coded key is against well-established security best practices.
Customers are unaware that their cryptographic secrets are unprotected in the project
store and would therefore not be able to take steps that mitigate the risk. Further-
more, full-disk encryption, as suggested by the KNX Association, would only protect
the data at rest. Thus, it would not provide the same level of security as a properly
encrypted storage by the ETS. After nearly four months since the initial report, the
KNX Association reconsidered their position and stated that future versions of the
ETS6 would encrypt the key and passwords [152]. As of ETS6 v6.0.0 the issue still
exists.

Password Length Median Hash Rate Approx. Required Time

1 195.60 kH/s 0.0005 s
2 15276.85 kH/s 0.0005 s
3 134.25 MH/s 0.0060 s
4 290.65 MH/s 0.2800 s
5 2553.05 MH/s 3.0300 s
6 4110.50 MH/s 2 min 59 s
7 4122.50 MH/s 4 h 42 min
8 4142.75 MH/s 18 days 18 h
9 3819.40 MH/s 5 years 85 days
10* 3819.40 MH/s 496 years 277 days

Table 9: Brute-force attack against exported project
Measurements are conducted on a NVIDIA GeForce GTX 1080 Ti with hashcat 6.2.4

The measurements are rounded
*Could not be executed, extrapolation based on previous hash rate

The ETS5 also provides the option to export projects, which are supposed to be
encrypted according to the support article [143]. It creates a file with the .knxproj

2https://github.com/robertguetzkow/ets5-password-recovery

95

https://github.com/robertguetzkow/ets5-password-recovery

extension, which is a ZIP-file. Within it is another ZIP-file that contains the crypto-
graphic secrets, which is encrypted using the PKZIP stream cipher3 and the project
password as passphrase. Biham and Kocher discovered that the PKZIP stream cipher
is susceptible to a known plaintext attack [73]. This attack cannot be applied, since
the ETS5 compresses the files first and it only contains those with the cryptographic
secrets, thus the data prior to encryption is not known. Despite the improvements
to the attack by Stay [74], a known plaintext attack does not appear to be possible
in this case. However, the stream cipher can be efficiently computed, thus hashcat is
used to estimate the required time for brute-force and dictionary attacks. The result
for brute-force attacks are shown in table 9. A single NVIDIA GeForce GTX 1080 Ti
is expected to perform an exhaustive search on all 8 characters passwords within less
than 19 days. An attack based on a list of 10 million common passwords would require
less than a second, at a hash rate of 3819.40 MH/s. Therefore, the ETS should switch
to a cryptographically secure cipher and ensure that it is less susceptible to brute-force
attacks. The ETS6 supposedly implements these improvements [152].

5.4. Updating the ETS5
The ETS5 checks for updates, by downloading a manifest file from https://update.
knx.org/software/ETS50/MainManifest.xml through TLS v1.2. Within the file is
a RSASSA-PKCS #1 v1.5 signature, as specified in RFC 8017 [153], with which the
ETS5 verifies the authenticity of the content. Contained in the embedded resources
of the Knx.Updater.dll is the public key that is required to check the signature. The
MainManifest.xml points to the URL of another manifest file for the most recent
version of the ETS5, which in turn contains the URL of the executable. Included in the
second manifest XML are both a signature for its content and the executable. When
the ETS5 performs an update, it verifies the signature of the manifest, downloads the
executable, verifies its signature and runs the executable.

There does not appear to be a practical way to attack the update process, assuming
that the web server is secure and the implementation of TLS v1.2 used by the ETS5
is not vulnerable against an attack that permits to impersonate the server. However,
future versions of the ETS should not be using SHA-1 for the signatures, given the
improvements in collision attacks against it by Leurent and Peyrin [154] [155].

5.5. Analysis with Test Software
A test software was developed to evaluate the conformance of KNXnet/IP Secure
clients and servers with the ISO 22510:2019 standard. Test cases are constructed
through finite state machines, which determine when and what kind of frames are
sent by the test software. It permits constructing arbitrarily modified KNXnet/IP
Secure frames. This allows to build tests that check requirements set forth by the
standard, evaluate the behavior for edge cases and boundary values that are ambigu-

3It is also known as ZipCrypto or PKWARE encryption

96

https://update.knx.org/software/ETS50/MainManifest.xml
https://update.knx.org/software/ETS50/MainManifest.xml

ously specified, and deliberately construct incorrect frames to analyze the reaction of
the test target. A full list of the implemented tests can be found in section “A.4 Test
Cases for the ETS5 and KNXnet/IP Secure Routers” of the appendix. In this section
the test software is applied to the ETS5, which has to implement the client-side of the
KNXnet/IP Secure protocol as specified in ISO 22510:2019.

In the test setup the ETS5 software is running in a virtual machine and the test
software on the host of the virtual machine. The network configuration permits the
communication between both of them. A tunneling connection can be established
through the UI of the ETS5 in the “Bus” tab. For each test case the respective
implementation by the test software is started, listening on the well-known port 3671
for incoming requests, and then the creation of a new connection by the ETS5 with
the test software is manually triggered. Frames sent and received are documented in
a log file.

The results of eleven tests conducted with the ETS5 are shown in table 10. A
smaller set of tests was applied to the ETS5, compared to the certified devices in “6.1
Analysis with Test Software”, because the ISO 22510:2019 standard mainly specifies
requirements for the server, while leaving correct behavior for the client open to inter-
pretations in several areas. Ten tests were successfully completed by rejecting invalid
frames, matching the specification in ISO 22510:2019. Details about these test results
can be found in table 18 of the appendix. However, there are problems that have been
discovered while implementing the test software and one of the tests failed.

Target
Test No.

1 2 3 4 5 6 7 8 9 10 11
ETS5 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 10: Test results for the ETS5
Symbols: ✓fulfilled, × unfulfilled; – not applicable

See table 17 and 18 for test details.

An unexpected issue is that the ETS5 attempts to establish the KNXnet/IP Secure
unicast connection through UDP instead of TCP. ISO 22510:2019 expressly forbids
the use of UDP for KNXnet/IP Secure unicast [6, p. 122, p. 126]. The implementation
of the test software had to be modified, so that it processes KNXnet/IP Secure unicast
frames received through UDP. Additionally, the ETS5 does not retrieve the required
key material for the authentication from the available projects, when establishing con-
nections in the “Bus” tab. Instead, the user has to manually enter the password for the
tunneling user and optionally the password from which the device authentication code
is derived. ISO 22510:2019 permits the client to skip the authentication of the server
[6, p. 127]. The ETS5 makes use of this provision, which has been previously criticized
in section “4.1.2 Authenticated Key Exchange and Session”, due to its detrimental
effect on the security of the protocol.

In the first test, the ETS5 and test software conduct the handshake for establishing
a KNXnet/IP Secure session. The ETS5 sends a SESSION_REQUEST, which the test

97

software replies to with a SESSION_RESPONSE. The ETS5 then attempts to authenticate
itself with a SECURE_WRAPPER containing the SESSION_AUTHENTICATE frame. In the
test the response to this frame is an unencapsulated SESSION_STATUS frame with
the status code STATUS_AUTHENTICATION_SUCCESS, which is incorrect and should be
rejected by the client. However, the ETS5 still proceeds with a SECURE_WRAPPER
containing a CONNECT_REQUEST. This means that either the ETS5 has processed the
reply, considering it valid, or it did not wait for a confirmation of the successful
authentication. The behavior is incorrect in both cases.

In summary, the ETS5 appears to mostly follow the standard in the conducted
tests, but the use of UDP and the processing of the authentication confirmation differ
significantly from the specification. However, none of the violations of ISO 22510:2019
seem to have an impact on the security. The logs for all tests are included in the
digital files, see “A.7 Software, Models and Logs” in the appendix.

5.6. Improvement Suggestions
Due to the delayed handling of the initial report for the CVD, it would be recom-
mended that the KNX Association establishes a dedicated contact for security issues
to ensure a timely response and triaging of the report by domain experts. Furthermore,
security engineering should implement a thorough review process for the application
design of the ETS, in order to verify that the concepts do not rely on security by
obscurity and best practices for application security are being followed. The use of
a hard-coded password and salt to obfuscate security critical cryptographic secrets is
not an acceptable solution, as it attempts to create the impression that data would
be protected, while it does not provide any actual security benefits over storing the
values as plaintext. Additionally, the documentation and UI should transparently
communicate the security features or lack thereof to the user. This ensures that they
can make an informed decision. The responsibility for handling security shortcomings
in the ETS should not be shifted onto the users, like the KNX Association initially
did, especially when they are not being informed about them and thus unable to set
up mitigations. The responsibility lies with the KNX Association to address the un-
derlying issue through proper software engineering, as they have agreed to for future
versions of the ETS, after the CVD. If the KNX Association remains receptive to
feedback provided by security researchers, this will be beneficial to the quality and
security of their products.

The storage of cryptographic secrets could be improved by encrypting the XML
files with a cipher mode that provides AEAD and deriving the key from the project
password with a modern key derivation function, such as Argon2id [131]. Similarly, the
exported projects should move away from the insecure PKZIP stream cipher, which
is already supposed to be the case in the ETS6, but was not evaluated as part of this
thesis. The security of KNXnet/IP Secure, as used in practice, could be significantly
improved by increasing the default length of the generated passwords and ensuring
that the ETS always authenticates the server through the device authentication code.
This information about the server has to be available, since establishing the connection

98

also requires one of the user passwords. Ideally, the ETS would automatically retrieve
the needed key material from the project files, without requiring manual input by
the user. Throughout the ETS all uses of SHA-1 for security relevant applications
should be replaced with a cryptographic hash function that is currently resistant to
chosen-prefix attacks.

6. Analysis of Certified Devices
The KNX Association requires devices to pass a certification process, before man-
ufacturers are permitted to use the KNX trademark on their product [156]. While
the exact tests for KNXnet/IP Secure are not publicly documented, certified devices
should conform with ISO 22510:2019. In this chapter two certified KNXnet/IP Secure
routers, MDT SCN-IP100.03 and Weinzierl KNX IP Router 752 Secure, are tested for
their conformance with the standard. The purpose is to identify potential deviations
from ISO 22510:2019, that may have an impact on the security of the product or in-
dicate missing coverage in the testing of the certification process. The conformance is
evaluated through black-box tests, conducted with the software previously introduced
in “5.5 Analysis with Test Software”, protocol state fuzzing to determine a FSM that
models the observable behavior of each device, and model checking with NuXMV to
compare the inferred state machines with the session FSM from ISO 22510:2019.

6.1. Analysis with Test Software
The analysis with the test software was conducted after the certified KNXnet/IP
Secure routers have been commissioned with the ETS5, following the instructions
provided by the manufacturers. The devices were connected to the local network,
listening for incoming requests on port 3671. Routers have to implement the server-
side of the KNXnet/IP Secure protocol specified in the ISO 22510:2019 standard.
The test software was running on a computer in the local network, acting as a client
by initiating the communication with the target devices. The results of the 27 tests
conducted with the KNXnet/IP Secure routers are shown in table 11 and 12. The logs
for all tests are included in the digital files, see “A.7 Software, Models and Logs” in
the appendix. Comparing the overall test results, MDT SCN-IP100.03 passed 22 tests
successfully, while the Weinzierl KNX IP Router 752 Secure fulfilled 18 tests. Details
about the successful tests are provided in table 19 in the appendix. The ambiguous
and failed tests require an evaluation of the individual cases to assess their potential
impact on the security and the conformance with ISO 22510:2019. Results that are
considered ambiguous may not be the fault of the manufacturer, but rather caused by
an imprecise specification that permits different equally valid interpretations.

In test 1, a KNXnet/IP Secure session is established, but prior to the client authen-
tication a SECURE_WRAPPER is sent, containing a CONNECT_REQUEST for a KNXnet/IP
connection. The KNX IP Router 752 Secure incorrectly responds with a SESSION_-
STATUS containing the status code STATUS_TIMEOUT. According the session FSM in

99

figure 19, the correct reply in state UNAUTHENTICATED would be a SESSION_STATUS
with status code STATUS_UNAUTHENTICATED, as shown by event E05 and action A6.

The reaction to frames with invalid headers is checked in tests 7, 8, 9 and 10. The
ISO 22510:2019 states, that “If the header is not a well-formed KNXnet/IP header, the
receiver shall close the TCP connection” [6, p. 42]. In the cases marked as ambiguous in
table 11, the connection was eventually closed after a timeout, but not immediately.
However, the standard does not specify that the TCP connection has to be closed
immediately nor whether well-formed refers to the structure of the header or also the
values of the fields. The structure of the frames sent by the test software matches the
format of the KNXnet/IP header, but the length, service type and protocol version
have been altered to invalid values in the respective tests.

SCN-IP100.03 fails test 10 with firmware v3.0.3. It becomes unresponsive to KNXnet/
IP Secure frames after receiving a SESSION_REQUEST with the length field set to a value
larger or equal to 0x0259. A reboot of the devices is required to restore normal op-
eration. This is a DoS vulnerability in firmware v3.0.3, as it allows an adversary to
effectively disrupt the operation of the device. The bug was reported to the manu-
facturer MDT in a CVD, which was handled very professionally. MDT confirmed the
bug and provided a patched firmware for testing, to confirm that the issue was solved.
An official release of the updated firmware was published shortly afterwards. The
vulnerability is registered as CVE-2021-37740, which was fixed by firmware v3.0.4.

In test 11, it is evaluated whether the devices reject frames with previous sequence
numbers. This works properly with the KNX IP Router 752 Secure, except when the
sequence number is never incremented and remains at zero. Subsequent SECURE_-
WRAPPER frames that also contain the sequence number of zero are accepted. This is
a violation of the specification, which demands that “[…] frames shall be discarded if
the sequence number is less than or equal to the last received number” [6, p. 108].

Test 12 checks the reaction to an encapsulated SESSION_STATUS frame with an
invalid reserved field. Both devices accept the frame, but this is technically cor-
rect, because the ISO 22510:2019 fails to specify requirements for the validation of
SESSION_STATUS frames.

In test 13, a KNXnet/IP Secure session is established and for the authentication the
SESSION_AUTHENTICATE frame is modified to contain an invalid value in its reserved
field. Both devices reject the frame, but they respond with a SECURE_WRAPPER contain-
ing a SESSION_STATUS with the status field set to STATUS_TIMEOUT. This is incorrect,
since a valid SECURE_WRAPPER containing an invalid SESSION_AUTHENTICATE frame
should trigger event E02 and action A2, when in state UNAUTHENTICATED [6, pp. 123-
124]. The correct reply would be a SECURE_WRAPPER containing a SESSION_STATUS
with the status field set to STATUS_AUTHENTICATION_FAILED.

Test 24 and 25 check the access control. Both devices correctly reject attempts to
create device management connections through either plain KNXnet/IP or with a non-
management users in KNXnet/IP Secure sessions. However, both devices uses different
status codes in their CONNECT_RESPONSE and ISO 22510:2019 does not precisely define
which is the correct one. The SCN-IP100.03 rejects the connection attempts with
an E_AUTHORISATION_ERROR. According to ISO 22510:2019, the status code is meant

100

to be sent when a client is not authorized to use the IA requested in the extended
connection request information (CRI) [6, p. 152]. However, no extended CRI was used.
The KNX IP Router 752 Secure rejects the connection attempts with a E_NO_MORE_-
CONNECTIONS status code. According to ISO 22510:2019, the status code is meant to
be sent when the server is unable to accept new connections because the maximum
number of concurrent connections is already active [6, p. 152]. However, there is
no concurrent connection and one management connection would be supported. It
appears that the description of the status codes in ISO 22510:2019 is inaccurate or
incomplete. Presumably the E_AUTHORISATION_ERROR would be the correct status
code for this test case.

An additional test was conducted to evaluate how the devices handle the multicast
timer reaching its maximum value. When the SCN-IP100.03 receives a valid TIMER_-
NOTIFY frame with the maximum timer value, the timer does not wrap-around, it
remains stuck at the maximum. The KNX IP Router 752 Secure performs a wrap-
around. As previously explained in “4.2.1 CCM Requirements”, both are valid im-
plementations, as the standard does not specify how to handle the case, but the
wrap-around would be preferable to avoid attacks against the confidentiality due to
nonce reuse.

In summary, the KNXnet/IP Secure routers mostly conform with the ISO 22510:2019
standard in the tested cases. Important functionality such as access control and au-
thorization could not be bypassed. Even though a DoS vulnerability was found in the
SCN-IP100.03, it was quickly patched and the manufacturer demonstrated that they
take their product’s security serious. Deviations from the standard exist, but they do
not appear to affect the security.

Device
Test No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
SCN-IP100.03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓ × ✓ ✓ × ✓
KNX IP Router 752 Secure × ✓ ✓ ✓ ✓ ✓ ◦ ◦ ◦ ◦ × ✓ × ✓

Table 11: Test results for the KNXnet/IP Secure routers - Part 1
Symbols: ✓fulfilled, × unfulfilled; ◦ ambiguous

See table 17 and 19 for test details.

Device
Test No.

15 16 17 18 19 20 21 22 23 24 25 26 27
SCN-IP100.03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ◦ ◦ ✓ ✓
KNX IP Router 752 Secure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ◦ ◦ ✓ ✓

Table 12: Test results for the KNXnet/IP Secure routers - Part 2
Symbols: ✓fulfilled, × unfulfilled; ◦ ambiguous

See table 17 and 19 for test details.

101

6.2. Protocol State Fuzzing and Model Checking
While the test software from the previous section permits constructing specialized
tests, where the content of frames can be controlled down to the bit, they all have to
be handcrafted. Thus, the approach provides highly specific insights, but a limited
coverage of the target device’s overall behavior. Protocol state fuzzing is an automated
approach, that can be applied to each KNXnet/IP Secure router to infer a FSM,
that models its observable behavior. This allows a comparison with the session FSM
specified in ISO 22510:2019. The general process and implementation was previously
explained in “3.5 Protocol State Fuzzing”. For this work the state learner by de Ruiter
and Poll [81], [82] has been adapted to support KNXnet/IP Secure. It implements the
optimization idea of de Ruiter and Poll for the W-method, by stopping the search for
a counterexample in a trace when the KNXnet/IP Secure session or TCP connection
is closed by either party. An additional constraint is integrated, to ensure that only
one session is created at a time. A TCP connection could contain multiple concurrent
KNXnet/IP Secure sessions, but the specified session FSM is for one session only. The
alphabet includes both representations of valid and invalid frames. Thus, the reactions
to incorrect frames by the KNXnet/IP Secure routers are tested as well. The resulting
FSMs from the protocol state fuzzing were translated into the NuXMV syntax for
model checking. The NuXMV model of the session FSM from “4.1.4 Model Checking
of Session FSM” was build with the same alphabet to facilitate a direct comparison.
The source code of the state learner and NuXMV models are provided in the digital
files, see “A.7 Software, Models and Logs” in the appendix.

The FSMs that were determined by the state learner are depicted in figures 27
and 28. Evaluating which parts fulfill the ISO 22510:2019 standard was accomplished
through model checking and manual comparison with the standard. Parts marked in
purple are correctly implemented by the KNXnet/IP Secure routers, but deviate from
the notation of the session FSM in figure 19, because protocol state fuzzing is unable
to infer the existence and use of internal state variable, such as timers. Therefore, it
models the states explicitly, when a changed behavior of the SUT is observed. The
purple transitions also include cases that are not depicted in the session FSM of ISO
22510:2019, such as the termination of the connection when the KNXnet/IP header
is not well-formed.

It can be seen that both the MDT SCN-IP100.03 and Weinzierl KNX IP Router
752 Secure mainly deviate from the standard during error handling for invalid frames.
None of the identified issues permit to bypass the authentication. They only do not
immediately terminate the session under all circumstance, when they are supposed
to. The device by MDT follows ISO 22510:2019 more closely. Its main difference to
the session FSM is, that frames with an incorrect HPAI appear to result in a state
where the TCP connection still exists, but the communication partner is unable to
establish as session. A return to the idle state 0 happens when the TCP connection is
terminated, either through a timeout or when a frame with an ill-formed KNXnet/IP
header is sent. This is why SCN-IP100.03 fails test 2, as shown in table 13, because
frames other than SESSION_REQUEST result in a transition away from state 0. The

102

KNX IP Router 752 Secure fails both tests 2 and 14, because it does not immedi-
ately terminate the TCP connection when receiving a frame with an invalid header.
Instead, it transitions to an intermediate state 6 until a timeout occurs or the con-
nection is explicitly closed. As explained in the previous section, both devices do not
respond with an encapsulated SESSION_STATUS with the status field set to STATUS_-
AUTHENTICATION_FAILED, when they received an SESSION_AUTHENTICATE frame with
an invalid reserved field. Thus, both devices fail test 9. However, thereby they fulfill
the textual description from ISO 22510:2019 and test 19, which are contradicting the
definition of the session FSM, as previously discussed in “4.1.4 Model Checking of
Session FSM”.

The KNX IP Router 752 Secure appears to deviate from the standard when handling
invalid and unexpected frame, more so than the SCN-IP100.03. When comparing the
FSMs in figure 27 and 28, the issues are more significant for KNX IP Router 752
Secure, because it does not immediately transition to state 0 in cases that are well-
defined in both the text and session FSM in ISO 22510:2019. For instance, when
the FSM is in state 1 (UNAUTHENTICATED) and the device receives an encapsulated
SESSION_AUTHENTICATE with an invalid MAC, then it should deallocate the session
and transition into state 0 (IDLE) [6, pp. 123-124]. This is not the case and similar
issues exist with requests in SECURE_WRAPPER frames prior to authentication, encap-
sulated SESSION_STATUS frame with the status code KEEP_ALIVE, and incorrect user
IDs in SESSION_AUTHENTICATE frames. This is why test 1 of the model checking fails
for this device.

Model
Test No.

1 2 3 4 5 6 7 8 9 10 11 12
Session FSM ✓ ✓ ✓ – – × ✓ ✓ ✓ ✓ ✓ ✓
SCN-IP100.03 ✓ × ✓ – – × ✓ – × ✓ ✓ ✓
KNX IP Router 752 Secure × × ✓ – – × ✓ – × ✓ ✓ ✓

Table 13: Model checking inferred session FSMs - Part 1
Symbols: ✓fulfilled, × unfulfilled; – not applicable

See table 15 for test details.

Model
Test No.

13 14 15 16 17 18 19 20 21 22 23
Session FSM – ◦ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓
SCN-IP100.03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KNX IP Router 752 Secure ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 14: Model checking inferred session FSMs - Part 2
Symbols: ✓fulfilled, × unfulfilled; – not applicable

See table 15 for test details.

103

2) WrappedFrame / WrappedFrame;
SessionResponse, AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, KeepAlive, Timeout, InvalidHeaderServiceType,
InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol, InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac, InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,
InvalidSecureWrapperSequenceInformation, InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag, InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus / ReadTimeout;
SessionRequest / AlreadyConnected

3) SessionResponse, SessionAuthenticate, AuthenticationSuccess,
AuthenticationFailed, Unauthenticated, KeepAlive, Timeout, WrappedFrame,
InvalidHeaderServiceType, InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac, InvalidSessionAuthenticateReservedField,
InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID, InvalidSessionAuthenticateMac,
InvalidSecureWrapperSessionIdentifier,
InvalidSecureWrapperSequenceInformation, InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag, InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus, InvalidSessionStatusReservedField /
ReadTimeout

1) InvalidHeaderLength, InvalidHeaderVersion / ConnectionClosed;
SessionResponse, SessionAuthenticate, AuthenticationSuccess,
AuthenticationFailed, Unauthenticated, KeepAlive, Timeout, Close,
WrappedFrame, InvalidHeaderServiceType,
InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID, InvalidSessionAuthenticateMac,
InvalidSecureWrapperSessionIdentifier,
InvalidSecureWrapperSequenceInformation, InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag, InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus, InvalidSessionStatusReservedField /
ReadTimeout

SessionAuthenticate / AuthenticationSuccess

SessionAuthenticate / AuthenticationSuccess

SessionAuthenticate,
InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac /
AuthenticationFailed

Close, InvalidSessionStatusReservedField
/ Close

Close, InvalidSessionStatusReservedField
/ Close

KeepAlive, WrappedFrame / Unauthenticated

InvalidHeaderLength,
InvalidHeaderVersion / ConnectionClosed

InvalidHeaderLength, InvalidHeaderVersion / ConnectionClosed

InvalidHeaderLength,
InvalidHeaderVersion / ConnectionClosed

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac /
AuthenticationFailed

Close,InvalidSessionStatusReservedField / Close

KeepAlive, WrappedFrame / Unauthenticated

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac / AuthenticationFailed

SessionRequest / SessionResponse

InvalidSessionRequestHpaiIp,
InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol

/ ReadTimeout

SessionAuthenticate / AuthenticationSuccess

SessionResponse,
InvalidSessionRequestHpaiIp,

InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac / ReadTimeout

AuthenticationSuccess,
AuthenticationFailed, Unauthenticated,

Timeout, InvalidHeaderServiceType,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag,

InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus /

ReadTimeout

InvalidHeaderLength, InvalidHeaderVersion / ConnectionClosed

SessionRequest, Close, InvalidSessionRequestHpaiIp,
InvalidSessionRequestHpaiLength, InvalidSessionRequestHpaiProtocol

/ ReadTimeout

SessionResponse, AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, Timeout, InvalidHeaderServiceType,

InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSerialNumber, InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac, InvalidSessionStatusUnusedStatus / Timeout

InvalidHeaderLength, InvalidHeaderVersion / ConnectionClosed

Close, InvalidSessionStatusReservedField / Close

KeepAlive, WrappedFrame / Unauthenticated

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac / AuthenticationFailed

SessionResponse, AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, Timeout, InvalidHeaderServiceType,

InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSequenceInformation,
InvalidSecureWrapperSerialNumber, InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac, InvalidSessionStatusUnusedStatus / Timeout

SessionRequest / AlreadyConnected

5

3)

4

SessionRequest / AlreadyConnected

3

2

2)
SessionRequest / AlreadyConnected

1

0

1)

Figure 27: Result of protocol state fuzzing for SCN-IP100.03
Black - Correct, matches session FSM

Purple - Correct, but notation deviates from session FSM
Red - Incorrect, violates specification

104

SessionAuthenticate / AuthenticationSuccess

SessionAuthenticate / AuthenticationSuccess

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac / AuthenticationFailed

Close, InvalidSessionStatusReservedField / Close

KeepAlive, WrappedFrame / Unauthenticated

SessionResponse, AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, Timeout, InvalidHeaderLength,
InvalidHeaderServiceType, InvalidHeaderVersion,

InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSequenceInformation,
InvalidSecureWrapperSerialNumber, InvalidSecureWrapperMessageTag,

InvalidSecureWrapperMac, InvalidSessionStatusUnusedStatus / Timeout

SessionAuthenticate / AuthenticationSuccess

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac / AuthenticationFailed

Close, InvalidSessionStatusReservedField / Close

KeepAlive, WrappedFrame / Unauthenticated

SessionResponse, AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, Timeout, InvalidHeaderLength,
InvalidHeaderServiceType, InvalidHeaderVersion,

InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSerialNumber, InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac, InvalidSessionStatusUnusedStatus / Timeout

SessionAuthenticate,
InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac /
AuthenticationFailed

Close, InvalidSessionStatusReservedField
/ Close

Close, InvalidSessionStatusReservedField
/ Close

KeepAlive, WrappedFrame / Unauthenticated

InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,

InvalidSessionAuthenticateMac /
AuthenticationFailed

SessionResponse,
InvalidSessionRequestHpaiIp,

InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,

InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac / ReadTimeout

InvalidSessionRequestHpaiProtocol / ReadTimeout

Close, InvalidSessionStatusReservedField / Close

SessionRequest / SessionResponse

InvalidHeaderLength,
InvalidHeaderVersion /

ReadTimeout

!Close / ReadTimeout

Close /
ReadTimeout

/ ConnectionClosed

AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, Timeout, InvalidHeaderLength,
InvalidHeaderServiceType, InvalidHeaderVersion,

InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,

InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag,

InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus / ReadTimeout

SessionRequest / SessionResponse

InvalidHeaderLength,
InvalidHeaderVersion / ReadTimeout

1) SessionResponse, SessionAuthenticate,
AuthenticationSuccess, AuthenticationFailed,
Unauthenticated, KeepAlive, Timeout, Close,
WrappedFrame, InvalidHeaderServiceType,
InvalidSessionRequestHpaiIp,
InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,
InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSessionAuthenticateReservedUserID,
InvalidSessionAuthenticateUnusedUserID,
InvalidSessionAuthenticateMac,
InvalidSecureWrapperSessionIdentifier,
InvalidSecureWrapperSequenceInformation,
InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus,
InvalidSessionStatusReservedField / ReadTimeout
2) WrappedFrame / WrappedFrame;
SessionResponse, AuthenticationSuccess,
AuthenticationFailed, Unauthenticated, KeepAlive,
Timeout, InvalidHeaderLength, InvalidHeaderServiceType,
InvalidHeaderVersion, InvalidSessionRequestHpaiIp,
InvalidSessionRequestHpaiLength,
InvalidSessionRequestHpaiProtocol,
InvalidSessionResponseSessionIdentifier,
InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField,
InvalidSecureWrapperSessionIdentifier,
InvalidSecureWrapperSequenceInformation,
InvalidSecureWrapperSerialNumber,
InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac,
InvalidSessionStatusUnusedStatus / ReadTimeout
SessionRequest / AlreadyConnected
3) SessionResponse, SessionAuthenticate, AuthenticationSuccess, AuthenticationFailed, Unauthenticated, KeepAlive, Timeout, WrappedFrame,
InvalidHeaderServiceType, InvalidSessionRequestHpaiIp, InvalidSessionRequestHpaiLength, InvalidSessionResponseSessionIdentifier, InvalidSessionResponseMac,
InvalidSessionAuthenticateReservedField, InvalidSecureWrapperSessionIdentifier, InvalidSecureWrapperSerialNumber, InvalidSecureWrapperMessageTag,
InvalidSecureWrapperMac, InvalidSessionStatusUnusedStatus / ReadTimeout;
InvalidSessionAuthenticateReservedUserID, InvalidSessionAuthenticateUnusedUserID, InvalidSessionAuthenticateMac / AuthenticationFailed

7

6

SessionRequest / AlreadyConnected

5

SessionRequest / AlreadyConnected

4

3)

3

2

2)
SessionRequest / AlreadyConnected

1

0

1)

Figure 28: Result of protocol state fuzzing for KNX IP Router 752 Secure
Black - Correct, matches session FSM

Purple - Correct, but notation deviates from session FSM
Red - Incorrect, violates specification

105

6.3. Improvement Suggestions
It would be recommended that manufacturers apply white-box or gray-box fuzzing
techniques in order to identify bugs, such as the one that caused CVE-2021-37740,
during development. The results of the test software, protocol state fuzzing and model
checking have shown, that the certification process does not ensure complete confor-
mance with the ISO 22510:2019 standard. Therefore, the requirements and test suite
should be extended to cover cases that the certified devices did not fulfill. Protocol
state fuzzing could also be applied as part of the process. Furthermore, the ambigui-
ties and inconsistencies of the protocol specification should be addressed, as it creates
unnecessary challenges for the implementation and testing.

7. Risk Analysis with BSI 200-3
In order to systematically identify risks that KNX installation could be exposed to, the
BSI 200-3 standard was applied to three fictional KNX installations that are based on
real showcases from the KNX journals. The risk analysis was conducted on fictional
KNX installations, because the KNX journals and system integrators do not provide
in-depth details, such as network plans, about real installations. Additionally, the
examples could be kept minimal and it was possible to intentionally integrate risk
factors to consider how they affect the KNX installation and connected network. The
three KNX installations portrait different use cases, which are in a house, a hotel and
an art gallery. Each of them has different security requirements and risks that they
are exposed to. Inspiration for the house is provided by the “Beverly Hills Mansion”
showcase [23, pp. 14-15] and the hotel is based on the “Dubai Parks and Resorts”
[23, pp. 12-13], both are from the second KNX journal of 2018. The art gallery is
based on the “Institute of Greek Artists and Scientists of the Diaspora” from KNX
journal of 2020 [11, pp. 24-25]. BSI 200-3 and the IT-Grundschutz compendium were
applied for the risk analysis, as previously described in “3.6 Risk Analysis with BSI
200-3”. Due to length limits, this thesis presents only the highly summarized results
of the risk analysis, which identify common risks that are applicable to nearly all
KNX installations that use KNXnet/IP Secure. Details can be found in the digital
files, see “A.7 Software, Models and Logs” in the appendix. Based on the results,
it can be evaluated whether the guidelines provided by the KNX Association in the
“KNX Project Preparation” document [157] adequately address the identified risks or
whether amendments would be recommended.

7.1. Results of the Risk Analysis
While KNXnet/IP Secure addresses shortcomings of KNXnet/IP and thereby improves
the security of KNX installations, it does not make them fully secure. Even in the best-
case scenario, it only protects the communication between KNXnet/IP Secure devices,
ensures access control for their services, and limits configuration to an authorized
management user. There may still be a significant remaining attack surface against

106

the devices, ETS, and network that needs to be addressed as well. This is both relevant
for protecting the KNX installation from risks from the network it is connected to and
vice versa. The most relevant risks for the secure operation of a KNX installation and
the surrounding network, that have been identified through BSI 200-3, are explained
in the following paragraphs.

An insufficient security concept for the network architecture could expose the KNX
installation to attacks from the internet or threats within the local network. For
instance, missing segmentation, misconfigured firewalls or a lack of network access
control (NAC) could allow unauthorized devices in the network to communicate with
security critical ones. This is especially relevant for companies, when the KNX instal-
lation interfaces with surveillance cameras, alarm systems and electronic door locks.
In the worst-case KNX devices would be directly reachable from the internet. On
March 20, 2022, that is the case for 15534 KNXnet/IP devices globally, according to
the Shodan search engine4. Furthermore, a lack of monitoring in the network poses a
risk, because security incidents might not be noticed.

Unpatched vulnerabilities in operating systems, software and firmware may allow an
adversary to attack KNXnet/IP devices or the computer running the ETS software. As
shown in CVE-2021-37740, a DoS vulnerability could be used to disrupt the operation
of the KNX installation. Severe vulnerabilities, such as those permitting remote code
execution (RCE), could be an attack vector for malware. Embedded and IoT devices
have been targeted in the past, for instance by the Mirai botnet, as explained by
Antonakakis et al. [158]. It is therefore conceivable, that KNXnet/IP devices, that are
connected to the internet, could become a target of similar malware campaigns in the
future. Since the ETS does not properly encrypt the key material, an infection of the
computer would allow an adversary to exfiltrate the secrets, thus gaining full control
over the KNX installation. A different risk is data loss due to ransomware or hardware
failure. It could cause an irretrievable loss of project files, which would prevent the
management of KNX installations. Therefore, another risk is the lack of backups,
which would be necessary to recover the data. Without backups, all KNX devices
would have to be reset and the entire ETS project recreated, should modifications to
the KNX installation be required.

As previously discussed in “5.2 Offline Attack against Authentication”, selecting
weak passwords for the AKE in KNXnet/IP Secure may allow an adversary to de-
termine the password and impersonate a legitimate device. In case they are able to
impersonate a client, they may be able to control actuators in the KNX installation,
similar to Molina et al. [18].

Placing KNXnet/IP devices in publicly accessible areas, thereby lacking physical
security, is mainly a concern for companies. This threat is particularly relevant for
hotels, where KNX devices might be placed inside hotel rooms, where an attacker
would have undisturbed access to them, without facing camera surveillance.

Companies such as Gira and Jung sell cloud services for remote management [159],
[160]. Considering that the planned lifetime of a building automation system in pri-

4https://www.shodan.io/search?query=KNXnet%2FIP

107

https://www.shodan.io/search?query=KNXnet%2FIP

vate homes could be upwards of a decade, it could be counterproductive to create
dependencies to potentially short-lived cloud services. This may affect the availability
of important functions that the customer grows to rely on. Furthermore, remote access
is highly sensitive for the security of the computer network. Vulnerabilities affecting
the cloud service or gateway can have a significant security impact on their customers.
Depending on the implementation, it may also raise privacy concerns.

Lastly, the system integrator that installs and configures the KNX installation has
access to the project files and their key material. It could be a risk factor, that the files
are stored by the company. It may become a target by adversaries that try to gain
knowledge about their customer’s installations and cryptographic keys. Additionally,
once the project is finished, the system integrator has to hand over the project files
to the customer. If this is done through insecure means, for instance by sending an
unencrypted email with the exported project and perhaps even the project password,
then a compromise of the email account would also affect the security of the KNX
installation.

7.2. KNX Guidelines
The KNX Associations provides a checklist for system integrators to increase the secu-
rity and privacy in KNX installations [157, pp. 28-30]. It is fairly comprehensive and
contains mostly good advice. It thoroughly addresses physical security measurements.
For KNXnet/IP it also requires the documentation and handover of network settings
to the customer [157, p. 29], which is commendable. However, it also contains ques-
tionable security suggestions, which include MAC filtering and changing the default
multicast IP address [157, p. 29]. While they are not harmful, they are not effective
measurements for access control. Unfortunately, the guide does not provide proper
suggestions for NAC. Furthermore, the checklist recommends a separate LAN for the
KNX communication [157, p. 29]. Air-gapping the KNX installation would be great
for security, but the recommendation is too simplistic and contrary to nearly all mar-
keted use case that require connections to other device on the network. The checklist
is missing steps to ensure that the KNX installation can be safely integrated into an
existing network architecture, with appropriate security measurements.

Additional good guidelines include the use of strong passwords and preventing KNX
devices from accessing the internet [157, p. 29]. This addresses two central security
concerns. However, the latter may be at odds with the KNX Association’s push
towards IoT, as described in the KNX journal of 2021 [161]. The guide also mentions
the case where KNX is interfacing with security systems and says to ensure that KNX is
unable to trigger security relevant functions in the connected system [157, p. 30]. This
limits the security impact should KNX devices be compromised. Furthermore, keeping
the ETS, operating system and device firmware updated is also advised [157, p. 30].
This addresses the previously identified risk. It warns against connecting untrusted
media, such as USB sticks [157, p. 30], which is sensible. However, it also advises to
save the project file after the installation to a secured USB stick and delete the project
from the computer [157, p. 30]. USB sticks may not be the most suitable media for

108

long-term archival. Since the guide is aimed at system integrators, the deletion from
the computer is a good step to ensure that only the customer has access to the key
material after handing over the project files.

In summary, the checklist provides several good recommendations, but it is not
complete.

7.3. Improvement Suggestions
In order to improve the security of the KNX installation and network further, the
following steps are recommended:

• The computer with the ETS should solely be used for managing the KNX in-
stallation, not as a PC. It should not be used to browse the internet, read emails
or install software from non-reputable sources. Unless administrative privileges
are required, a regular user account should be utilized.

• Full-disk encryption should be applied to protect data at rest, such as the key
material of the ETS5.

• Since the ETS5 does not provide an option to auto-generate passwords of maxi-
mum length, a password manager should be used. This is generally recommend-
able for securely storing and generating passwords.

• The certificate sticker should be removed from all KNXnet/IP Secure devices,
as it contains the FDSK.

• Under no circumstance, not even for testing, should KNX devices be connected
to the internet through port forwarding. Additionally, UPnP should be disabled,
if possible.

• Backups to suitable media should be made and regularly checked for successful
recovery.

• The network architecture should be designed with security in mind. Therefore,
segmentation and NAC has to be included, either through a classic zone-based
concept, such the one detailed in the ISi-LANA standard by the BSI [92], or
a modern Zero Trust design as described in NIST SP 800-207 [94]. While not
support by KNX itself, multi-factor authentication (MFA) should be used where
possible.

• For companies a security information and event management (SIEM) should
be implemented to monitor and evaluate events in the network to detect po-
tential security incidents. Intrusion detection systems (IDSs) and anti-virus at
endpoints may help to detect and isolate threats as well.

• Ideally, cloud services for remote management should be avoided.

8. Evaluation
The research questions posed in the “Introduction” chapter were all answered.

109

1. The unicast and multicast protocol, specified in ISO 22510:2019, are not secure
from a theoretical standpoint. Multiple design flaws that affect the security
properties were pointed out in chapter “Analysis of KNXnet/IP Secure in ISO
22510:2019”, including nonce reuse and the possibility of offline attacks against
the authentication of KNXnet/IP Secure unicast.

2. The offline attack against the authentication could be a practical, as shown in
“5.2 Offline Attack against Authentication”, depending on the password com-
plexity and available computational resources. Furthermore, the compromise of
the cryptographic secrets from one devices would allow to impersonate others,
due the protocol relying on symmetric cryptography for the authentication.

3. The ETS5 v5.7.6 uses a hard-coded password and salt for the obfuscation of
cryptographic secrets in the project store. CVE-2021-36799 puts the security
of the KNX installation at risk, because the cryptographic secrets can be re-
trieved without knowledge of the project password, contrary to what the UI and
documentation suggests.

4. The tests in “5.5 Analysis with Test Software” show that the ETS5 v5.7.6 does
not fully conform with ISO 22510:2019.

5. The two tested KNXnet/IP Secure routers did not fully conform with ISO
22510:2019, as show in “Analysis of Certified Devices”.

6. Non-conforming behavior did not have a negative impact on the security, except
for the DoS vulnerability CVE-2021-37740, which was reported to the manufac-
turer and fixed.

7. Risks for KNX installations and their mitigations were identified in “Risk Anal-
ysis with BSI 200-3”, as well as improvement suggestions for the guidelines
provided by the KNX Association.

9. Conclusion and Future Work
In conclusion, the unicast and multicast KNXnet/IP Secure protocols improve the
security in KNX installations compared to communication over plain KNXnet/IP, but
from a theoretical standpoint they are neither secure nor well-designed cryptographic
protocols. A practical attack against the authentication of the unicast protocol is
possible when weak passwords are used. However, the demonstrated attack is not
possible for randomly generated passwords with 10 or more characters. Ideally, the
discovered design flaws in this work and those found by Judmayer et al. [1] would be
used to develop a new version of KNXnet/IP Secure, that fixes both theoretical and
practical security risks. Future work could include research into side-channel attacks
against the KNXnet/IP Secure devices, that may permit to extract cryptographic
secrets. It would also be of interest to investigate additional features provided by
some devices, such as web interfaces or remote management through a cloud service.
Furthermore, Data Secure requires a thorough analysis as well.

110

References
[1] A. Judmayer, L. Krammer, and W. Kastner, “On the security of security exten-

sions for IP-based KNX networks,” in 2014 10th IEEE Workshop on Factory
Communication Systems (WFCS 2014), IEEE, 2014, pp. 1–10. doi: 10.1109/
WFCS.2014.6837593.

[2] D. Whiting, R. Housley, and N. Ferguson, “Submission to NIST: Counter with
CBC-MAC (CCM),” 2002. [Online]. Available: https://csrc.nist.rip/
groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf (visited
on 2021-10-08).

[3] M. Dworkin, “Block Cipher Modes of Operation: The CCM Mode For Authen-
tication and Confidentiality,” National Institute of Standards and Technology,
Gaithersburg, MD, USA, NIST Special Publication (SP) 800-38C, Updated
2007, May 2004. doi: 10.6028/NIST.SP.800-38C.

[4] C. Cremers and M. Feltz, “Beyond eCK: Perfect forward secrecy under actor
compromise and ephemeral-key reveal,” in European Symposium on Research
in Computer Security, Springer, 2012, pp. 734–751. doi: 10.1007/978-3-642-
33167-1_42.

[5] D. Boneh and V. Shoup, A graduate course in applied cryptography. Self-
publishing, 2020. [Online]. Available: http://toc.cryptobook.us/book.pdf
(visited on 2021-10-08).

[6] Open data communication in building automation, controls and building man-
agement — Home and building electronic systems — KNXnet/IP communica-
tion, ISO 22510:2019, International Organization for Standardization, Vernier,
Geneva, Switzerland, Nov. 2019.

[7] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security,” Internet
Engineering Task Force (IETF), RFC 7748, Jan. 2016.

[8] K. Moriarty, B. Kaliski, and A. Rusch, “PKCS #5: Password-Based Cryptogra-
phy Specification Version 2.1,” Internet Engineering Task Force (IETF), RFC
8018, Jan. 2017.

[9] “Secure Hash Standard,” National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, NIST FIPS 180-4, Aug. 2015. doi:
10.6028/NIST.FIPS.180-4.

[10] “KNX Basics,” KNX Association, Diegem, Brussels, Belgium. [Online]. Avail-
able: https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/
KNX-Basics/KNX-Basics_en.pdf (visited on 2021-10-26).

[11] “Journal,” KNX Association, Diegem, Brussels, Belgium, Mar. 9, 2020.
[Online]. Available: https : / / www . knx . org / wAssets / docs / downloads /
Marketing / KNX - Journal / International - Journals / English / KNX -
Journal-2020_en.pdf (visited on 2020-05-13).

111

https://doi.org/10.1109/WFCS.2014.6837593
https://doi.org/10.1109/WFCS.2014.6837593
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-33167-1_42
http://toc.cryptobook.us/book.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Basics/KNX-Basics_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Basics/KNX-Basics_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2020_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2020_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2020_en.pdf

[12] M. Ruta, F. Scioscia, G. Loseto, and E. Di Sciascio, “KNX: A Worldwide Stan-
dard Protocol for Home and Building Automation: State of the Art and Per-
spectives,” Industrial Communication Technology Handbook, pp. 58–77, 2017.

[13] KNX Standard, version 2.1, KNX Association, Diegem, Brussels, Belgium,
Dec. 2013. [Online]. Available: https : / / my . knx . org / de / shop / knx -
specifications (visited on 2020-05-02).

[14] System Specifications, Communication Media, Twisted Pair 1, version 01.02.02,
KNX Association, Diegem, Brussels, Belgium, Dec. 2013. [Online]. Available:
https://my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[15] System Specifications KNXnet/IP, Overview, version 01.04.02, KNX Associa-
tion, Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https://my.
knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[16] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “Security in
networked building automation systems,” in IEEE International Workshop on
Factory Communication Systems, IEEE, 2006, pp. 283–292. doi: 10.1109/
WFCS.2006.1704168.

[17] A. Antonini, F. Maggi, and S. Zanero, “A practical attack against a KNX-
based building automation system,” in 2nd International Symposium for ICS
& SCADA Cyber Security Research 2014 (ICS-CSR 2014), 2014, pp. 53–60.

[18] J. Molina, “Learn how to control every room at a luxury hotel remotely: The
dangers of insecure home automation deployment,” Black Hat USA, 2014.

[19] KNXnet/IP Secure, Application Note 159/13 v04, Draft Proposal, KNX As-
sociation, Diegem, Brussels, Belgium, Sep. 2013. [Online]. Available: https:
//my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[20] “ISO 22510:2019,” International Organization for Standardization, [Online].
Available: https://www.iso.org/standard/73364.html (visited on 2021-11-
20).

[21] “Journal,” KNX Association, Diegem, Brussels, Belgium, Mar. 11, 2019.
[Online]. Available: https : / / www . knx . org / wAssets / docs / downloads /
Marketing / KNX - Journal / International - Journals / English / KNX -
Journal-2019_en.pdf (visited on 2020-05-15).

[22] KNX Data Security, Application Note 158/13 v02, Draft Proposal, KNX As-
sociation, Diegem, Brussels, Belgium, May 2013. [Online]. Available: https:
//my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[23] “Journal,” KNX Association, Diegem, Brussels, Belgium, Sep. 17, 2018.
[Online]. Available: https : / / www . knx . org / wAssets / docs / downloads /
Marketing / KNX - Journal / International - Journals / English / KNX -
Journal-2-2018_en.pdf (visited on 2021-06-08).

112

https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://doi.org/10.1109/WFCS.2006.1704168
https://doi.org/10.1109/WFCS.2006.1704168
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://www.iso.org/standard/73364.html
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2019_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2019_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2019_en.pdf
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2-2018_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2-2018_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2-2018_en.pdf

[24] KNX Certification of Products, Procedure, version 01.03.01, KNX Association,
Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https://my.knx.
org/de/shop/knx-specifications (visited on 2020-05-02).

[25] W. Granzer, D. Lechner, F. Praus, and W. Kastner, “Securing IP backbones in
building automation networks,” in 2009 7th IEEE International Conference on
Industrial Informatics, IEEE, 2009, pp. 410–415. doi: 10.1109/INDIN.2009.
5195839.

[26] H. Glanzer, L. Krammer, and W. Kastner, “Increasing security and availability
in KNX networks,” in Sicherheit 2016 - Sicherheit, Schutz und Zuverlässigkeit,
Gesellschaft für Informatik eV., 2016, pp. 241–252.

[27] S. Seifried, G. Gridling, and W. Kastner, “KNX IPv6: Design issues and pro-
posed architecture,” in 2017 13th International Workshop on Factory Commu-
nication Systems (WFCS), IEEE, 2017, pp. 1–10. doi: 10.1109/WFCS.2017.
7991951.

[28] J. Goltz, “Sicherheitsanalyse von Gebäudeautomationsnetzen auf Feldbusebene
am Beispiel von KNX,” M.S. thesis, Universität Rostock, 2018.

[29] C. Vacherot, “Sneak into buildings with KNXnet/IP,” 2020. HAL: hal -
03022310.

[30] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2020.
[31] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied

cryptography. CRC press, 1996.
[32] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryptog-

raphy. Springer Science & Business Media, 2006.
[33] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm,” in International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Springer, 2000, pp. 531–545. doi: 10.1007/3-540-44448-3_41.

[34] H. Krawczyk, “The order of encryption and authentication for protecting com-
munications (or: How secure is SSL?)” In Annual International Cryptology Con-
ference, Springer, 2001, pp. 310–331. doi: 10.1007/3-540-44647-8_19.

[35] J. Jonsson, “On the security of CTR+CBC-MAC,” in International Workshop
on Selected Areas in Cryptography, Springer, 2002, pp. 76–93. doi: 10.1007/3-
540-36492-7_7.

[36] P. Rogaway and D. A. Wagner, “A Critique of CCM,” Cryptology ePrint
Archive, 2003. [Online]. Available: http://eprint.iacr.org/2003/070 (vis-
ited on 2021-10-09).

[37] M. Dworkin, E. Barker, J. Nechvatal, et al., “Advanced Encryption Standard
(AES),” National Institute of Standards and Technology, Gaithersburg, MD,
USA, NIST FIPS 197, Nov. 2001. doi: 10.6028/NIST.FIPS.197.

113

https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://doi.org/10.1109/INDIN.2009.5195839
https://doi.org/10.1109/INDIN.2009.5195839
https://doi.org/10.1109/WFCS.2017.7991951
https://doi.org/10.1109/WFCS.2017.7991951
hal-03022310
hal-03022310
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1007/3-540-36492-7_7
http://eprint.iacr.org/2003/070
https://doi.org/10.6028/NIST.FIPS.197

[38] P. Rogaway, “Evaluation of some blockcipher modes of operation,” Cryptogra-
phy Research and Evaluation Committees (CRYPTREC) for the Government
of Japan, 2011.

[39] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the
theory and application of cryptographic techniques, Springer, 1985, pp. 417–
426. doi: 10.1007/3-540-39799-X_31.

[40] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987. doi: 10 . 1090 / S0025 - 5718 - 1987 -
0866109-5.

[41] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptog-
raphy,” Designs, codes and cryptography, vol. 19, no. 2, pp. 173–193, 2000. doi:
10.1023/A:1008354106356.

[42] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in Interna-
tional Workshop on Public Key Cryptography, Springer, 2006, pp. 207–228. doi:
10.1007/11745853_14.

[43] D. Genkin, L. Valenta, and Y. Yarom, “May the fourth be with you: A
microarchitectural side channel attack on several real-world applications
of curve25519,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 845–858. doi:
10.1145/3133956.3134029.

[44] “Kryptographische Verfahren: Empfehlungen und Schlüssellängen,” Bundesamt
für Sicherheit in der Informationstechnik, Bonn, North Rhine-Westphalia, Ger-
many, Technical Guideline BSI TR-02102-1, version 2021-01, Mar. 2021.

[45] E. Barker and A. Roginsky, “Transitioning the Use of Cryptographic Algo-
rithms and Key Lengths,” National Institute of Standards and Technology,
Gaithersburg, MD, USA, NIST Special Publication (SP) 800-131A, Rev. 2,
May 2019. doi: 10.6028/NIST.SP.800-131Ar2.

[46] “Elliptic Curve Cryptography,” Bundesamt für Sicherheit in der Information-
stechnik, Bonn, North Rhine-Westphalia, Germany, Technical Guideline BSI
TR-03111, Jun. 2018.

[47] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transac-
tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976. doi: 10.1109/
TIT.1976.1055638.

[48] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and au-
thenticated key exchanges,” Designs, Codes and cryptography, vol. 2, no. 2,
pp. 107–125, 1992. doi: 10.1007/BF00124891.

[49] KNXnet/IP Security, Application Note 159/13 v06, Draft for Voting, KNX
Association, Diegem, Brussels, Belgium, Oct. 2017, Unpublished.

114

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1023/A:1008354106356
https://doi.org/10.1007/11745853_14
https://doi.org/10.1145/3133956.3134029
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/BF00124891

[50] S. Blake-Wilson and A. Menezes, “Unknown key-share attacks on the station-
to-station (STS) protocol,” in International Workshop on Public Key Cryptog-
raphy, Springer, 1999, pp. 154–170. doi: 10.1007/3-540-49162-7_12.

[51] K.-K. R. Choo, “Key establishment: Proofs and refutations,” Ph.D. disserta-
tion, Queensland University of Technology, 2006.

[52] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic proof
of the WireGuard virtual private network protocol,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2019, pp. 231–246. doi:
10.1109/EuroSP.2019.00026.

[53] D. G. Steer, L. Strawczynski, W. Diffie, and M.Wiener, “A secure audio telecon-
ference system,” in Conference on the Theory and Application of Cryptography,
Springer, 1988, pp. 520–528. doi: 10.1007/0-387-34799-2_37.

[54] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient group key agree-
ment,” in IFIP International Information Security Conference, Springer, 2001,
pp. 229–244. doi: 10.1007/0-306-46998-7_16.

[55] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribu-
tion system,” in Workshop on the Theory and Application of of Cryptographic
Techniques, Springer, 1994, pp. 275–286. doi: 10.1007/BFb0053443.

[56] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer
groups,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 8,
pp. 769–780, 2000. doi: 10.1109/71.877936.

[57] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key agreement
for dynamic collaborative groups,” in Proceedings of the 7th ACM Conference
on Computer and Communications Security, 2000, pp. 235–244. doi: 10.1145/
352600.352638.

[58] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,” ACM
Transactions on Information and System Security (TISSEC), vol. 7, no. 1,
pp. 60–96, 2004. doi: 10.1145/984334.984337.

[59] M. Manulis, “Contributory group key agreement protocols, revisited for mobile
ad-hoc groups,” in IEEE International Conference on Mobile Adhoc and Sensor
Systems Conference, IEEE, 2005, pp. 811–818. doi: 10.1109/MAHSS.2005.
1542876.

[60] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner, “On
ends-to-ends encryption: Asynchronous group messaging with strong security
guarantees,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 1802–1819. doi: 10.1145/3243734.
3243747.

115

https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1109/EuroSP.2019.00026
https://doi.org/10.1007/0-387-34799-2_37
https://doi.org/10.1007/0-306-46998-7_16
https://doi.org/10.1007/BFb0053443
https://doi.org/10.1109/71.877936
https://doi.org/10.1145/352600.352638
https://doi.org/10.1145/352600.352638
https://doi.org/10.1145/984334.984337
https://doi.org/10.1109/MAHSS.2005.1542876
https://doi.org/10.1109/MAHSS.2005.1542876
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747

[61] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis and
improvements for the IETF MLS standard for group messaging,” in Annual
International Cryptology Conference, Springer, 2020, pp. 248–277. doi: 10.
1007/978-3-030-56784-2_9.

[62] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk, “Continuous group key agree-
ment with active security,” in Theory of Cryptography Conference, Springer,
2020, pp. 261–290. doi: 10.1007/978-3-030-64378-2_10.

[63] J. Alwen, M. Capretto, M. Cueto, et al., “Keep the dirt: Tainted treekem,
adaptively and actively secure continuous group key agreement,” in 2021 IEEE
Symposium on Security and Privacy (SP), IEEE, 2021, pp. 268–284. doi: 10.
1109/SP40001.2021.00035.

[64] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Trans-
actions on information theory, vol. 29, no. 2, pp. 198–208, 1983. doi: 10.1109/
TIT.1983.1056650.

[65] M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in
Annual international cryptology conference, Springer, 1993, pp. 232–249. doi:
10.1007/3-540-48329-2_21.

[66] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their
use for building secure channels,” in International conference on the theory
and applications of cryptographic techniques, Springer, 2001, pp. 453–474. doi:
10.1007/3-540-44987-6_28.

[67] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of authenticated
key exchange,” in International conference on provable security, Springer, 2007,
pp. 1–16. doi: 10.1007/978-3-540-75670-5_1.

[68] C. Cremers and M. Feltz, “Beyond eCK: Perfect forward secrecy under actor
compromise and ephemeral-key reveal,” version 2.0, Cryptology ePrint Archive,
Oct. 19, 2017. [Online]. Available: https://eprint.iacr.org/2012/416.pdf
(visited on 2021-09-15).

[69] C. M. Swanson, “Security in key agreement: Two-party certificateless schemes,”
M.S. thesis, University of Waterloo, 2008.

[70] A. Visconti, S. Bossi, H. Ragab, and A. Calò, “On the weaknesses of PBKDF2,”
in International Conference on Cryptology and Network Security, Springer,
2015, pp. 119–126. doi: 10.1007/978-3-319-26823-1_9.

[71] A. Visconti, O. Mosnáček, M. Brož, and V. Matyáš, “Examining PBKDF2
security margin - Case study of LUKS,” Journal of Information Security and
Applications, vol. 46, pp. 296–306, 2019. doi: 10.1016/j.jisa.2019.03.016.

[72] H. Choi and S. C. Seo, “Optimization of PBKDF2 Using HMAC-SHA2 and
HMAC-LSH Families in CPU Environment,” IEEE Access, vol. 9, pp. 40 165–
40 177, 2021. doi: 10.1109/ACCESS.2021.3065082.

116

https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-75670-5_1
https://eprint.iacr.org/2012/416.pdf
https://doi.org/10.1007/978-3-319-26823-1_9
https://doi.org/10.1016/j.jisa.2019.03.016
https://doi.org/10.1109/ACCESS.2021.3065082

[73] E. Biham and P. C. Kocher, “A known plaintext attack on the PKZIP stream ci-
pher,” in International Workshop on Fast Software Encryption, Springer, 1994,
pp. 144–153. doi: 10.1007/3-540-60590-8_12.

[74] M. Stay, “ZIP attacks with reduced known plaintext,” in International Work-
shop on Fast Software Encryption, Springer, 2001, pp. 125–134. doi: 10.1007/
3-540-45473-X_10.

[75] R. Cavada, A. Cimatti, M. Dorigatti, et al., “The nuXmv symbolic model
checker,” in International Conference on Computer Aided Verification,
Springer, 2014, pp. 334–342. doi: 10.1007/978-3-319-08867-9_22.

[76] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on
Foundations of Computer Science (SFCS 1977), IEEE, 1977, pp. 46–57. doi:
10.1109/SFCS.1977.32.

[77] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Workshop on Logic of Pro-
grams, Springer, 1981, pp. 52–71. doi: 10.1007/BFb0025774.

[78] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986. doi:
10.1109/TC.1986.1676819.

[79] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in International conference on tools and algorithms for the construction
and analysis of systems, Springer, 1999, pp. 193–207. doi: 10.1007/3-540-
49059-0_14.

[80] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman, “Completeness and
complexity of bounded model checking,” in International Workshop on Verifi-
cation, Model Checking, and Abstract Interpretation, Springer, 2004, pp. 85–96.
doi: 10.1007/978-3-540-24622-0_9.

[81] J. De Ruiter and E. Poll, “Protocol State Fuzzing of TLS Implementations,” in
24th USENIX Security Symposium (USENIX Security 15), 2015, pp. 193–206.

[82] J. De Ruiter. “StateLearner,” [Online]. Available: https : / / github . com /
jderuiter/statelearner (visited on 2021-11-20).

[83] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib,” in Inter-
national Conference on Computer Aided Verification, Springer, 2015, pp. 487–
495. doi: 10.1007/978-3-319-21690-4_32.

[84] P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, and J. So-
morovsky, “Analysis of DTLS Implementations Using Protocol State Fuzzing,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 2523–
2540.

[85] BSI-Standard 200-3, Risik Analysis based on IT-Grundschutz, version 1.0,
Bundesamt für Sicherheit in der Informationstechnik, Bonn, North Rhine-
Westphalia, Germany, May 2018.

117

https://doi.org/10.1007/3-540-60590-8_12
https://doi.org/10.1007/3-540-45473-X_10
https://doi.org/10.1007/3-540-45473-X_10
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-540-24622-0_9
https://github.com/jderuiter/statelearner
https://github.com/jderuiter/statelearner
https://doi.org/10.1007/978-3-319-21690-4_32

[86] BSI-Standard 200-3, Risikomanagement, version 1.0, Bundesamt für Sicherheit
in der Informationstechnik, Bonn, North Rhine-Westphalia, Germany, Nov.
2017.

[87] BSI-Standard 200-1, Information Security Management Systems (ISMS), ver-
sion 1.0, Bundesamt für Sicherheit in der Informationstechnik, Bonn, North
Rhine-Westphalia, Germany, May 2018.

[88] BSI-Standard 200-1, Managementsysteme für Informationssicherheit (ISMS),
version 1.0, Bundesamt für Sicherheit in der Informationstechnik, Bonn, North
Rhine-Westphalia, Germany, Nov. 2017.

[89] BSI-Standard 200-2, IT-Grundschutz Methodology, version 1.0, Bundesamt für
Sicherheit in der Informationstechnik, Bonn, North Rhine-Westphalia, Ger-
many, May 2018.

[90] BSI-Standard 200-2, IT-Grundschutz-Methodik, version 1.0, Bundesamt für
Sicherheit in der Informationstechnik, Bonn, North Rhine-Westphalia, Ger-
many, Nov. 2017.

[91] IT-Grundschutz-Kompendium, Bundesamt für Sicherheit in der Information-
stechnik, Bonn, North Rhine-Westphalia, Germany, Feb. 2021.

[92] Sichere Anbindung von lokalen Netzen an das Internet (ISi-LANA), BSI-
Standards zur Internet-Sicherheit (ISi-S), version 2.1, Bundesamt für Sicherheit
in der Informationstechnik, Bonn, North Rhine-Westphalia, Germany, Aug.
2014.

[93] Sicherer Fernzugriff auf das interne Netz (ISi-Fern), BSI-Studie zur Internet-
Sicherheit (ISi-S), version 1.2, Bundesamt für Sicherheit in der Information-
stechnik, Bonn, North Rhine-Westphalia, Germany, May 2021.

[94] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,”
National Institute of Standards and Technology, Gaithersburg, MD, USA, NIST
Special Publication (SP) 800-207, 2020. doi: 10.6028/NIST.SP.800-207.

[95] “Zero Trust Maturity Model,” Cybersecurity and Infrastructure Security
Agency, Rosslyn, VA, USA, Tech. Rep. Pre-decisional Draft, version 1.0, May
2020.

[96] KNX System Specifications, Architecture, version 03.00.02, KNX Association,
Diegem, Brussels, Belgium, Nov. 2013. [Online]. Available: https://my.knx.
org/de/shop/knx-specifications (visited on 2020-05-02).

[97] System Specifications, Communication, Data Link Layer General, ver-
sion 01.02.02, KNX Association, Diegem, Brussels, Belgium, Oct. 2013.
[Online]. Available: https://my.knx.org/de/shop/knx- specifications
(visited on 2020-05-02).

[98] System Specifications, Communication Media, KNX IP, version 01.00.01, KNX
Association, Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https:
//my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

118

https://doi.org/10.6028/NIST.SP.800-207
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications

[99] System Specifications KNXnet/IP, Core, version 01.05.01, KNX Association,
Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https://my.knx.
org/de/shop/knx-specifications (visited on 2020-05-02).

[100] System Specifications, Communication, Application Layer, version 01.06.02,
KNX Association, Diegem, Brussels, Belgium, Dec. 2013. [Online]. Available:
https://my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[101] System Specifications, Standardised Interfaces, External Message Interface, ver-
sion 01.03.03, KNX Association, Diegem, Brussels, Belgium, Nov. 2013. [On-
line]. Available: https://my.knx.org/de/shop/knx-specifications (visited
on 2020-05-02).

[102] System Specifications, Communication Media, Powerline, version 02.02.02,
KNX Association, Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available:
https://my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[103] System Specifications, Communication Media, Radio Frequency, ver-
sion 01.06.03, KNX Association, Diegem, Brussels, Belgium, Oct. 2013.
[Online]. Available: https://my.knx.org/de/shop/knx- specifications
(visited on 2020-05-02).

[104] System Specifications, Communication, Network Layer, version 01.01.02, KNX
Association, Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https:
//my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[105] System Specifications, Communication, Transport Layer, version 01.02.02, KNX
Association, Diegem, Brussels, Belgium, Nov. 2013. [Online]. Available: https:
//my.knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[106] System Specifications, Management, Resources, version 01.09.03, KNX Associ-
ation, Diegem, Brussels, Belgium, Dec. 2013. [Online]. Available: https://my.
knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[107] System Specifications KNXnet/IP, Tunnelling, version 01.05.03, KNX Associ-
ation, Diegem, Brussels, Belgium, Oct. 2013. [Online]. Available: https://my.
knx.org/de/shop/knx-specifications (visited on 2020-05-02).

[108] D. J. Bernstein and T. Lange, “Montgomery curves and the montgomery lad-
der.,” IACR Cryptol. ePrint Arch., vol. 2017, p. 293, 2017.

[109] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of factor-
ization,” Mathematics of computation, vol. 48, no. 177, pp. 243–264, 1987. doi:
10.1090/S0025-5718-1987-0866113-7.

[110] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in
International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 1997, pp. 256–266. doi: 10.1007/3-540-69053-0_18.

[111] S. D. Galbraith and P. Gaudry, “Recent progress on the elliptic curve discrete
logarithm problem,” Designs, Codes and Cryptography, vol. 78, no. 1, pp. 51–
72, 2016. doi: 10.1007/s10623-015-0146-7.

119

https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://my.knx.org/de/shop/knx-specifications
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/s10623-015-0146-7

[112] C. Cremers and D. Jackson, “Prime, order please! revisiting small subgroup
and invalid curve attacks on protocols using diffie-hellman,” in 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), IEEE, 2019, pp. 78–
7815. doi: 10.1109/CSF.2019.00013.

[113] J.-P. Aumasson. “Should Curve25519 keys be validated?” (Apr. 2017), [Online].
Available: https://research.kudelskisecurity.com/2017/04/25/should-
ecdh-keys-be-validated/ (visited on 2022-02-23).

[114] T. Perrin. “X25519 and zero outputs.” (May 2017), [Online]. Available: https:
//moderncrypto.org/mail-archive/curves/2017/000896.html (visited on
2022-02-23).

[115] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in Annual
International Cryptology Conference, Springer, 2003, pp. 617–630. doi: 10.
1007/978-3-540-45146-4_36.

[116] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message
authentication,” in Annual international cryptology conference, Springer, 1996,
pp. 1–15. doi: 10.1007/3-540-68697-5_1.

[117] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Mes-
sage Authentication,” Internet Engineering Task Force (IETF), RFC 2104, Feb.
1997.

[118] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommendation for password-
based key derivation: Part 1: Storage Applications,” National Institute of Stan-
dards and Technology, Gaithersburg, MD, USA, NIST Special Publication (SP)
800-132, 2010. doi: 10.6028/NIST.SP.800-132.

[119] S. Blake-Wilson and A. Menezes, “Authenticated Diffe-Hellman key agree-
ment protocols,” in International Workshop on Selected Areas in Cryptography,
Springer, 1998, pp. 339–361. doi: 10.1007/3-540-48892-8_26.

[120] C. Cremers, “Key exchange in IPsec revisited: Formal analysis of IKEv1 and
IKEv2,” in European Symposium on Research in Computer Security, Springer,
2011, pp. 315–334. doi: 10.1007/978-3-642-23822-2_18.

[121] J. Gill, “Computational complexity of probabilistic turing machines,” SIAM
Journal on Computing, vol. 6, no. 4, pp. 675–695, 1977. doi: 10.1137/0206049.

[122] KNX Data Security, Application Note 158/13 v04, Approved Standard, KNX
Association, Diegem, Brussels, Belgium, Jan. 2018, Unpublished.

[123] M. Bozzano, R. Cavada, A. Cimatti, et al., nuXmv 2.0.0 User Manual, Fon-
dazione Bruno Kessler, Provo, Trento, Italy, 2019.

[124] D. Angluin, “Learning regular sets from queries and counterexamples,” Infor-
mation and computation, vol. 75, no. 2, pp. 87–106, 1987. doi: 10.1016/0890-
5401(87)90052-6.

120

https://doi.org/10.1109/CSF.2019.00013
https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
https://moderncrypto.org/mail-archive/curves/2017/000896.html
https://moderncrypto.org/mail-archive/curves/2017/000896.html
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.6028/NIST.SP.800-132
https://doi.org/10.1007/3-540-48892-8_26
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1137/0206049
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

[125] T. S. Chow, “Testing software design modeled by finite-state machines,” IEEE
transactions on software engineering, no. 3, pp. 178–187, 1978. doi: 10.1109/
TSE.1978.231496.

[126] E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis, “Recommen-
dation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography,” National Institute of Standards and Technology, Gaithersburg,
MD, USA, NIST Special Publication (SP) 800-56A, Rev. 3, Apr. 2018. doi:
10.6028/NIST.SP.800-56Ar3.

[127] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel.,” in 24th
Annual Network and Distributed System Security Symposium (NDSS), 2017,
pp. 1–12.

[128] M. Marlinspike and T. Perrin. “The Double Ratchet Algorithm.” (Nov. 2016),
[Online]. Available: https : / / www . signal . org / docs / specifications /
doubleratchet/doubleratchet.pdf (visited on 2022-02-23).

[129] C. Percival, Stronger key derivation via sequential memory-hard functions, 2009.
[130] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation of

memory-hard functions for password hashing and other applications,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2016,
pp. 292–302. doi: 10.1109/EuroSP.2016.31.

[131] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “Argon2 Memory-
Hard Function for Password Hashing and Proof-of-Work Applications,” Inter-
net Research Task Force (IRTF), RFC 9106, Sep. 2021.

[132] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,”
in Annual Cryptology Conference, Springer, 2010, pp. 631–648. doi: 10.1007/
978-3-642-14623-7_34.

[133] “hashcat - advanced password recovery,” [Online]. Available: https :
//hashcat.net/hashcat/ (visited on 2022-03-21).

[134] “CWE-760: Use of a One-Way Hash with a Predictable Salt,” The MITRE Cor-
poration, [Online]. Available: https://cwe.mitre.org/data/definitions/
760.html (visited on 2021-02-27).

[135] “CWE-798: Use of Hard-coded Credentials,” The MITRE Corporation, [On-
line]. Available: https://cwe.mitre.org/data/definitions/798.html
(visited on 2021-02-27).

[136] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed
high-security signatures,” Journal of cryptographic engineering, vol. 2, no. 2,
pp. 77–89, 2012. doi: 10.1007/s13389-012-0027-1.

[137] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise security,”
in 2016 IEEE 29th Computer Security Foundations Symposium (CSF), IEEE,
2016, pp. 164–178. doi: 10.1109/CSF.2016.19.

121

https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://www.signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://www.signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://cwe.mitre.org/data/definitions/760.html
https://cwe.mitre.org/data/definitions/760.html
https://cwe.mitre.org/data/definitions/798.html
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1109/CSF.2016.19

[138] V. Cerf, “ASCII format for Network Interchange,” Network Working Group,
RFC 20, Oct. 1969.

[139] “GeForce GTX 10-Serie,” [Online]. Available: https://www.nvidia.com/de-
de/geforce/10-series/ (visited on 2022-03-21).

[140] “Stromkosten der energieintensiven Industrie,” Frauenhofe ISI and ECO-
FYS, Jun. 2015. [Online]. Available: https : / / www . isi . fraunhofer .
de / content / dam / isi / dokumente / ccx / 2015 / Industriestrompreise _
Abschlussbericht.pdf (visited on 2022-03-22).

[141] “Bericht - Monitoringbericht 2020,” Bundesnetzagentur, Mar. 2021. [Online].
Available: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/
Monitoringberichte / Monitoringbericht _ Energie2020 . pdf (visited on
2022-03-22).

[142] M. Sauter and S. Wochnik. “Der neue Ti-tan.” (Mar. 9, 2017), [Online]. Avail-
able: https://www.golem.de/news/geforce-gtx-1080-ti-im-test-der-
neue-ti-tan-1703-126531-3.html (visited on 2022-03-21).

[143] V. Lourdas, “Project Password,” KNX.org, Oct. 4, 2021. [Online]. Available:
https://web.archive.org/web/20211021073825/https://support.knx.
org/hc/en-us/articles/360011660999 (visited on 2021-10-27).

[144] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” Network
Working Group, RFC 4648, Oct. 2006.

[145] “ILSpy,” [Online]. Available: https://github.com/icsharpcode/ILSpy (vis-
ited on 2022-03-21).

[146] “de4dot,” [Online]. Available: https://github.com/de4dot/de4dot (visited
on 2022-03-21).

[147] “Reference Source .NET Framework 4.8,” [Online]. Available: https :
/ / referencesource . microsoft . com / #mscorlib / system / security /
cryptography/passwordderivebytes.cs (visited on 2021-07-18).

[148] B. Kaliski, “PKCS #7: Cryptographic Message Syntax,” Network Working
Group, RFC 2315, Mar. 1998.

[149] “CWE-321: Use of Hard-coded Cryptographic Key,” The MITRE Corporation,
[Online]. Available: https://cwe.mitre.org/data/definitions/321.html
(visited on 2021-02-27).

[150] “ProgramData,” [Online]. Available: https://docs.microsoft.com/en-us/
windows- hardware/customize/desktop/unattend/microsoft- windows-
shell-setup-folderlocations-programdata (visited on 2022-03-23).

[151] J. Demarest, KNX Association, personal correspondence, Jul. 2021.
[152] V. Lourdas, KNX Association, personal correspondence, Nov. 2021.

122

https://www.nvidia.com/de-de/geforce/10-series/
https://www.nvidia.com/de-de/geforce/10-series/
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2015/Industriestrompreise_Abschlussbericht.pdf
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2015/Industriestrompreise_Abschlussbericht.pdf
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2015/Industriestrompreise_Abschlussbericht.pdf
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht_Energie2020.pdf
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht_Energie2020.pdf
https://www.golem.de/news/geforce-gtx-1080-ti-im-test-der-neue-ti-tan-1703-126531-3.html
https://www.golem.de/news/geforce-gtx-1080-ti-im-test-der-neue-ti-tan-1703-126531-3.html
https://web.archive.org/web/20211021073825/https://support.knx.org/hc/en-us/articles/360011660999
https://web.archive.org/web/20211021073825/https://support.knx.org/hc/en-us/articles/360011660999
https://github.com/icsharpcode/ILSpy
https://github.com/de4dot/de4dot
https://referencesource.microsoft.com/#mscorlib/system/security/cryptography/passwordderivebytes.cs
https://referencesource.microsoft.com/#mscorlib/system/security/cryptography/passwordderivebytes.cs
https://referencesource.microsoft.com/#mscorlib/system/security/cryptography/passwordderivebytes.cs
https://cwe.mitre.org/data/definitions/321.html
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-shell-setup-folderlocations-programdata
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-shell-setup-folderlocations-programdata
https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-shell-setup-folderlocations-programdata

[153] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA Cryp-
tography Specifications Version 2.2,” Internet Engineering Task Force (IETF),
RFC 8017, Nov. 2016.

[154] G. Leurent and T. Peyrin, “From collisions to chosen-prefix collisions appli-
cation to full sha-1,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2019, pp. 527–555. doi:
10.1007/978-3-030-17659-4_18.

[155] G. Leurent and T. Peyrin, “SHA-1 is a Shambles: First Chosen-Prefix Collision
on SHA-1 and Application to the PGPWeb of Trust,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1839–1856.

[156] U. Unal. “Certification introduction,” [Online]. Available: https : / /
support.knx.org/hc/en- us/articles/360000041039- Certification-
introduction (visited on 2022-03-23).

[157] “KNX Project Preparation,” KNX Association, Diegem, Brussels, Belgium,
version 11.19. [Online]. Available: https://www.knx.org/wAssets/docs/
downloads/Marketing/Flyers/KNX-Project-Preparation/KNX-Project-
Preparation_en.pdf (visited on 2021-06-08).

[158] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai botnet,”
in 26th USENIX security symposium (USENIX Security 17), 2017, pp. 1093–
1110.

[159] “Fernwartung des KNX-Systems,” Albrecht JUNG GmbH & Co. KG, [Online].
Available: https://www.jung.de/10326/produkte/technik/knx-system/
ips-remote/ (visited on 2021-11-28).

[160] “Gira S1,” Giersiepen GmbH & Co. KG, [Online]. Available: https :
//partner.gira.de/systeme/knx-system/knx-produkte/systemgeraete/
s1/features.html (visited on 2021-11-28).

[161] “Journal,” KNX Association, Diegem, Brussels, Belgium, Jan. 21, 2021.
[Online]. Available: https : / / www . knx . org / wAssets / docs / downloads /
Marketing / KNX - Journal / International - Journals / English / KNX -
Journal-2021_en.pdf (visited on 2021-02-05).

123

https://doi.org/10.1007/978-3-030-17659-4_18
https://support.knx.org/hc/en-us/articles/360000041039-Certification-introduction
https://support.knx.org/hc/en-us/articles/360000041039-Certification-introduction
https://support.knx.org/hc/en-us/articles/360000041039-Certification-introduction
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Project-Preparation/KNX-Project-Preparation_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Project-Preparation/KNX-Project-Preparation_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/Flyers/KNX-Project-Preparation/KNX-Project-Preparation_en.pdf
https://www.jung.de/10326/produkte/technik/knx-system/ips-remote/
https://www.jung.de/10326/produkte/technik/knx-system/ips-remote/
https://partner.gira.de/systeme/knx-system/knx-produkte/systemgeraete/s1/features.html
https://partner.gira.de/systeme/knx-system/knx-produkte/systemgeraete/s1/features.html
https://partner.gira.de/systeme/knx-system/knx-produkte/systemgeraete/s1/features.html
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2021_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2021_en.pdf
https://www.knx.org/wAssets/docs/downloads/Marketing/KNX-Journal/International-Journals/English/KNX-Journal-2021_en.pdf

A. Appendix
A.1. Supplementary Analysis with eCK-PFS
Attack Game A.1 (Password reuse). Let attack game G in model eCK-PFS be
played by a PPT adversaryA under the assumption that there exist at least two servers
Ŝi, Ŝj ∈ P and a pwd ′ = (kpwd, uid) for which pwd ′ ∈ PWDŜi

and pwd ′ ∈ PWDŜj
.

Let U = {Ŝ1, ..., Ŝn} be the set of uncorrupted servers in P and V = {} the set of
corrupted servers.

1. For each Ŝi ∈ U do:
a) A issues corrupt(Ŝi). It reveals PWDŜi

and DACŜi
. Update U = U\Ŝi and

Q = Q ∪ Ŝi.
b) For each Ŝj ∈ U do:

i. For each pwd ′l ∈ PWDŜ do:
A. A issues send(s, Ŝj) to start an initiator session s with Ŝj, where

speer = Ŝj and srole = I. It computes eskA
R←− {0, 1, ..., 2256 − 1}

and epkA ← X25519(eskA, 9).
B. A issues send(s,m), where m is a SESSION_REQUEST containing

epkA. The Ŝj computes eskŜj

R←− {0, 1, ..., 2256 − 1}, epkŜj
←

X25519(eskŜj
, 9), ks ← MSB128(SHA-256(X25519(eskŜj

, epkA)))
on reception. It replies with a SESSION_RESPONSE frame containing
epkŜj

. The kdac for Ŝj is used as key for CCM.
C. A receives the frame and uses the contained epkŜj

to compute ks ←
MSB128(SHA-256(X25519(eskA, epkŜj

))). It issues a send(s,m),
where m is a SESSION_AUTHENTICATE encapsulated in a SECURE_-
WRAPPER. The SESSION_AUTHENTICATE contains the uid ∈ pwd ′l
and kpwd ∈ pwd ′l is used as key for CCM. The SECURE_WRAPPER is
encrypted and authenticated with ks.

D. Ŝj receives and decrypt the SECURE_WRAPPER with ks. The uid
contained in the frame identifies a pwd ′ ∈ PWDŜj

with pwd ′ =
(kpwd, uid). It is assumed that the uid uniquely determines a tu-
ple, since it is originally the array index of PID_PASSWORD_HASHES.
If Ŝj is able to verify the MAC of SESSION_AUTHENTICATE using
kpwd, then pwd ′ = pwd ′l. It sends a SESSION_STATUS indicating
success, encapsulated in a SECURE_WRAPPER that is encrypted and
authenticated with ks.

E. If A receives a positive response, the session is completed. Break
out of all loop and go to step 2. Otherwise, continue.

2. The last created session s is fresh, because:
a) G does not include the query session-key(s).

124

b) There is no session-key(s∗) query issued for any session s∗ matching s.
c) G does not include the ephemeral-key(s) query.
d) For no origin session s′ to session s does G include a corrupt(speer) and

ephemeral-key(s′) query.
e) G does not use corrupt(speer) and there is an origin session s′ to s, namely

the one of the last server Ŝj.
A issues test-session(s). The challenger provides either the real session key or
a random session key. A can determine with certainty which key they have
been given, since they know the session key ks. Thus, b′ is selected accordingly
and P (b = b′) = 1. A wins G with AdveCK-PFS

G (λ) = 1. The KNXnet/IP Secure
unicast protocol is not secure in eCK-PFS, because no negligible function negl(λ)
exists such that AdveCK-PFS

G (λ) ≤ negl(λ). This is evidently the case, because
any negl(λ) would have to fulfill definition 3.34 and AdveCK-PFS

G (λ) is a constant
non-zero value.

Attack Game A.2 (Skipped server authentication). Let attack game G in model
eCK-PFS be played by a PPT adversary A under the assumption that at least one
client Ĉi ∈ P skips the server authentication.

1. For each Ĉi ∈ P do:
a) A prevents the SESSION_REQUEST of a Ĉi from reaching a Ŝj ∈ P , with

which it initiated a session s, where sactor = Ĉi, speer = Ŝj and srole = I. A
computes eskA

R←− {0, 1, ..., 2256 − 1} and epkA ← X25519(eskA, 9). With
the epkĈ contained in the SESSION_REQUEST, A determines the session key
with ks ← MSB128(SHA-256(X25519(eskA, epkĈ))).

b) A uses send(s, Ŝ,m) to start the responder session s′ to s on behalf of Ŝ,
where m is a SESSION_RESPONSE frame, containing epkA. The MAC field
is set to an arbitrary incorrect value.

c) If Ĉi validates the MAC, the authentication fails and the session is termi-
nated. If Ĉi skips the server authentication, then it will compute ks ←
MSB128(SHA-256(X25519(eskĈ2

, epkA))) and a SESSION_AUTHENTICATE
frame is sent as a reply, which is encapsulated in a SECURE_WRAPPER that
is encrypted and authenticated with ks.

d) If the session has not been terminated, A issues send(s,m) where m is
a SESSION_STATUS indicating successful authentication, which is encapsu-
lated in a SECURE_WRAPPER that is encrypted and authenticated with ks.
The session s is completed. Break out of the loop and continue with step
2. If the session has been terminated, continue with the next client.

2. The session s is fresh because:
a) G does not include the query session-key(s).
b) There is no session-key(s∗) query issued for any session s∗ matching s.

125

c) G does not include the ephemeral-key(s) query.
d) For no origin session s′ to session s does G include a corrupt(speer) and

ephemeral-key(s′) query.
e) G does not use corrupt(speer) and there is an origin session s′ to s, namely

the one created by the adversary.
A issues test-session(s). The challenger provides either the real session key or
a random session key. A can determine with certainty which key they have
been given, since they know the session key ks. Thus, b′ is selected accordingly
and P (b = b′) = 1. A wins G with AdveCK-PFS

G (λ) = 1. The KNXnet/IP Secure
unicast protocol is not secure in eCK-PFS, because no negligible function negl(λ)
exists such that AdveCK-PFS

G (λ) ≤ negl(λ). This is evidently the case, because
any negl(λ) would have to fulfill definition 3.34 and AdveCK-PFS

G (λ) is a constant
non-zero value.

A.2. Model Checking

No. Target Models CTL
1. Session FSM,

Session FSM with Timer
CTL based on [6, p. 132]

AG (((fsm.sent_msg = Close | fsm.sent_msg =
AuthenticationFailed) | fsm.sent_msg =
Unauthenticated) -> fsm._state_ = IDLE)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 132]

AG (((fsm.sent_msg = Close | fsm.sent_msg =
AuthenticationFailed) | fsm.sent_msg =
Unauthenticated) -> fsm._state_ = 0)

2. Session FSM,
Session FSM with Timer
CTL based on [6, p. 144]

AG !((fsm._state_ = IDLE & fsm.recv_msg !=
SessionRequest) & EX fsm._state_ != IDLE)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 144]

AG !((fsm._state_ = 0 & fsm.recv_msg !=
SessionRequest) & EX fsm._state_ != 0)

3. Session FSM,
Session FSM with Timer
CTL based on [6, p. 144]

(AG (fsm._state_ = IDLE & fsm.recv_msg =
SessionRequest) -> AX fsm.sent_msg =
SessionResponse)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 144]

(AG (fsm._state_ = 0 & fsm.recv_msg =
SessionRequest) -> AX fsm.sent_msg =
SessionResponse)

4. Session FSM with Timer
CTL based on [6, p. 144]

AG ((fsm._state_ = IDLE & recv_msg =
SessionRequest) -> AX (fsm._state_ =
UNAUTHENTICATED & fsm.session_timer = 10))

126

No. Target Models CTL

5. Session FSM with Timer
CTL based on [6, p. 144]

AG ((fsm._state_ = UNAUTHENTICATED &
fsm.session_timer = 0) -> AX fsm._state_ =
IDLE)

6. Session FSM,
Session FSM with Timer
CTL based on [6, p. 144]

AG ((fsm._state_ = UNAUTHENTICATED &
((((((fsm.recv_msg = AuthenticationSuccess |
fsm.recv_msg = AuthenticationFailed) |
fsm.recv_msg = Unauthenticated) | fsm.recv_msg
= KeepAlive) | fsm.recv_msg = Timeout) |
fsm.recv_msg = Close) | fsm.recv_msg =
WrappedFrame)) -> AX fsm.sent_msg =
Unauthenticated)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 144]

AG ((fsm._state_ = 1 & ((((((fsm.recv_msg =
AuthenticationSuccess | fsm.recv_msg =
AuthenticationFailed) | fsm.recv_msg =
Unauthenticated) | fsm.recv_msg = KeepAlive) |
fsm.recv_msg = Timeout) | fsm.recv_msg = Close)
| fsm.recv_msg = WrappedFrame)) -> AX
fsm.sent_msg = Unauthenticated)

7. Session FSM,
Session FSM with Timer
CTL based on [6, p. 144]

AG ((fsm._state_ = Unauthenticated & ((recv_msg
= InvalidSessionAuthenticateReservedUserID |
recv_msg =
InvalidSessionAuthenticateUnusedUserID) |
recv_msg = InvalidSessionAuthenticateMac)) ->
AX fsm.sent_msg = AuthenticationFailed)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 144]

AG ((fsm._state_ = 1 & ((recv_msg =
InvalidSessionAuthenticateReservedUserID |
recv_msg =
InvalidSessionAuthenticateUnusedUserID) |
recv_msg = InvalidSessionAuthenticateMac)) ->
AX fsm.sent_msg = AuthenticationFailed)

8. Session FSM
CTL based on [6, p. 145]

AG (((fsm._state_ = AUTHENTICATED & recv_msg =
None) & timer_state = expired) -> AX
(fsm.sent_msg = Timeout & fsm._state_ = IDLE))

Session FSM with Timer
CTL based on [6, p. 145]

AG (((fsm._state_ = AUTHENTICATED & recv_msg =
None) & fsm.session_timer = 0) -> AX
(fsm.sent_msg = Timeout & fsm._state_ = IDLE))

9. Session FSM,
Session FSM with Timer
CTL based on [6, p. 145]

AG (((fsm.recv_msg = WrappedFrame &
fsm._state_ != AUTHENTICATED) & fsm._state_ !=
IDLE) -> AX fsm.sent_msg = Unauthenticated)

127

No. Target Models CTL

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 145]

AG (((fsm.recv_msg = WrappedFrame &
fsm._state_ != 2) & fsm._state_ != 0) -> AX
fsm.sent_msg = Unauthenticated)

10. Session FSM,
Session FSM with Timer
CTL based on [6, p. 145]

AG (fsm.recv_msg =
InvalidSecureWrapperSessionIdentifier -> AX
(fsm.sent_msg = None | fsm.sent_msg = Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 145]

AG (fsm.recv_msg =
InvalidSecureWrapperSessionIdentifier -> AX
((fsm.sent_msg = None | fsm.sent_msg = Timeout)
& ((fsm.status = None | fsm.status =
ReadTimeout) | fsm.status = ConnectionClosed)))

11. Session FSM,
Session FSM with Timer
CTL based on [6, p. 145]

AG ((fsm._state_ = AUTHENTICATED & recv_msg =
InvalidSecureWrapperMac) -> AX (fsm.sent_msg =
None | fsm.sent_msg = Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 145]

AG ((fsm._state_ = 2 & recv_msg =
InvalidSecureWrapperMac) -> AX ((fsm.sent_msg =
None | fsm.sent_msg = Timeout) & ((fsm.status =
None | fsm.status = ReadTimeout) | fsm.status =
ConnectionClosed)))

12. Session FSM,
Session FSM with Timer
CTL based on [6, p. 145]

AG (fsm.recv_msg = Close -> AX fsm._state_ =
IDLE)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 145]

AG (fsm.recv_msg = Close -> AX fsm._state_ = 0)

13. SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 145]

AG (fsm.status = ConnectionClosed ->
fsm._state_ = 0)

14. Session FSM,
Session FSM with Timer
CTL based on [6, p. 41]

AG (fsm.recv_msg = InvalidHeaderVersion -> AX
fsm._state_ = IDLE)

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 41]

AG (fsm.recv_msg = InvalidHeaderVersion -> AX
(fsm.status = ConnectionClosed & fsm._state_ =
0))

15. Session FSM,
Session FSM with Timer
CTL based on [6, p. 42]

AG (((fsm.recv_msg = InvalidHeaderServiceType &
fsm._state_ != IDLE) & fsm.timer_state !=
expired) -> !(EX fsm._state_ = IDLE))

128

No. Target Models CTL

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 42]

AG ((fsm.recv_msg = InvalidHeaderServiceType &
fsm._state_ != 0) -> !(EX (fsm.status =
ConnectionClosed & fsm._state_ = 0)))

16. Session FSM,
Session FSM with Timer
CTL based on [6, p. 122]

AG (fsm.recv_msg =
InvalidSecureWrapperSequenceInformation -> AX
(fsm.sent_msg = None | fsm.sent_msg = Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 122]

AG (fsm.recv_msg =
InvalidSecureWrapperSequenceInformation -> AX
((fsm.sent_msg = None | fsm.sent_msg = Timeout)
& ((fsm.status = None | fsm.status =
ReadTimeout) | fsm.status = ConnectionClosed)))

17. Session FSM,
Session FSM with Timer
CTL based on [6, p. 126]

AG (fsm.recv_msg = InvalidSessionRequestHpaiIp
-> AX (fsm.sent_msg = None | fsm.sent_msg =
Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 126]

AG (fsm.recv_msg = InvalidSessionRequestHpaiIp
-> AX ((fsm.sent_msg = None | fsm.sent_msg =
Timeout) & ((fsm.status = None | fsm.status =
ReadTimeout) | fsm.status = ConnectionClosed)))

18. Session FSM,
Session FSM with Timer
CTL based on [6, p. 126]

AG (fsm.recv_msg = InvalidHeaderLength -> AX
(fsm.sent_msg = None | fsm.sent_msg = Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 126]

AG (fsm.recv_msg = InvalidHeaderLength -> AX
((fsm.sent_msg = None | fsm.sent_msg = Timeout)
& ((fsm.status = None | fsm.status =
ReadTimeout) | fsm.status = ConnectionClosed)))

19. Session FSM,
Session FSM with Timer
CTL based on [6, p. 129]

AG (fsm.recv_msg =
InvalidSessionAuthenticateReservedField -> AX
(fsm.sent_msg = None | fsm.sent_msg = Timeout))

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 129]

AG (fsm.recv_msg =
InvalidSessionAuthenticateReservedField -> AX
((fsm.sent_msg = None | fsm.sent_msg = Timeout)
& ((fsm.status = None | fsm.status =
ReadTimeout) | fsm.status = ConnectionClosed)))

20. Session FSM,
Session FSM with Timer
CTL based on [6, p. 131]

AG ((fsm._state_ = UNAUTHENTICATED &
fsm.recv_msg = SessionAuthenticate) -> AX
fsm._state_ = AUTHENTICATED)

129

No. Target Models CTL

SCN-IP100.03,
KNX IP Router 752 Secure
CTL based on [6, p. 131]

AG ((fsm._state_ = 1 & fsm.recv_msg =
SessionAuthenticate) -> AX fsm._state_ = 2)

21. Session FSM,
Session FSM with Timer

EF _state_ = IDLE
EF _state_ = UNAUTHENTICATED
EF _state_ = AUTHENTICATED

SCN-IP100.03 EF _state_ = 0
EF _state_ = 1
EF _state_ = 2
EF _state_ = 3
EF _state_ = 4
EF _state_ = 5

KNX IP Router 752 Secure EF _state_ = 0
EF _state_ = 1
EF _state_ = 2
EF _state_ = 3
EF _state_ = 4
EF _state_ = 5
EF _state_ = 6
EF _state_ = 7

22. Session FSM,
Session FSM with Timer,
SCN-IP100.03,
KNX IP Router 752 Secure

AG !nondeterministic

23. Session FSM, Session FSM
with Timer

EF transition_active = IDLE_E00
EF transition_active = UNAUTHENTICATED_E02
EF transition_active = UNAUTHENTICATED_E03
EF transition_active = UNAUTHENTICATED_E04
EF transition_active = UNAUTHENTICATED_E05
EF transition_active = UNAUTHENTICATED_E06
EF transition_active = AUTHENTICATED_None
EF transition_active = AUTHENTICATED_E02
EF transition_active = AUTHENTICATED_E03
EF transition_active = AUTHENTICATED_E04
EF transition_active = AUTHENTICATED_E05
EF transition_active = AUTHENTICATED_E06

130

No. Target Models CTL

SCN-IP100.03 EF transition_active = S0_E31; EF transition_active = S0_E1;

EF transition_active = S0_E34; EF transition_active = S0_E3;

EF transition_active = S1_E4; EF transition_active = S1_E29;

EF transition_active = S1_E30; EF transition_active = S1_E31;

EF transition_active = S1_E34; EF transition_active = S1_E33;

EF transition_active = S1_E10; EF transition_active = S1_E11;

EF transition_active = S2_E12; EF transition_active = S2_E29;

EF transition_active = S2_E31; EF transition_active = S2_E15;

EF transition_active = S2_E16; EF transition_active = S2_E34;

EF transition_active = S3_E18; EF transition_active = S3_E29;

EF transition_active = S3_E30; EF transition_active = S3_E31;

EF transition_active = S3_E22; EF transition_active = S3_E33;

EF transition_active = S3_E34; EF transition_active = S4_E31;

EF transition_active = S4_E26; EF transition_active = S4_E27;

EF transition_active = S5_E28; EF transition_active = S5_E29;

EF transition_active = S5_E30; EF transition_active = S5_E31;

EF transition_active = S5_E32; EF transition_active = S5_E33;

EF transition_active = S5_E34;

KNX IP Router 752 Secure EF transition_active = S0_E0; EF transition_active = S0_E1;

EF transition_active = S0_E2; EF transition_active = S1_E3;

EF transition_active = S1_E1; EF transition_active = S1_E4;

EF transition_active = S1_E5; EF transition_active = S1_E6;

EF transition_active = S1_E7; EF transition_active = S1_E8;

EF transition_active = S2_E9; EF transition_active = S2_E3;

EF transition_active = S2_E10; EF transition_active = S2_E11;

EF transition_active = S2_E1; EF transition_active = S3_E3;

EF transition_active = S3_E12; EF transition_active = S3_E1;

EF transition_active = S3_E13; EF transition_active = S3_E14;

EF transition_active = S3_E15; EF transition_active = S4_E3;

EF transition_active = S4_E16; EF transition_active = S4_E4;

EF transition_active = S4_E13; EF transition_active = S4_E6;

EF transition_active = S4_E1; EF transition_active = S5_E13;

EF transition_active = S5_E3; EF transition_active = S5_E6;

EF transition_active = S5_E17; EF transition_active = S5_E4;

EF transition_active = S5_E1; EF transition_active = S6_E18;

EF transition_active = S6_E19; EF transition_active = S7_E20;

Table 15: Tests for the session FSMs

131

No. Target Models CTL/LTL
1. Timer Sync FSM Integer

Clock, with helper variables
and wrap around, CTL
based on [6, p. 111], adjusted
to address non-determinism

AG (((((received_timer_value > fsm.mc_timer &
recv_msg != None) & fsm.notify_timer -
time_passed > 0) & !has_joined_new_domain) &
!has_sent_secure_wrapper) -> AX fsm.mc_timer =
fsm.last_received_timer_value)

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 111], adjusted to
address non-determinism

G (((((received_timer_value > fsm.mc_timer &
recv_msg != None) & fsm.notify_timer -
time_passed > 0) & !has_joined_new_domain) &
!has_sent_secure_wrapper) -> X fsm.mc_timer =
fsm.last_received_timer_value)

2. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 111]

AG ((received_timer_value <= fsm.mc_timer -
latencyTolerance) -> AX (!fsm.accepted_frame))

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 111]

G ((received_timer_value <= fsm.mc_timer -
latencyTolerance) -> X (!fsm.accepted_frame))

3. Timer Sync FSM Integer
Clock, with helper variables
and wrap around, CTL
based on [6, p. 112], adjusted
to address non-determinism

AG ((!has_joined_new_domain &
!has_new_backbone_key) -> AX fsm.mc_timer >=
fsm.last_mc_timer)

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 112], adjusted to
address non-determinism

G ((!has_joined_new_domain &
!has_new_backbone_key) -> X fsm.mc_timer >=
fsm.last_mc_timer)

4. Timer Sync FSM Integer
Clock, with helper variables
and no wrap around, CTL
based on [6, p. 112], adjusted
to address non-determinism

AG ((!has_joined_new_domain &
!has_new_backbone_key) -> AX fsm.mc_timer >=
fsm.last_mc_timer)

Timer Sync FSM Real
Clock, with timer limit and
no wrap around, LTL based
on [6, p. 112], adjusted to
address non-determinism

G ((!has_joined_new_domain &
!has_new_backbone_key) -> X fsm.mc_timer >=
fsm.last_mc_timer)

132

No. Target Models CTL/LTL

5. Timer Sync FSM Integer
Clock, with wrap around and
mc_timer_max > 100, CTL
based on [6, p. 112], adjusted
to address non-determinism

AG (((((time_passed >= 100 &
received_timer_value <= fsm.mc_timer -
latencyTolerance) & !fsm.accepted_frame) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> AX (fsm.sent_msg =
TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag))

Timer Sync FSM Real
Clock, with timer limit, wrap
around and mc_timer_max >
100, LTL based on [6,
p. 112], adjusted to address
non-determinism

G (((((time_passed >= 100 &
received_timer_value <= fsm.mc_timer -
latencyTolerance) & !fsm.accepted_frame) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> X (fsm.sent_msg =
TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag))

6. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 112],
adjusted to address
non-determinism

AG ((((((recv_msg != None &
received_timer_value <= fsm.mc_timer -
latencyTolerance) & !fsm.has_joined_new_domain)
& !has_sent_secure_wrapper) & fsm.notify_timer
- time_passed > 0) & AX (((time_passed <=
fsm.maxDelayTimeFollowerUpdateNotify & recv_msg
= None) & !fsm.has_joined_new_domain) &
!has_sent_secure_wrapper)) -> AF (fsm.sent_msg
= TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag))

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 112], adjusted to
address non-determinism

G ((((((recv_msg != None & received_timer_value
<= fsm.mc_timer - latencyTolerance) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) & fsm.notify_timer -
time_passed > 0) & X (((time_passed <=
fsm.maxDelayTimeFollowerUpdateNotify & recv_msg
= None) & !fsm.has_joined_new_domain) &
!has_sent_secure_wrapper)) ->
F[2,2](fsm.sent_msg =
TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag))

133

No. Target Models CTL/LTL

7. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 112],
adjusted to address
non-determinism

AG (((((recv_msg != None & received_timer_value
<= fsm.mc_timer - latencyTolerance) &
fsm.notify_timer - time_passed > 0) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> AX
fsm.notify_timer <=
fsm.maxDelayTimeFollowerUpdateNotify)

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 112], adjusted to
address non-determinism

G (((((recv_msg != None & received_timer_value
<= fsm.mc_timer - latencyTolerance) &
fsm.notify_timer - time_passed > 0) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> X fsm.notify_timer
<= fsm.maxDelayTimeFollowerUpdateNotify)

8. Timer Sync FSM Integer
Clock, helper variables and
wrap around, CTL based on
[6, p. 112], adjusted to
address non-determinism

AG (((((recv_msg != None & received_timer_value
<= fsm.mc_timer - fsm.syncLatencyTolerance) &
fsm.notify_timer - time_passed > 0) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> AX
fsm.is_notify_timer_rescheduled)

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 112], adjusted to
address non-determinism

G (((((recv_msg != None & received_timer_value
<= fsm.mc_timer - fsm.syncLatencyTolerance) &
fsm.notify_timer - time_passed > 0) &
!fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> X
fsm.is_notify_timer_rescheduled)

9. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 122],
adjusted to address
non-determinism

AG ((((fsm.notify_timer - time_passed <= 0 &
recv_msg = None) & !fsm.has_joined_new_domain)
& !has_sent_secure_wrapper) -> AX
(fsm.is_time_keeper & (fsm.sent_msg =
TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag)))

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 122], adjusted to
address non-determinism

G ((((fsm.notify_timer - time_passed <= 0 &
recv_msg = None) & !fsm.has_joined_new_domain)
& !has_sent_secure_wrapper) -> X
(fsm.is_time_keeper & (fsm.sent_msg =
TimerNotify_Own_Timer_SerialNr_Tag |
fsm.sent_msg =
TimerNotify_Own_Timer_Other_SerialNr_Tag)))

134

No. Target Models CTL/LTL

10. Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 122], adjusted to
address non-determinism

G (((((((fsm.is_time_keeper & recv_msg != None)
& received_timer_value <= fsm.mc_timer -
fsm.latencyTolerance) & fsm.notify_timer -
time_passed > 0) & !fsm.has_joined_new_domain)
& !has_sent_secure_wrapper) & time_passed > 0)
-> X (fsm.is_notify_timer_rescheduled &
fsm.notify_timer <=
(fsm.maxDelayTimeKeeperPeriodicNotify <
fsm.maxDelayTimeKeeperUpdateNotify ?
fsm.maxDelayTimeKeeperUpdateNotify :
fsm.maxDelayTimeKeeperPeriodicNotify)))

11. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 113],
adjusted to address
non-determinism

AG ((((((fsm.is_time_keeper & recv_msg =
TimerNotify) & received_timer_value >
fsm.mc_timer) & fsm.notify_timer - time_passed
> 0) & !fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> AX
!fsm.is_time_keeper)

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 113], adjusted to
address non-determinism

G ((((((fsm.is_time_keeper & recv_msg =
TimerNotify) & received_timer_value >
fsm.mc_timer) & fsm.notify_timer - time_passed
> 0) & !fsm.has_joined_new_domain) &
!has_sent_secure_wrapper) -> X
!fsm.is_time_keeper)

12. Timer Sync FSM Integer
Clock, with wrap around,
CTL based on [6, p. 134],
adjusted to address
non-determinism

AG (((((has_joined_new_domain &
has_new_backbone_key) & recv_msg = None) &
fsm.notify_timer - time_passed > 0) &
!has_sent_secure_wrapper) -> AX (fsm.mc_timer =
0 & fsm.notify_timer = 0))

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 134], adjusted to
address non-determinism

G (((((has_joined_new_domain &
has_new_backbone_key) & recv_msg = None) &
fsm.notify_timer - time_passed > 0) &
!has_sent_secure_wrapper) -> X (fsm.mc_timer =
0 & fsm.notify_timer = 0))

13. Timer Sync FSM Integer
Clock, with helper variables
and wrap around, CTL
based on [6, p. 141], adjusted
to address non-determinism

AG (((((received_timer_value <= fsm.mc_timer -
latencyTolerance & !has_joined_new_domain) &
recv_msg = None) & fsm.notify_timer -
time_passed > 0) & !has_sent_secure_wrapper) ->
AX fsm.is_notify_timer_rescheduled)

135

No. Target Models CTL/LTL

Timer Sync FSM Real
Clock, with timer limit and
wrap around, LTL based on
[6, p. 141], adjusted to
address non-determinism

G (((((received_timer_value <= fsm.mc_timer -
latencyTolerance & !has_joined_new_domain) &
recv_msg = None &) fsm.notify_timer -
time_passed > 0) & !has_sent_secure_wrapper) ->
X fsm.is_notify_timer_rescheduled)

14. Timer Sync FSM Integer
Clock

EF _state_ = SCHED_PERIODIC
EF _state_ = SCHED_UPDATE

15. Timer Sync FSM Integer
Clock

AG !nondeterministic

16. Timer Sync FSM Integer
Clock

See timer_sync_fsm_integer_clock.smv for details

Table 16: Tests for the timer synchronization FSMs

A.3. Device Configuration with the ETS5

Figure 29: Setting a project password
The UI claims it would protect the stored keys

136

Figure 30: Device properties for KNXnet/IP Secure
“Secure Commissioning” controls use of KNXnet/IP Secure and Data Secure for configuration

“Secure Tunneling” controls use of KNXnet/IP Secure for tunneling
“Commissioning Password” is the password of the management user

“Authentication Code” is the password from which device authentication code is derived

A.4. Test Cases for the ETS5 and KNXnet/IP Secure
Routers

ID Description
tests.multicast.timerlimit A TIMER_NOTIFY frame with the maximum

mulitcast timer value is sent to the target. The
goal is to identify whether a warp-around
occurs or if the multicast timer remains stuck
at the maximum.

tests.unicast.toserver.unauthenticatedrequest The test software establishes a secure session,
but prior to client authentication it attempts
to create a KNXnet/IP connection through a
SECURE_WRAPPER containing a
CONNECT_REQUEST. The server should refuse
with a SECURE_WRAPPER containing a
SESSION_STATUS with the status code
STATUS_UNAUTHENTICATED.

137

ID Description

tests.unicast.toclient.nowrapper

tests.unicast.toserver.nowrapper

For the client, the test software permits the
establishment of a secure session and sends a
confirmation of the successful authentication
with a SESSION_STATUS that is not
encapsulated in a SECURE_WRAPPER. While the
client behavior is not well-specified, it should
not continue without a correct confirmation of
a successful authentication. For the server, the
test software establishes a secure session, but
attempts to authenticate itself with a
SESSION_AUTHENTICATE frame that is not
encapsulated in a SECURE_WRAPPER. The server
should reject the frame without a response.

tests.unicast.toserver.sessionresponse A SESSION_RESPONSE is sent to the server,
which would not occur with a compliant client.
The server should reject the frame without a
response.

tests.unicast.toserver.statusauthenticated The test software establishes a secure session
through a SESSION_REQUEST and after
receiving a SESSION_RESPONSE, it sends a
SECURE_WRAPPER containing a SESSION_STATUS
with the status code
STATUS_AUTHENTICATION_SUCCESS instead of a
SESSION_AUTHENTICATE frame. The server
should reject the frame without a response.

tests.unicast.toclient.serveractingasclient The test software attempts to contact the
client like a server, to check if it implements a
server as well.

tests.multicast.wrongmac A TIMER_NOTIFY frame with incorrect MAC
but high timer value is sent. The recipient
should reject the frame and not update its
multicast timer to match the contained value.

tests.unicast.toserver.wrongmacauthenticate The test software establishes a secure session
and attempts to authenticate itself with a
SECURE_WRAPPER containing a
SESSION_AUTHENTICATE frame with an invalid
MAC. The server should respond with a
SECURE_WRAPPER containing a SESSION_STATUS
with the status code
STATUS_AUTHENTICATION_FAILED.

138

ID Description

tests.unicast.toserver.wrongmacwrapper The test software establishes a secure session
and attempts to authenticate itself with a
SECURE_WRAPPER, that has an invalid MAC,
containing a SESSION_AUTHENTICATE frame.
The server should reject the frame without a
response.

tests.unicast.toclient.wrongmac The test software permits the client to
establish a secure session and authenticate
itself. The response is a SECURE_WRAPPER with
an invalid MAC, containing a SESSION_STATUS
with the status code
STATUS_AUTHENTICATION_SUCCESS. The client
should reject the frame without a response.

tests.unicast.toclient.headerwronglength

tests.unicast.toserver.headerwronglength

For the client, the test software responds to a
SESSION_REQUEST with a SESSION_RESPONSE
that contains an incorrect length in the header.
The client should reject the frame. For the
server, the test software sends a
SESSION_REQUEST with an incorrect length in
the header. The server should reject the frame
without a response.

tests.unicast.toclient.headerwrongservice

tests.unicast.toserver.headerwrongservice

For the client, the test software responds to a
SESSION_REQUEST with a SESSION_RESPONSE
that contains an incorrect service type in the
header. The client should reject the frame. For
the server, the test software sends a
SESSION_REQUEST with an incorrect service
type in the header. The server should reject
the frame without a response.

tests.unicast.toclient.headerwrongversion

tests.unicast.toserver.headerwrongversion

For the client, the test software responds to a
SESSION_REQUEST with a SESSION_RESPONSE
that contains an incorrect protocol version in
the header. The client should reject the frame.
For the server, the test software sends a
SESSION_REQUEST with an incorrect protocol
version in the header. The server should reject
the frame without a response.

139

ID Description

tests.unicast.toclient.messagefixedsizewronglength

tests.unicast.toserver.messagefixedsizewronglength

For the client, the test software responds to a
SESSION_REQUEST with a SESSION_RESPONSE
that contains an incorrect length in the header
that is significantly larger than the expected
value. The client should reject the frame. For
the server, the test software sends a
SESSION_REQUEST with an incorrect length in
the header that is significantly larger than the
expected value. The server should reject the
frame without a response.

tests.unicast.toclient.sequencenumber

tests.unicast.toserver.sequencenumber

For the client, the test software permits to
establish a secure session and authenticate
itself. Afterwards, a SECURE_WRAPPER with an
incorrect sequence number, containing a
SESSION_STATUS with the status code
STATUS_CLOSE, is sent to the client. The client
should reject it and keep the session open. For
the server, the test software establishes a
secure session and authenticates itself to the
server. Afterwards, a SECURE_WRAPPER with an
incorrect sequence number, containing a
SESSION_STATUS with the status code
STATUS_CLOSE, is sent to the server. The server
should reject it and keep the session open.

tests.unicast.toclient.reservedfieldstatus

tests.unicast.toserver.reservedfieldstatus

For the client, the test software permits to
establish a secure session. Afterwards, a
SECURE_WRAPPER is sent to the client,
containing a SESSION_STATUS frame with the
status code STATUS_CLOSE and a modified
reserved field. Since ISO 22510:2019 does not
specify validation for SESSION_STATUS frame,
the client may accept or reject it. For the
server, the test software establishes a secure
session to the server. Afterwards, a
SECURE_WRAPPER is sent to the client,
containing a SESSION_STATUS frame with the
status code STATUS_CLOSE and a modified
reserved field. Since ISO 22510:2019 does not
specify validation for SESSION_STATUS frame,
the server may accept or reject it.

140

ID Description

tests.unicast.toserver.reservedfieldauthenticate The test software establishes a secure session
and attempts to authenticate itself with a
SECURE_WRAPPER, containing a
SESSION_AUTHENTICATE frame with an invalid
reserved field. The server should respond with
a SECURE_WRAPPER, containing a
SESSION_STATUS with the status code
STATUS_AUTHENTICATION_FAILED, according to
E02 and A2 in the session FSM [6, p. 123].

tests.unicast.toclient.reservedstatus

tests.unicast.toserver.reservedstatus

For the client, the test software permits to
establish a secure session. Afterwards, a
SECURE_WRAPPER is sent to the client,
containing a SESSION_STATUS frame with a
reserved status code. The client should reject
it. For the server, the test software establishes
a secure session to the server. Afterwards, a
SECURE_WRAPPER is sent to the client,
containing a SESSION_STATUS frame with a
reserved status code. The server should reject
it.

tests.unicast.toserver.hpaiip The test software attempts to establish a
secure session with a SESSION_REQUEST that
includes a HPAI, where the port and IP are
not set to zero. The server should reject the
frame without a response.

tests.unicast.toserver.hpailength The test software attempts to establish a
secure session with a SESSION_REQUEST that
includes a HPAI, where the length field
contains an incorrect value. The server should
reject the frame without a response.

tests.unicast.toserver.hpaiprotocol The test software attempts to establish a
secure session with a SESSION_REQUEST that
includes a HPAI, where the protocol type is set
to UDP. The server should reject the frame
without a response.

tests.unicast.toserver.concurrentsessions The test software attempts to establish two
secure sessions within the same TCP
connection. This should be supported by the
server.

141

ID Description

tests.unicast.toserver.reserveduseridauthenticate The test software establishes a secure session
and attempts to authenticate itself with a
SECURE_WRAPPER, containing a
SESSION_AUTHENTICATE frame with a reserved
user ID. The server should respond with a
SECURE_WRAPPER, containing a
SESSION_STATUS with the status code
STATUS_AUTHENTICATION_FAILED, according to
E02 and A2 in the session FSM [6, p. 123].

tests.unicast.toserver.unuseduseridauthenticate The test software establishes a secure session
and attempts to authenticate itself with a
SECURE_WRAPPER, containing a
SESSION_AUTHENTICATE frame with a user ID
that has not been used in the server’s
configuration. The server should respond with
a SECURE_WRAPPER, containing a
SESSION_STATUS with the status code
STATUS_AUTHENTICATION_FAILED, according to
E02 and A2 in the session FSM [6, p. 123].

tests.unicast.toclient.wronglengthwrapper

tests.unicast.toserver.wronglengthwrapper

For the client, the test software permits to
establish a secure session and authenticate
itself. Afterwards, a SECURE_WRAPPER with an
incorrect length field is sent to the client,
containing a SESSION_STATUS frame with the
status code
STATUS_AUTHENTICATION_SUCCESS. This is
expected to break the processing of the TCP
stream and result in a timeout. For the server,
the test software establishes a secure session.
Afterwards, a SECURE_WRAPPER with an
incorrect length field is sent to the client,
containing a SESSION_AUTHENTICATE frame.
This is expected to break the processing of the
TCP stream and result in a timeout.

tests.unicast.toserver.sessionrequestudp The test software attempts to establish a
secure session over UDP. The server should not
respond, because UDP is not allowed for
KNXnet/IP Secure [6, p. 122, p. 126].

tests.unicast.toserver.timernotifytcp The test software attempts to send a valid
TIMER_NOTIFY over UDP. The server should
reject the frame and not update its multicast
timer with the received value, because it was
not received through the routing endpoint [6,
p. 118].

142

ID Description

tests.unicast.toserver.accesscontrol.

management.unwrapped

The test software establishes a secure session
and authenticates itself to the server.
Afterwards, a CONNECT_REQUEST for a device
management connection is sent without being
encapsulated in a SECURE_WRAPPER. The
request should be rejected due to the
configured access control settings.

tests.unicast.toserver.accesscontrol.

management.wrapped

The test software establishes a secure session
and authenticates itself to the server.
Afterwards, a SECURE_WRAPPER is sent,
containing a CONNECT_REQUEST for a device
management connection. The request should
only be accepted if the test software
authenticates itself as the management user.

tests.unicast.toserver.accesscontrol.

tunnel.unwrapped

The test software establishes a secure session
and authenticates itself to the server.
Afterwards, a CONNECT_REQUEST for a
tunneling connection is sent without being
encapsulated in a SECURE_WRAPPER. The
request should be rejected due to the
configured access control settings.

tests.unicast.toserver.accesscontrol.

tunnel.wrapped

The test software establishes a secure session
and authenticates itself to the server.
Afterwards, a SECURE_WRAPPER is sent,
containing a CONNECT_REQUEST for a tunneling
connection. The request should be accepted,
no matter whether the test software
authenticates itself as the management user or
tunneling user.

Table 17: Test cases for the ETS5 and KNXnet/IP Secure routers

A.5. Test Results for the ETS5

No. Description
1. tests.unicast.toclient.nowrapper had the unexpected discovery that ETS5 attempts

to establish a KNXnet/IP Secure session over UDP, which violates ISO 22510:2019 [6,
p. 122 p. 126]. After the reception of the SESSION_STATUS that is not encapsulated in a
SECURE_WRAPPER, the ETS5 still sends a SECURE_WRAPPER containing CONNECT_REQUEST.
While the standard does to specify the validation steps of the client, this does not appear
to be correct, as it skips the confirmation of the successful authentication.

143

No. Description

2. tests.unicast.toclient.serveractingasclient did not cause a reply by the ETS5,
which is correct.

3. tests.unicast.toclient.wrongmac resulted in the ETS5 ignoring the frame with the
incorrect MAC, which is correct.

4. tests.unicast.toclient.headerwronglength resulted in the ETS5 ignoring the
SESSION_RESPONSE with the incorrect length in its header, which is correct.

5. tests.unicast.toclient.headerwrongservice resulted in the ETS5 ignoring the
SESSION_RESPONSE with the incorrect service type in its header, which is correct.

6. tests.unicast.toclient.headerwrongversion resulted in the ETS5 ignoring the
SESSION_RESPONSE with the incorrect protocol version in its header, which is correct.

7. tests.unicast.toclient.messagefixedsizewronglength resulted in the ETS5
ignoring the SESSION_RESPONSE with the significantly too large length in its header,
which is correct.

8. tests.unicast.toclient.sequencenumber resulted in the ETS5 ignoring the
SECURE_WRAPPER with the old sequence number, which is correct.

9. tests.unicast.toclient.reservedfieldstatus resulted in the ETS5 to accepting the
SESSION_STATUS despite the incorrect reserved field. This does not violate the
specification and is therefore technically correct.

10. tests.unicast.toclient.reservedstatus resulted in the ETS5 ignoring the
SESSION_STATUS, which is correct.

11. tests.unicast.toclient.wronglengthwrapper resulted in the parsing being broken,
which was expected. The ETS5 behaves correctly.

Table 18: Explanation of test results for the ETS5

A.6. Test Results for the KNXnet/IP Secure Routers

No. Device Description
1. SCN-IP100.03 tests.unicast.toserver.unauthenticatedrequest

resulted in a reply with a SECURE_WRAPPER frame,
containing a SESSION_STATUS with the status code
STATUS_UNAUTHENTICATED, which is correct.

144

No. Device Description

KNX IP Router 752 Secure tests.unicast.toserver.unauthenticatedrequest
resulted in a reply with a SECURE_WRAPPER frame,
containing a SESSION_STATUS with the status code
STATUS_TIMEOUT, which is incorrect. It should have
triggered event E05 and perform action A6, see session
FSM in figure 19.

2. SCN-IP100.03 tests.unicast.toserver.nowrapper resulted in no
response, until a timeout occurs, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.nowrapper resulted in no
response, until a timeout occurs, which is correct.

3. SCN-IP100.03 tests.unicast.toserver.sessionresponse resulted in
the SESSION_RESPONSE being ignored, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.sessionresponse resulted in
the SESSION_RESPONSE being ignored, which is correct.

4. SCN-IP100.03 tests.unicast.toserver.statusauthenticated resulted
in no response, until a timeout occurs, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.statusauthenticated resulted
in no response, until a timeout occurs, which is correct.

5. SCN-IP100.03 tests.unicast.toserver.wrongmacauthenticate
resulted in a reply with a SECURE_WRAPPER, containing a
SESSION_STATUS with the status code
STATUS_AUTHENTICATION_FAILED, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.wrongmacauthenticate
resulted in a reply with a SECURE_WRAPPER, containing a
SESSION_STATUS with the status code
STATUS_AUTHENTICATION_FAILED, which is correct.

6. SCN-IP100.03 tests.unicast.toserver.wrongmacwrapper resulted in
no response, until a timeout occurs, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.wrongmacwrapper resulted in
no response, until a timeout occurs, which is correct.

7. SCN-IP100.03 tests.unicast.toserver.headerwronglength resulted in
no response and the TCP connection being terminated,
which is correct, see [6, p. 41].

KNX IP Router 752 Secure tests.unicast.toserver.headerwronglength resulted in
no response, until a timeout occurs and the TCP
connection is eventually closed. This might not be fully
correct, since headers that are not well-formed should
result in the termination of the TCP connection, see [6,
p. 41]. However, it is not specified whether well-formed
refers to the structure of the header or also the values of
the fields.

145

No. Device Description

8. SCN-IP100.03 tests.unicast.toserver.headerwrongservice resulted
in no response, which is correct, until a timeout occurs and
the TCP connection is eventually closed. This might not
be fully correct, since headers that are not well-formed
should result in the termination of the TCP connection,
see [6, p. 41]. However, it is not specified whether
well-formed refers to the structure of the header or also the
values of the fields.

KNX IP Router 752 Secure tests.unicast.toserver.headerwrongservice resulted
in no response, which is correct, until a timeout occurs and
the TCP connection is eventually closed. This might not
be fully correct, since headers that are not well-formed
should result in the termination of the TCP connection,
see [6, p. 41]. However, it is not specified whether
well-formed refers to the structure of the header or also the
values of the fields.

9. SCN-IP100.03 tests.unicast.toserver.headerwrongversion resulted
in no response and the TCP connection being terminated,
which is correct, see [6, p. 41].

KNX IP Router 752 Secure tests.unicast.toserver.headerwrongversion resulted
in no response, until a timeout occurs and the TCP
connection is eventually closed. This might not be fully
correct, since headers that are not well-formed should
result in the termination of the TCP connection, see [6,
p. 41]. However, it is not specified whether well-formed
refers to the structure of the header or also the values of
the fields.

10. SCN-IP100.03 tests.unicast.toserver.messagefixedsizewronglength
resulted in the device being unresponsive to KNXnet/IP
Secure frames and required a reboot to restore normal
operation. This behavior was caused by a bug in the
implementation of firmware version 3.0.3, which permitted
effective DoS attacks, hence it is registered as
CVE-2021-37740. The bug has been fixed in firmware
version 3.0.4.

KNX IP Router 752 Secure tests.unicast.toserver.messagefixedsizewronglength
resulted in no response, until a timeout occurs and the
TCP connection is eventually closed. This might not be
fully correct, since headers that are not well-formed should
result in the termination of the TCP connection, see [6,
p. 41]. However, it is not specified whether well-formed
refers to the structure of the header or also the values of
the fields.

11. SCN-IP100.03 tests.unicast.toserver.sequencenumber resulted in
the SECURE_WRAPPER, with the incorrect sequence
information, being ignored. This behavior is correct.

146

No. Device Description

KNX IP Router 752 Secure tests.unicast.toserver.sequencenumber resulted in
the SECURE_WRAPPER, with the incorrect sequence
information, being accepted. This behavior is incorrect.
However, this does not happen once a sequence number
larger than zero has been used.

12. SCN-IP100.03 tests.unicast.toserver.reservedfieldstatus resulted
in the SESSION_STATUS frame with the incorrect reserved
field being accepted. However, since the standard does not
specify required validation steps, this behavior is
technically correct.

KNX IP Router 752 Secure tests.unicast.toserver.reservedfieldstatus resulted
in the SESSION_STATUS frame with the incorrect reserved
field being accepted. However, since the standard does not
specify required validation steps, this behavior is
technically correct.

13. SCN-IP100.03 tests.unicast.toserver.reservedfieldauthenticate
resulted in the SESSION_AUTHENTICATE with the incorrect
reserved field being rejected and a SECURE_WRAPPER
containing a SESSION_STATUS with status field
STATUS_TIMEOUT being sent. This is not correct. According
to the session FSM, see figure 19, the event E02 should
have been triggered, because the SECURE_WRAPPER is valid,
but the SESSION_AUTHENTICATE frame is not. Thus, the
correct reaction would have been A2, sending a
SECURE_WRAPPER containg a SESSION_STATUS with status
field STATUS_AUTHENTICATION_FAILED.

KNX IP Router 752 Secure tests.unicast.toserver.reservedfieldauthenticate
resulted in the SESSION_AUTHENTICATE with the incorrect
reserved field being rejected and a SECURE_WRAPPER
containing a SESSION_STATUS with status field
STATUS_TIMEOUT being sent. This is not correct. According
to the session FSM, see figure 19, the event E02 should
have been triggered, because the SECURE_WRAPPER is valid,
but the SESSION_AUTHENTICATE frame is not. Thus, the
correct reaction would have been A2, sending a
SECURE_WRAPPER containg a SESSION_STATUS with status
field STATUS_AUTHENTICATION_FAILED.

14. SCN-IP100.03 tests.unicast.toserver.reservedstatus resulted in
the incorrect SESSION_STATUS frame being ignored, which
is correct.

KNX IP Router 752 Secure tests.unicast.toserver.reservedstatus resulted in
the incorrect SESSION_STATUS frame being ignored, which
is correct.

147

No. Device Description

15. SCN-IP100.03 tests.unicast.toserver.hpaiip resulted in the
SESSION_REQUEST, with the incorrect IP address and port
in the HPAI, being ignored. This behavior is correct.

KNX IP Router 752 Secure tests.unicast.toserver.hpaiip resulted in the
SESSION_REQUEST, with the incorrect IP address and port
in the HPAI, being ignored. This behavior is correct.

16. SCN-IP100.03 tests.unicast.toserver.hpailength resulted in the
SESSION_REQUEST, with the incorrect length field in the
HPAI, being ignored. This behavior is correct.

KNX IP Router 752 Secure tests.unicast.toserver.hpailength resulted in the
SESSION_REQUEST, with the incorrect length field in the
HPAI, being ignored. This behavior is correct.

17. SCN-IP100.03 tests.unicast.toserver.hpaiprotocol resulted in the
SESSION_REQUEST, with the incorrect protocol type in the
HPAI, being ignored. This behavior is correct.

KNX IP Router 752 Secure tests.unicast.toserver.hpaiprotocol resulted in the
SESSION_REQUEST, with the incorrect protocol type in the
HPAI, being ignored. This behavior is correct.

18. SCN-IP100.03 tests.unicast.toserver.concurrentsessions verified
that two KNXnet/IP Secure sessions can be active within
the same TCP connection. This behavior is correct.

KNX IP Router 752 Secure tests.unicast.toserver.concurrentsessions verified
that two KNXnet/IP Secure sessions can be active within
the same TCP connection. This behavior is correct.

19. SCN-IP100.03 tests.unicast.toserver.reserveduseridauthenticate
resulted in the SESSION_AUTHENTCATE frame with a
reserved user ID being rejected and a SECURE_WRAPPER
containing SESSION_STATUS with the status field
STATUS_AUTHENTICATION_FAILED being sent as a reply.
This behavior is correct.

KNX IP Router 752 Secure tests.unicast.toserver.reserveduseridauthenticate
resulted in the SESSION_AUTHENTCATE frame with a
reserved user ID being rejected and a SECURE_WRAPPER
containing SESSION_STATUS with the status field
STATUS_AUTHENTICATION_FAILED being sent as a reply.
This behavior is correct.

20. SCN-IP100.03 tests.unicast.toserver.unuseduseridauthenticate
resulted in the SESSION_AUTHENTCATE frame with an
unused user ID being rejected and a SECURE_WRAPPER
containing SESSION_STATUS with the status field
STATUS_AUTHENTICATION_FAILED being sent as a reply.
This behavior is correct.

148

No. Device Description

KNX IP Router 752 Secure tests.unicast.toserver.unuseduseridauthenticate
resulted in the SESSION_AUTHENTCATE frame with an
unused user ID being rejected and a SECURE_WRAPPER
containing SESSION_STATUS with the status field
STATUS_AUTHENTICATION_FAILED being sent as a reply.
This behavior is correct.

21. SCN-IP100.03 tests.unicast.toserver.wronglengthwrapper resulted
in a timeout as the TCP stream processing breaks. The
behavior is expected and correct.

KNX IP Router 752 Secure tests.unicast.toserver.wronglengthwrapper resulted
in a timeout as the TCP stream processing breaks. The
behavior is expected and correct.

22. SCN-IP100.03 tests.unicast.toserver.sessionrequestudp resulted in
no reply to the SESSION_REQUEST sent over UDP, which is
correct.

KNX IP Router 752 Secure tests.unicast.toserver.sessionrequestudp resulted in
no reply to the SESSION_REQUEST sent over UDP, which is
correct.

23. SCN-IP100.03 tests.unicast.toserver.timernotifytcp resulted in
the TIMER_NOTIFY frame being ignored, which is correct.

KNX IP Router 752 Secure tests.unicast.toserver.timernotifytcp resulted in
the TIMER_NOTIFY frame being ignored, which is correct.

24. SCN-IP100.03 tests.unicast.toserver.accesscontrol.
management.unwrapped resulted in the unencapsulated
CONNECT_REQUEST being reject with an unencapsulated
CONNECT_RESPONSE with the status code
E_AUTHORISATION_ERROR as a response. While the
rejection is correct, the status code is meant to be used
when a client is not authorized to use the IA requested in
the extended CRI [6, p. 152]. However, the
CONNECT_REQUEST did not contain extended CRI, hence
this might not be fully correct. ISO 22510:2019 does not
appear to specify the intended behavior for this case.

149

No. Device Description

KNX IP Router 752 Secure tests.unicast.toserver.accesscontrol.
management.unwrapped resulted in the unencapsulated
CONNECT_REQUEST being reject with an unencapsulated
CONNECT_RESPONSE with the status code
E_NO_MORE_CONNECTIONS as a response. While the
rejection is correct, the status code is meant to be used
when the server cannot accept new connections because
the maximum number of concurrent connections is already
busy [6, p. 152]. However, it could be argued that the
maximum number of connections plain KNXnet/IP is
reached, which is zero when KNXnet/IP Secure is
mandatory. ISO 22510:2019 does not appear to specify the
intended behavior for this case.

25. SCN-IP100.03 tests.unicast.toserver.accesscontrol.
management.wrapped resulted in a successfully established
connection using the management user. For a regular user
the CONNECT_REQUEST is rejected and a SECURE_WRAPPER
containing a CONNECT_RESPONSE with the status code
E_AUTHORISATION_ERROR is sent as a response. The overall
behavior in both cases is correct, but the status code is
meant to be used when a client is not authorized to use the
IA requested in the extended CRI [6, p. 152]. However, the
CONNECT_REQUEST did not contain extended CRI, hence
this might not be fully correct. ISO 22510:2019 does not
appear to specify the intended behavior for this case.

KNX IP Router 752 Secure tests.unicast.toserver.accesscontrol.
management.wrapped resulted in a successfully established
connection using the management user. For a regular user
the CONNECT_REQUEST is rejected and a SECURE_WRAPPER
containing a CONNECT_RESPONSE with the status code
E_NO_MORE_CONNECTIONS is sent as a response. The overall
behavior in both cases is correct, but status code is meant
to be used when the server cannot accept new connections
because the maximum number of concurrent connections is
already busy [6, p. 152]. This is not the case, because it
could accept additional connections through KNXnet/IP
Secure, but only for the management user. ISO 22510:2019
does not appear to specify the intended behavior for this
case.

26. SCN-IP100.03 tests.unicast.toserver.accesscontrol.
tunnel.unwrapped resulted in the unencapsulated
CONNECT_REQUEST being reject with an unencapsulated
CONNECT_RESPONSE with the status code
E_CONNECTION_TYPE as response. This behavior is correct.

150

No. Device Description

KNX IP Router 752 Secure tests.unicast.toserver.accesscontrol.
tunnel.unwrapped resulted in the unencapsulated
CONNECT_REQUEST being reject with an unencapsulated
CONNECT_RESPONSE with the status code
E_CONNECTION_TYPE as response. This behavior is correct.

27. SCN-IP100.03 tests.unicast.toserver.accesscontrol.
tunnel.wrapped resulted in a successfully established
connection for both the management and regular user.
However, there appeared to be a mismatch between the
order of user IDs in the ETS5 project files and the user IDs
internally assigned by the server.

KNX IP Router 752 Secure tests.unicast.toserver.accesscontrol.
tunnel.wrapped resulted in a successfully established
connection for both the management and regular user.

Table 19: Explanation of test results for the KNXnet/IP Secure routers

A.7. Software, Models and Logs
Physical copies of the thesis have a DVD attached that contains the following data:

• NuXMV models
• Source code for the state learner
• Source code for the test software
• Log files for protocol state fuzzing
• Log files for software tests
• Notes about the risk analysis
If you are reading a digital copy and would like access to these files, please send an

email to either guetzkor@informatik.hu-berlin.de or rguetzkow@outlook.de.

151

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquel-
len, die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen
für Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist
bekannt, dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungs-
versuchs bzw. Täuschung eingeleitet wird.

Berlin, den 31. März 2022

153

	List of Figures
	List of Tables
	List of Acronyms
	List of Terms
	List of Symbols
	List of Operators and Functions
	Introduction
	Problem Statement
	Research Questions
	Research Methodology
	Thesis Structure

	Related Work
	KNX
	Cryptographic Fundamentals
	Symmetric Cryptography
	Asymmetric Cryptography
	Guidelines for Cryptography
	Authenticated Key Exchange
	Group Key Exchange
	Cryptographic Models
	Attacks Against Weak Cryptography
	Model Checking
	Black-Box Tests
	Risk Analysis
	Network Security

	Background
	KNX Topology and KNXnet/IP
	Core
	Device Management
	Tunneling
	Routing
	Remote Diagnosis and Configuration
	Insecurities and Design Flaws in KNXnet/IP

	Cryptography
	CCM Cipher Mode
	Elliptic Curve Cryptography and Curve25519
	Key Derivation with PBKDF2-HMAC-SHA-256
	Security Properties for Cryptographic Protocols
	eCK-PFS Model

	KNXnet/IP Secure in ISO 22510:2019
	CCM
	Unicast
	Security Goals
	Configuration
	Frame Formats
	Authenticated Key Exchange
	Session Finite State Machine
	Access Control

	Multicast
	Security Goals
	Configuration
	Frame Formats
	Communication
	Timer Synchronization Finite State Machine
	Access Control

	Model Checking
	Protocol State Fuzzing
	Risk Analysis with BSI 200-3

	Analysis of KNXnet/IP Secure in ISO 22510:2019
	Unicast
	CCM Requirements
	Authenticated Key Exchange and Session
	Formal Analysis with eCK-PFS
	Model Checking of Session FSM
	Improvement Suggestions

	Multicast
	CCM Requirements
	Group Communication
	Model Checking of Timer Synchronization FSM
	Improvement Suggestions

	Device Management with the ETS5
	Device Commissioning
	Offline Attack against Authentication
	Insecure Storage of Cryptographic Secrets
	Updating the ETS5
	Analysis with Test Software
	Improvement Suggestions

	Analysis of Certified Devices
	Analysis with Test Software
	Protocol State Fuzzing and Model Checking
	Improvement Suggestions

	Risk Analysis with BSI 200-3
	Results of the Risk Analysis
	KNX Guidelines
	Improvement Suggestions

	Evaluation
	Conclusion and Future Work
	References
	Appendix
	Supplementary Analysis with eCK-PFS
	Model Checking
	Device Configuration with the ETS5
	Test Cases for the ETS5 and KNXnet/IP Secure Routers
	Test Results for the ETS5
	Test Results for the KNXnet/IP Secure Routers
	Software, Models and Logs

