
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

OpenVPN TLS-Crypt-V2 Key Wrapping with
Hardware Security Modules

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Emily Ehlert
geboren am:
geboren in:
Gutachter*innen: Prof. Dr. Jens-Peter Redlich

Prof. Dr. Florian Tschorsch
eingereicht am:

Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

OpenVPN TLS-Crypt-V2 Key Wrapping with
Hardware Security Modules

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Emily Ehlert
geboren am: 10.05.2000
geboren in: Königs Wusterhausen
Gutachter*innen: Prof. Dr. Jens-Peter Redlich

Prof. Dr. Florian Tschorsch
eingereicht am:

Abstract

The control channel of OpenVPN can be protected using pre-shared keys
distributed to clients using the tls-crypt-v2 mechanism. A wrapped client
key is send to the server when establishing a tunnel. If the server wrapping
key is compromised, all client keys would need to be renewed. This bachelor
thesis explores methods of implementing the functionality of tls-crypt-v2
using Hardware Security Modules, making the server key difficult to extract.
For this purpose, the Java Card technology, YubiKey cryptographic tokens,
and the PKCS#11 interface are analyzed, and example implementations are
showcased. The technologies are integrated with OpenVPN using its plugin
capability, which requires an extension to it to support the mechanism. A key-
derivation scheme is used for the YubiKey tokens and the available SmartCard
HSM PKCS#11 token to imitate the functionality of tls-crypt-v2 since neither
has support for the required cryptographic operations. The results show, that
while hardware security modules can be used to handle tls-crypt-v2, providing
improved security, there are some drawbacks. Even the fastest tested device,
the YubiKey 5C NFC, able to authenticate a client key within 27 ms, is
significantly slower than the 0.01 ms required by plain OpenVPN, leading to
potential delays and a substantially increased Denial-of-Service attack surface.
Faster hardware solutions exist, but at a price of several hundred to thousands
of euros, they are not a viable option for small-scale usage.

2

Contents
1. Introduction 4

2. OpenVPN 4
2.1. Basics . 4
2.2. Control Channel Protection . 5
2.3. TLS Crypt v2 . 6
2.4. Plugins . 8

3. Objective 10

4. Hardware Security Modules for Key Wrapping 10
4.1. Requirements . 10
4.2. Smart Cards with Java Card . 11
4.3. YubiKey . 14
4.4. PKCS#11 . 15
4.5. SmartCard HSM . 15

5. Implementation 16
5.1. Plugin Hook . 17
5.2. Java Card . 20

5.2.1. Applet . 20
5.2.2. Plugin . 23

5.3. YubiKey . 24
5.4. PKCS#11 . 28

6. Performance 31
6.1. Methods . 31
6.2. Results . 32
6.3. Discussion . 34

7. Conclusion 35

A. Plugin Interface Specification 36

B. Supported Mechanisms 37

C. Code Snippets 39

D. Result Data 43

3

1. Introduction
For security reasons, in many organizations, important documents and digital resources
are only available on their intranet. To allow the usage of these resources outside the
network, Virtual Private Networks (VPNs) have become a key tool. Since the start of the
COVID-19 pandemic, this trend has accelerated dramatically and the use of VPNs has
become common even among traditionally low-tech businesses like the classical trades.
Since they allow direct access to an organization’s internal network, the security and
integrity of the VPNs are of the utmost importance.

One of the most popular VPN solutions is OpenVPN, which creates an encrypted IP or
Ethernet tunnel connecting a remote host or site to a company’s network. An OpenVPN
connection consists of a data and control channel, with the second one being used to set
up the TLS session and other connection management purposes.

OpenVPN offers multiple methods of protecting the control channel. One is tls-crypt-
v2 which offers confidentiality, integrity, and authenticity, through AES-256-CTR and
HMAC-SHA-256. Each client receives an individual key. OpenVPN uses key wrapping
for this mechanism, allowing the server to discard the client keys while not connected.
Wrapping uses a server key to encrypt and add an authentication code to each client key.
When a client wants to establish a connection, it must include the wrapped client key.
The server then can unwrap it, i.e., decrypt and verify, to obtain the plain key. This
procedure, however, leaves the server as a single point of failure. If a malicious actor
were to acquire the server key, they would be able to decrypt all wrapped keys rendering
the control channel protection ineffective, and requiring to renew all keys. If the server
key were to be kept on a Hardware Security Module (HSM), an attacker could not or
only with significant costs extract it, even if they had (physical) access to the token.

The objective of this bachelor thesis is to examine different hardware methods of
handling tls-crypt-v2, create an implementation for each, and test their performance. To
achieve this, the ability of OpenVPN to extend its capabilities through the use of plugins
is utilized. Since OpenVPN, as of version 2.6, does not offer a way for a plugin to perform
the tls-crypt-v2 operations, a new plugin hook within OpenVPN has to be implemented,
allowing the server to hand over wrapping operations to a plugin. The extensions will
either receive a wrapped or plain client key and unwrap or wrap it, returning the result
to OpenVPN.

2. OpenVPN
2.1. Basics
OpenVPN is an open-source VPN solution utilized for creating point-to-point or site-to-
site network connections. A VPN is a software for enabling a client to route their traffic
through a secure, i.e., encrypted and authenticated, connection (tunnel) to a server. The
main applications are either to remotely connect to a private network, like the intranet
of a company, or for privacy reasons, by concealing the traffic from the internet service
provider and the IP address from the server. These properties help circumvent censorship.

4

The OpenVPN software can run in a server or client configuration. For cryptography,
OpenVPN predominantly uses OpenSSL but also supports Mbed TLS, previously called
PolarSSL [1]. OpenVPN tunnels can be encrypted and authenticated using any symmetric
cipher and MAC function provided by the crypto backend [2, 3]. Keys for encryption
are either pre-shared (PSK) or negotiated using the Transport Layer Security (TLS)
protocol [4]. The exchange allows the use of public key infrastructure and certificates.
Authenticating a client using a username and password is also supported. The thesis
will assume the use of TLS. The connection between the client and server can be via
UDP or TCP. Both control and data channel packages are sent over the same connection.
The TLS session on the control channel requires "a reliable, in-order data stream"[5]. For
UDP, the VPN provides its own reliability layer for control packages on top of transport
protocol [6]. After setting up the network interface, OpenVPN can drop its privileges by
setting the effective user ID of the calling process to "nobody".

To initialize a VPN session, the client sends either a P_CONTROL_HARD_RESET_CLIENT_V2
or if the client wants to use the tls-crypt-v2 control channel protection
P_CONTROL_HARD_RESET_CLIENT_V3 package [6][7]. Version 2 and 3 employ the same proce-
dure to derive the session keys. Version 1 utilized a slightly different method, but is not
in use anymore [8]. When the server receives the first packet, if desired, it handles control
channel protection and establishes a TLS session. To derive the MAC and symmetric
cipher keys, random key material is generated on both sides and exchanged via the
control channel. The keys are used unidirectional, meaning each side has its own keys for
authenticating and encrypting messages they send. After the keys are established, traffic
data can be sent through the data channel.

2.2. Control Channel Protection
By default, the control channel is only protected by TLS. An attacker can read the
initial handshake messages before a secure session is established, allowing them to see
which certificates were used. Besides privacy risks, an adversary can access the TLS
stack, exposing a large attack surface for potential vulnerabilities and Denial Of Service
(DOS) attacks. Streun et al. [9] discovered, that an attacker may perform a forced
key renegotiation attack by inserting a P_CONTROL_HARD_RESET_CLIENT_V2 message with a
spoofed source IP address of a current connection. The server responds to the feigned
key renegotiation. The real client receiving the response believes the server wants to
renegotiate keys and answers accordingly. This process leaves both sides with improper
handshakes, resulting in an unusable connection. The client cannot recover from the attack
by itself, even when restarting. The only solution is restarting the server application.

By authenticating the control channel, an attacker is unable to modify the TLS stack or
insert genuine-looking packages into a connection, mitigating the forced key renegotiation
attack. By further encrypting the control channel, an adversary can not see which
certificates were used for the TLS session. Symmetric encryption also provides some
post-quantum security for the whole OpenVPN connection, including the data channel.
Even though the cryptographic primitives used for encrypting and authenticating the
tls-crypt-v2 client keys, AES-256-CTR and HMAC-SHA-256, can be weakened with

5

a quantum computer, they are not efficiently breakable. Thus, the quantum insecure,
asymmetric TLS key negotiation is protected.

OpenVPN has three options for securing the control channel [4]:

• tls-auth — The "HMAC firewall" provides authentication for the control channel.
Clients belonging to a server cluster receive the same key during setup through
a secure channel. Messages sent via the control channel require a valid message
authentication code. It is generated using the HMAC construct and utilizes by
default the SHA1 message digest, but other digests can be specified via the auth
option [10]. The HMAC firewall has been part of OpenVPN (almost) since the
beginning. The earliest source code available on the internet, OpenVPN 1.0.2
released on 28th March 2002, already contains the tls-auth option [11]

• tls-crypt — Adds encryption in addition to authentication. Like with tls-auth, each
client in a server cluster receives the same keys during setup, used for a symmetric
cipher and HMAC. As digest SHA-256 and as cipher AES-256-CTR is employed
[12]. This option was introduced in version 2.4 [13]

• tls-crypt-v2 — Improves on tls-crypt by moving from global keys to client individual
keys for cipher and authentication. The option uses the same cryptographic
primitives as tls-crypt. It was introduced in version 2.5 [14]

OpenVPN’s control channel protection uses fixed crypto functions to minimize overhead,
removing the need for a handshake, and determine as fast as possible if a package
is legitimate or not. To help DOS protection, invalid packages get silently discarded.
However, this DOS protection does not seem to make any significant impact. According
to Streun et al. [9], these options even harm DOS resilience compared to an unprotected
control channel. With only 100 Mb/s of generic initiation package traffic, a single
OpenVPN instance can be completely denied from processing any legitimate traffic.

2.3. TLS Crypt v2
The tls-crypt-v2 mechanism is described in the [tls-crypt-v2.txt] document and imple-
mented in the [tls_crypt.c] source file. An overview of the procedure is shown in fig. 1.
The option is used to encrypt and authenticate control channel packages with AES-256-
CTR and HMAC-SHA-256 using a client-specific pre-shared key. To accomplish this,
tls-crypt-v2 performs three different tasks.

First, the server needs its own set of keys to wrap the client keys Kc. Since the server
does not save any Kc permanently, a client sends their keys to the server in the initial
message of a session. To accomplish this securely, OpenVPN uses a technique called
wrapping. At its core, it consists of encrypting a sensitive key, in this case, the client
key using a different key and adding an authentication code to the cipher text. The
wrapped data can then be stored and transferred in any way desired. Only the key used
for wrapping must be stored safely. This strategy can be useful when a cryptographic
device has limited space. The keys are stored off-device and imported when operations
need to be performed. With tls-crypt-v2, the server key is the wrapping key. To generate

6

O
pe
nV

PN
Random

Client Key

HMAC-
SHA-256

AES-256-
CTR Key

Server AES
Key

Key

Server HMAC
Key

[0:16]

IV

Tag

Metadata

Wrapped
Client KeyWrapping

O
pe
nV

PN

[0:16]

IV

Tag

HMAC-
SHA-256

AES-256-
CTR Key

Server AES
Key

Key

Server HMAC
Key

Tag
(for verification)

Wrapped Client
Key

Client Key ||
MetadataUnwrapping

Figure 1: Overview of TLS Crypt V2 as specified in [tls-crypt-v2.txt]. Length component
omitted for improved clarity.

any client keys, the server first needs to create its key file. This generation consists of
creating two 512-bit keys and encoding them using the Privacy-Enhanced Mail (PEM)
file format. The first 256 bits of the first key are later utilized as AES-256-CTR key Ke
and the first 256 bits of the second key are used as HMAC-SHA-256 key Ka. The keys
are each 512 bits long because OpenVPN’s key structures can contain a maximum of
512 bits of key material. This circumstance also helps future-proofing the mechanism.
Should more key material be needed, no new keys have to be distributed. All OpenVPN
server instances in a VPN group must use the same server key.

After server key creation, client keys Kc can be generated. A Kc is 2048-bit long,
containing four keys. Each side of the connection has two 512-bit long keys for encrypting
and authenticating packages. Besides the plain Kc, the server also creates the wrapped
key WK c. During key generation, metadata may be added to Kc before wrapping it.
OpenVPN’s key wrapping is based on Rogaway & Shrimpton [16]. | is used as symbol to

7

indicate the concatenation of two bit sequences.

len = byte length of WK c

T = HMAC-SHA-256(Ka, len|Kc|metadata)
IV = 128 most significant bits of T

WK c = T | AES-256-CTR(Ke, IV , Kc|metadata)|len

Kc and WK c are then concatenated and PEM encoded. The client uses the plaintext
key for itself and sends WK c to the server when establishing a tunnel.

To protect against replay attacks, the server sends a challenge in its first reply. To
prevent resource exhaustion attacks, it does not save the Kc. The client must resend
WK c in its response to the challenge. The server thus unwraps the client key twice. All
further details are contained in [tls-crypt-v2.txt].

With the current implementation of tls-crypt-v2, the server is the single point of failure.
Thus, if it would get compromised and the attacker had access to Ke and Kc, all client
keys would need to be replaced since the attacker could unwrap all WK c, rendering the
control channel protection ineffective.

2.4. Plugins
Since Version 2.0, OpenVPN has support for plugins [17]. They extend OpenVPN’s
capabilities without the need to modify its source code. Plugins are pre-compiled,
dynamically-linkable libraries implementing the plugin interface defined in [openvpn-
plugin.h.in]. When an extension is loaded during the start-up sequence of the program,
it registers itself with OpenVPN to intercept specific callbacks (plugin hooks). A hook
is a specific event occurring during the execution, like connecting a client. Currently,
as of version 2.6, OpenVPN supports 15 different callbacks. See appendix A. Plugins
can receive and return data to OpenVPN. Generally, there are two categories: passive
and active callbacks. Plugins intercepting a passive callback should not return any-
thing, while active plugins are expected to. The return data and status of an active
plugin are used to influence the execution of the main program. For example, the
OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY callback, authenticates a client using a username
and password. If the plugin returns with a negative return/exit code, the connection
attempt is rejected. This can be used to verify a user against an LDAP server.

Since its initial release, more callbacks and features have been added to the plugin
interface. Presently the interface is version 3 and the Plugin V3 StructVer is 5. StructVer
refers to the version of the structs the plugin receives when loaded or called during a
plugin hook. With the current iteration, plugins have access to five callback function
pointers. These functions are provided and implemented by OpenVPN, but they can be
executed from within a plugin.

• plugin_log() and plugin_vlog() — These functions improve upon the standard
printf() by adding more information to the output like plugin name and allowing
to set a verbosity level, only printing a message if the verbosity level is high enough.

8

• plugin_secure_memzero() — Function used to securely erase memory. It was de-
veloped by Yang et al. [19] to be specifically not removed by a compiler during
optimization.

• plugin_base64_encode() and plugin_base64_decode() — Used for encoding data
from and to its base64 representation.

The plugin interface defines required and optional functions to be implemented by a
library. For version 3 plugins, the following three are required: openvpn_plugin_open_v3(),
openvpn_plugin_func_v3() and openvpn_plugin_close_v1(). From the optional functions,
only the openvpn_plugin_select_initialization_point_v1() to choose the plugin’s load
point will be used in this project. This ability is important when the extension has to be
set up before OpenVPN potentially drops its privileges.

openvpn_plugin_open_v3()

OpenVPN calls this function during the start-up sequence when the program loads
the requested plugins. The extension uses it to declare which callbacks it wants to
intercept. openvpn_plugin_open_v3() usually performs setup work like creating a log
file or connecting with an LDAP server. The plugin context is a plugin-defined struct
containing runtime-persistent information. The program provides this data to the plugin
during every callback. If the context is needed, it must be allocated here and added to the
return structure of the function. The arguments provided to it contain all parameters set
when specifying the plugin in the OpenVPN configuration file or command line options, for
example, a file path of a log file. The struct openvpn_plugin_args_open_in also contains
pointers to the callback functions, which should be saved within the plugin. Depending on
the initialization point set, the plugin can add more options to the OpenVPN configuration.
For more information concerning arguments available to openvpn_plugin_open_v3(), see
[openvpn-plugin.h.in].

openvpn_plugin_func_v3()

When OpenVPN intercepts a callback and the plugin has indicated support for it, this
function is called. Depending on the callback type, the plugin receives various information
from OpenVPN. It always receives a pointer to its plugin context or NULL if not set,
the type of callback intercepted, and a pointer to the environmental variable set in
OpenVPN, e.g., the verbosity level. Depending on the plugin hook, further information
like a client-specific context or the currently used X.509 certificate may be provided.
For other data, the char** argv pointer is available, which is similar to the argv pointer
received by the main() function of a C program. Since this is simply a list of strings, data
must either be encoded to exclude 0x00 bytes or contain some form of length specification.

Depending on the plugin hook, the return code implementation differs. With a passive
callback, a negative response is considered an exception. For active ones, it is regarded as
regular behavior. A negative return code for the verification of a client with a username
and password is a rejection of the connection attempt. Besides the return code, a plugin

9

can also send back data to OpenVPN using a so-called string list, essentially a list of key-
value pairs containing strings. This capability is vital to return data like an unwrapped
client key.

openvpn_plugin_close_v1()

When OpenVPN unloads the plugin, it calls this function. It cleans up the plugin
(context), like closing the file handle for a log file. The function returns nothing and only
receives the plugin context as an argument.

3. Objective
The aim of this bachelor thesis to answer the question if HSMs can be a viable solution
in improving the security of the tls-crypt-v2 mechanism, as described in section 2.3. It is
desirable, but not a requirement, that an implementation behaves the same as the original
specification describes the mechanism. With the additional ability to import an existing
server key into the HSM, working setups could easily migrate without the need to reissue
any client keys. To achieve this goal, I want to use the plugin function of OpenVPN to
extend the server’s capabilities. This approach requires the least amount of modification
to the OpenVPN source code, which makes it easier to validate and integrate the changes
into OpenVPN. Some modifications are necessary since the application does not provide
a plugin hook for handling tls-crypt-v2 operations. Through the use of plugins, it is also
easier to implement new HSMs in the future.

First, I will define the requirements an HSM needs to fulfill to be used for this application
and then research some devices and standards which do. Afterward, I will implement the
plugin hook and sample plugins for every capable HSM previously selected. Finally, I
want to test the performance of each plugin and compare it to the current implementation
within OpenVPN.

4. Hardware Security Modules for Key Wrapping
4.1. Requirements
The token should preferably support AES and HMAC. However, the functionality of
tls-crypt-v2 can also be implemented using any deterministic quantum-resistant key
derivation scheme. This method allows a root server key to be stored on the HSM,
with client-specific server keys derived from it. The resulting keys then can be used
in the plugin to perform the wrapping without compromising the root key. Quantum
resistance means that a quantum computer can not efficiently, i.e., in polynomial time,
break the crypto primitive. Secure key storage must be available. Using key derivation
would differ from the tls-crypt-v2 specifications and make drop-in replacement impossible.
Further details are discussed in section 5.3. Support for AES-256, preferably the Counter
(CTR) or Electronic Code Book (ECB) mode, and HMAC-SHA-256 would thus be
optimal. If HMAC generation is unavailable, support for internal key hashing would be

10

sufficient. Only performing both the cipher and authentication on the device allows the
implementation to follow the specifications.

The HSM must not require interaction for key unwrapping, besides potential start-
up authentication. Being readily available, inexpensive, and yet performant would be
beneficial. Device libraries should be written in C or C++, but if not, a bridge for
communicating between the library and the plugin would be required, complicating the
implementation.

4.2. Smart Cards with Java Card
Overview

Java Card is a software technology used on smart cards to provide a Java-like development
experience and broad compatibility across different smart cards. It contains a limited
subset of the Java programming language, only including what is necessary for a smart
card. These severe restrictions are due to the low processing power and small memory
available on such a device. A program for a Java Card is called an applet and is compiled
with the Java Card SDK. The app can then be uploaded onto a smart card running
Java Card. From now on, JCard refers to smart cards supporting Java Card. A card
can hold multiple applets concurrently, each selectable via the card management applet.
Java Card makes the applet compatible with smart cards from different vendors. To
achieve this, a Java Card Virtual Machine (JCVM) for executing byte code runs on the
smart card [20]. On top of the JCVM are the Java Card Framework and the Application
Programming Interface (API) for the applet to interact with, as well as potential vendor-
specific extensions. Combined, it is the Java Card Runtime Environment (JCRE). The
JCRE makes applets portable and provides a higher-level programming interface for
easier development.

The most recent release of the technology, version 3.2, was published in January 2023
[21]. However, not every JCard supports every version. Furthermore, even though Java
Card unifies the programming experience, not all specified cryptographic functions are
available on a certain smart card. The JCard available for this thesis (NXP JCOP3
J3H145 [22]) does not support HMAC or AES-CTR, but AES-ECB and SHA-256. Even
though a JCard is generally slower compared to more tightly integrated HSMs, they
provide the advantage of being freely programmable, allowing the full implementation
of tls-crypt-v2 on the card. JCards can be had for less than 40 Euros. They are also
available with a USB interface. It is important to verify that the specific card supports
AES-256 and SHA-256. Unfortunately, few shops sell (open) JCards, and of those that
do, most of them are business-to-business only [23].

Programming with Java Card

Developing a Java Card applet requires the Java Card Development Kit (JCDK). It is
essential to verify that the smart card supports the used JCDK. An applet compiled
with an incompatible JCDK may not install on the JCard. Programming with Java
Card is challenging since most of the features known from regular Java are unavailable.

11

Furthermore, even though the official documentation is decent, barely any guides with best
practices on the topic of programming with Java Card are available. The programming
language only supports bytes, shorts, and optionally ints as variable types. There are
no strings or floating point numbers provided. One-dimensional arrays are supported.
Besides the limited type support, Java Card also has no garbage collector [20].

There are three types of memory found on a JCard [24]:

• Read Only Memory (ROM) — This memory contains the smart card operating
system, the JCRE, and pre-installed applets. It can only be modified during
manufacturing. Writing data to it is called masking.

• Non-Volatile Memory (NVM) — This is persistent memory, which is retained even
when disconnected from the card reader. It holds other applets and is also used to
store class variables and by default objects. NVM is slow to write to and read from.

• Random Access Memory (RAM) — This memory is significantly faster than NVM,
but also smaller. It is cleared when the card loses power. Since smart cards do
not have their own power source, data saved in the RAM is lost, when the card is
disconnected from the reader.

The lifetime of an applet is split into two phases. The first being “install” and the second
“process”. During installation, while the JCard is inserted into a card reader, the applet
is loaded onto the smart card and performs setup tasks like allocating a large chunk
of transient (RAM) memory and initializing cryptographic functions. The large chunk
of memory is later reused for storing data when processing a command. It is faster to
allocate memory once during installation than whenever a new instruction is processed
since memory allocation is time-consuming. Should a requested cryptographic function
be unavailable, the installation process will fail. Afterward, the applet is selectable with
the card manager. Almost every command sent to the smart card, while an applet is
selected, is forwarded to it. The applet then processes the command and sends the return
data to the host. After completion, the applet is inactive until the next command arrives
[24].

Deploying a Java Card Applet

After writing the applet, the source code is compiled into Java class files using the usual
javac command. This process is the same as with a regular Java development workflow.
The only difference is that the debug option must be added to the compilation for the
converter[25]. The converter command is included in the JCDK and converts the class
files into a CAP file. The final applet is then loaded onto the smart card. A build tool
automates the process of compiling and converting the source code. For this project,
ant-javacard is used, which provides a Java Card build task for the Java ant build system
[26]. The upload to the smart card can also be automated using the tool.

A typical JCard contains a pre-installed root applet. This card management applet
differs from a normal one by having more permissions, including the ability to install and
select other applets. Virtually every Java Card root applet available is compatible with

12

Attribute Description Length Extended Length
CLA Class identifier 1 Byte 1 Byte
INS Instruction identifier 1 Byte 1 Byte
P1, P2 Parameters 1 Byte 1 Byte
Lc Length of data seg-

ment
1 Byte (optional) 3 Bytes (optional)

Data Additional data send
to applet

variable (optional, up
to 255 Bytes)

variable (optional, up
to 16 MB)

LE Length of expected
data returned by
smart card

1 Byte (optional) 3 Byte (optional)

Table 1: Description of the fields of a regular APDU

the Global Platform (GP) specifications. GP defines the deployment and management
procedures for applets on smart cards. By using a common standard, it is easier to
communicate with different cards. To manage applets on a GP-compatible smart card,
a tool such as Global Platform Pro (GPP) [27] is used. The root applet requires a key
to modify the smart card, but for development purposes, it is set to the default one
(0x40..0x4F). For actual deployment, this must be changed. All communication with a
JCard happens via commands, called Application Protocol Data Units (APDU). APDUs
are byte sequences sent to a smart card and used to communicate with the root and
other applets. They are defined in ISO/IEC 7816-4:2020 [28]. The basic structure of
an APDU is CLA | INS | P1 | P2 | Lc | Data | Le , further described in table 1. A
regular APDU supports up to 255 Bytes of additional data. Since it is sometimes required
to send more data and splitting it into multiple chunks would be very inconvenient,
extended APDUs were introduced. The Lc and Le fields of extended APDUs are three
bytes instead of one, allowing transmissions of up to 16 MB of data if a card can store or
process that much. APDUs come in four variations, depending on whether additional
data needs to be sent and whether return data is expected. They are as follows:

1. CLA | INS | P1 | P2
APDU for sending no data and expecting no return data

2. CLA | INS | P1 | P2 | Le
APDU for sending no data and expecting return data

3. CLA | INS | P1 | P2 | Lc | Data
APDU for sending data and expecting no return data

4. CLA | INS | P1 | P2 | Lc | Data | Le
APDU for sending data and expecting return data

Global Platform Pro can send custom APDUs to an applet, which is useful for some
basic testing and debugging. During the deployment of a smart card, communication is

13

handled with a library. To transmit commands to a card the Personal Computer / Smart
Card (PC/SC) specification is used. PC/SC defines the integration of smart cards with
computers. Tools like GPP also utilize it in the background to communicate with a smart
card. This thesis project employs the C library pcsclite, which acts as a “[m]iddleware
to access a smart card using the SCard API (PC/SC)” [29]. Drivers for communication
with the smart card reader are also required, but will not be further discussed.

4.3. YubiKey
YubiKeys are USB security tokens mainly used for (online) authentication providing
functions like WebAuthn (the core of Fast Identity Online (FIDO)) and One Time
Passwords (OTP) [30]. However, they can also be used as a smart card providing
asymmetric cryptography, including elliptic curves. YubiKeys are manufactured by
Yubico Inc. The most recent token is the Series 5 [31], which currently costs 50 €. It is
one of the most popular consumer cryptographic tokens. Unfortunately, the YubiKey 5
does not expose the internal AES cipher, meaning tls-crypt-v2 can not be implemented
as the specifications demand. Besides asymmetric cryptography, YubiKey 5 supports two
challenge-response methods. One of them, HMAC-SHA1, can be repurposed as a key
derivation function. The root server key is stored securely on the token and a client-specific
server key is derived with some client information used as input for the challenge-response
procedure. The plugin then performs the cryptographic functions. Since SHA1 is not
based upon a mathematically complex problem but rather the scrambling of data, the
current best approach to breaking it would be using the Grover algorithm with a quantum
computer to reduce the effective security parameter (the key) from 160 to 80 Bits. HMAC-
SHA1 can therefore be considered quantum-safe and utilized as a key derivation function.
The National Institute of Standards and Technology (NIST) continues to approve the
HMAC-SHA1 as secure in its latest recommendation for key management [32]. The token
only supports a key length of 20 Bytes [33], which is less than the possible maximum of
64 Bytes, the internal block size of SHA1. Depending on the configuration of the plugin,
this limitation effectively reduces the security parameter from two independent 32 Byte
keys to one or two 20 Byte ones. Since YubiKeys are one of the most common and easily
accessible cryptographic tokens for consumers, it is nevertheless a good candidate to be
used as an HSM for tls-crypt-v2 for demonstration purposes.

Interacting with a YubiKey from a C/C++ program is challenging because there is no
dedicated YubiKey C library as a standalone project available. However, the yubikey-
personalization package for managing and interacting with the token is mostly written in
C and contains a C library ykcore. The library is utilized as the backend to the various
tools contained in the package and communicates with the token using the libusb library.
The ykcore library can be extracted from the Git repository and integrated into other
projects thanks to its BSD 2-Clause License. ykcore can also be found in other projects
supporting YubiKeys, such as KeepassXC [34].

14

4.4. PKCS#11
The Public-Key Cryptography Standard 11 (PKCS#11) is a cryptographic standard
specifying an API to interact with cryptographic tokens, such as performing cryptographic
operations or managing keys. The most recent version 3.0 was released in June 2020 [35].
The standard contains five parts, including the base and current mechanism specification.
The Organization for the Advancement of Structured Information Standards (OASIS),
responsible for PKCS#11, also provides generic C Header files. Any manufacturer wanting
to create a PKCS#11 library for their tokens can implement the provided interface.

The specification contains, among others, mechanisms for asymmetric and symmetric
ciphers, as well as digests and HMAC calculations. All currently supported mecha-
nisms are defined in PKCS #11 Cryptographic Token Interface Current Mechanisms
Specification Version 3.0 [36]. For symmetric cryptography, AES in different modes,
including the Counter mode, is available as well as HMAC-SHA-256. Similar to Java
Card, specified operations do not have to be implemented, making development more
difficult. The C_GetMechanismList() function lists all available mechanisms for a specific
device. Manufacturers have neglected symmetric cryptography since the tokens are most
commonly used for authentication and signing, resulting in a lack of support. There
appears to exist no affordable HSM with support for HMAC-SHA-256 and AES-256. The
negligence of symmetric ciphers is also mirrored in the support for it in PKCS#11 helper
libraries, providing a higher-level interface to interact with tokens.

The SoftHSM project provides a PKCS#11 library, which implements many of the
current mechanisms in software [37]. The program does not provide any security benefit
compared to the direct use of OpenSSL but helps to implement a program using the
interface. SoftHSM supports both AES-256-CTR and HMAC-SHA-256.

4.5. SmartCard HSM
The SmartCard HSM is a Hardware Security Module in the form of a smart card developed
by CardContact Systems GmbH [38]. The HSM is also available as a USB token and
MicroSD card. According to the manufacturer’s website, due to a lack of processing
power, it only supports AES for key derivation, but not for encryption. HMAC support
is not listed as a feature. OpenSC, a middleware providing a PKCS#11 library to
developers for various cryptographic tokens, supports the token. Unfortunately, the
integration is limited to only asymmetric cryptography. OpenSC does not provide access
to AES. For further information regarding supported mechanisms, see appendix B.
Besides the OpenSC integration, CardContact released its own lightweight PKCS#11
library sc-hsm-embedded intended for embedded systems. The library supports, apart
from PC/SC, also the smaller Card Terminal API. It has a reduced set of asymmetric
functionality. However, since version 2.1 it does support AES-CBC [39]. This feature was
added with the support of SmartCard HSM 4, letting one assume that previous revisions
of the card may not have exposed the AES capabilities. The product page may have not
been updated to reflect the change. For all available mechanisms, see appendix B. The
token does not support the import of secret keys using PKCS#11. The token’s PKCS#11

15

implementation also does not support the import of secret keys.
Another product, which uses a SmartCard HSM chip at its core, is the NitroKey HSM

2. The NitroKey uses a chip with firmware version 3.5. The product page explicitly
advertises the AES-CBC support [40]. HMAC generation is unsupported. Thus, some
key derivation is required to implement the functionality of tls-crypt-v2, making it not
that much different from a YubiKey. NitroKey claims support for internal and external
hashing, however, neither OpenSC nor sc-hsm-embedded offer hashing on the token. The
C_DigestKey() function described in the PKCS#11 specifications used for adding a stored
key to a hash calculation is not available. No HMAC calculations can be implemented
on the hardware. Only a single retailer, cardomatic.de [41], based in Germany, sells the
SmartCard HSM. It costs around 40 Euros, similar to the YubiKey. A card reader is
required, adding additional cost. At approximately 70 Euros, the USB token version is
significantly more expensive. The NitroKey HSM 2 currently costs 99 Euros [40].

The advantages of the SmartCard HSM compared to the YubiKey are the support
for symmetric key storage and ciphers. AES can be performed in hardware. Compared
to the one or two 160 Bit keys stored in the YubiKey, the SmartCard HSM can hold
two full 256-Bit keys. The speed of the current SmartCard HSM (hardware version:
24.13 and firmware version: 4.0) is decent. Encrypting a block of data takes around
14 ms, with each additional block around 1.2 ms. This is considerably faster than the
NitroKey HSM 2, which needs 93 ms to encrypt the first block and 17 ms for further
blocks. The SmartCard HSM only supports AES-CBC, meaning to implement AES-CTR,
each block needs to be encrypted individually. The high static cost of the operation can
lead to overall suboptimal performance. The performance tests were performed with
sc-hsm-embedded version 2.12.

5. Implementation

OpenVPN

tls_crypt.c

+ tls_crypt_v2_send_plugin_server_key()

+ tls_crypt_v2_plugin_wrap_client_key()

+ tls_crypt_v2_plugin_unwrap_client_key()

init.c

plugin.c

Plugin

openvpn_key_wrapping.c

+ plugin_context

+ openvpn_plugin_open_v3()

+ openvpn_plugin_close_v1()

+ openvpn_plugin_func_v3()

device_handler.c

+ device_context

Device

device-specific

library

openvpn-plugin.c

Figure 2: Overview of general implementation.

The source code for the modified OpenVPN version and the plugins can be downloaded
from the Git repository [42]. The project also contains a testing environment that allows

16

experimenting with the various plugins. No formal security analysis has been performed
with the OpenVPN patch or the individual plugins. It should not be used in a production
environment but for research and testing.

Figure 2 is an implementation schematic of a generic tls-crypt-v2 plugin. The [init.c]
file of OpenVPN issues the opening (loading) and closing (unloading) function calls for
all plugins. [tls_crypt.c] handles wrapping, unwrapping, and server key import. Each
plugin mainly consists of two parts. The openvpn_key_wrapping.c file is responsible for
OpenVPN and the high-level execution of operations. The other, device_handler.c,
communicates with the HSM using a device-specific library, executing the low(er)-level
tasks.

5.1. Plugin Hook
As explained in section 2.3, the tls-crypt-v2 mechanism consists of three operations: server
and client key generation, as well as unwrapping. The modifications only concern the
server. Clients do not need to use the modified OpenVPN version. Before implementing
the callback, the plugin interface in [18] has to be adapted by adding a new compile
constant to the already existing ones (see listing 3) identifying the plugin hook. The
change enables plugins to declare that they want to handle the wrapping mechanism.

define OPENVPN_PLUGIN_CLIENT_KEY_WRAPPING 16

Implementing a plugin hook is poorly documented. Therefore, the thesis discusses the
OpenVPN patch in greater detail than the other parts of the project.

Server Key Generation

A new tls-crypt-v2 server key is created with $ openvpn --genkey tls-crypt-v2-server
[key-file]. The key file is optional and defaults to stdout. Key generation is separate
from normal VPN operation and is handled in do_genkey() in [init.c]. The function then
proceeds to call tls_crypt_v2_write_server_key_file(), which itself hands over the key
generation to either OpenSSL or Mbed TLS. When a plugin is available, OpenVPN
generates a random key and sends it to the extension. The key can be additionally
written to a file and saved in a safe location for backup. The backup key can only work
if the HSM supports secret key import.

First, the do_genkey() function needs to decide whether a plugin is available to handle
the tls-crypt-v2 operation or not. Then the new tls_crypt_v2_send_plugin_server_key()
is called. This function creates a key structure containing a random cipher and HMAC key.
OpenVPN hands the key to the plugin via a command-line style list of type char** argv.
The key is encoded into its base64 representation to eliminate NULL bytes. A preceding
length advertisement of the raw key bytes could also have be used. Data exchange
with the plugin is possible with the struct argv and struct plugin_return data types
provided by [plugin.h]. OpenVPN has functions to encode base64 data.

For the key import, the plugin returns no data. Only the struct argv must therefor be
populated using argv_printf(). The function is based on printf() from the C standard

17

library. Like the original, it first generates a string based on the format and variables, but
then splits the resulting text by white space into an char **argv. To signal the plugin
what task needs to be performed, the first argument provided, is the type of work as string,
either: “import”, “wrap” or “unwrap”. For key import, the second and third arguments
are the AES and HMAC keys. The plugin call also requires the struct plugin_list,
containing a list of all available plugins, and the struct env_set with key-value pairs of
environmental variables set in OpenVPN.

After the plugin returns, depending on whether a file name is specified, the server key
is written to a file. The code to call the plugin is in listing 1.

Listing 1: Excerpt from tls_crypt_v2_send_plugin_server_key() in [tls_crypt.c]. Error
handling was removed for clarity.

openvpn_base64_encode (server_key .cipher ,
server_kt . cipher_length ,
& b64_aes_key);

openvpn_base64_encode (server_key .hmac ,
server_kt . hmac_length ,
& b64_hmac_key);

argv_printf (&av ,
"%s %s %s",
" import ",
b64_aes_key ,
b64_hmac_key);

plugin_call (plugins ,
OPENVPN_PLUGIN_CLIENT_KEY_WRAPPING ,
&av ,
NULL ,
es);

Client Key Unwrapping

The client key unwrapping is the core of the modification and is executed whenever a client
wants to establish a tunnel with the server or the server tests a newly generated client key.
OpenVPN currently implements it in tls_crypt_v2_unwrap_client_key() in [tls_crypt.c].
The original unwrap implementation does not always have access to the required struct
plugin_list, making modifications in a parent function in [mudp.c] necessary. The fix
includes setting pointers to the plugin and environmental lists in struct tls_options.
This structure is then available to the tls_crypt_v2_extract_client_key() function.
Which can hand them to the unwrapping function. For code details, see appendix C.

Plugin unwrapping is in tls_crypt_v2_plugin_unwrap_client_key(). The plugin call
is similar to the key generation procedure described in section 5.1. However, some
return data, the unwrapped client key and metadata, are expected. The struct
plugin_return contains a fixed length array of struct openvpn_plugin_string_list,
which is a linked list containing key-value pairs. Since a plugin call can execute multiple

18

plugins, each one gets a dedicated string list. The arguments provided to the plugin
include the “unwrap” instruction and the base64 encoded wrapped client key. The
tls_crypt_v2_plugin_unwrap_client_key() function uses a custom data structure, the
struct buffer, with an internal pointer to the last read data. The code for preparing
the plugin call is in listing 6.

Listing 2: Excerpt from tls_crypt_v2_plugin_unwrap_client_key() in [tls_crypt.c] con-
taining the handling of return data from a plugin

// Handle return
uint8_t plaintext_data [TLS_CRYPT_V2_MAX_WKC_LEN];
// [...]
struct plugin_return unwrapped_return ;
plugin_return_get_column (&pr ,

& unwrapped_return ,
" wrapping result ");

// [...]

for (int i = 0; i < unwrapped_return .n; ++i)
{

if (unwrapped_return .list[i] &&
unwrapped_return .list[i]->value)

{
char * b64_return = unwrapped_return .list[i]->value;
int b64_len = (int) strlen (b64_return);
int unwrapped_len = openvpn_base64_decode (b64_return ,

plaintext_data ,
b64_len);

int expected_key_len = sizeof (client_key ->keys);
// [...]
memcpy (& client_key ->keys ,

plaintext_data ,
expected_key_len);

if (! buf_write (metadata ,
plaintext_data + expected_key_len ,
unwrapped_len - expected_key_len))

{
CRYPT_ERROR (" metadata too large for supplied

buffer ");
}
ret = true;
break ;

}
}

After the plugin returns and the response is negative, the connection attempt is rejected.
With the current implementation, OpenVPN does not know the reason for the failure.
It could be a hardware problem like a disconnect of the token or a client-side problem,
i.e., a wrong WK c. The reason is only documented in the logs, making server-side error

19

detection difficult. A possible solution could be adding a failure code to the reply.
On a successful plugin execution, the return data needs to be managed. To

find a value with a specific key in the return, OpenVPN provides the function,
plugin_return_get_column(). The returned list has the same number of elements as
the input. If a struct openvpn_plugin_string_list did not contain the specified key, the
list pointer is set to NULL. Thus OpenVPN still needs to iterate through the whole
list until it finds a non-null element, which then contains the unwrapped client key plus
metadata. This procedure seems rather complicated but is done so the return data of
all the plugins called, can be stored in the same structure. After the proper return is
located and decoded, the fixed length key at the beginning of the data block is copied
into the client key structure with the remaining part moved into the metadata buffer.
The code for handling the return is in listing 2.

Client Key Generation

To add another client, a new tls-crypt-v2 client key has to be generated
for it with $ openvpn --tls-crypt-v2 <server_key> --genkey tls-crypt-v2-client
[key-file]. Creating a client key involves generating random data, Kc, and wrapping it
using the server key. For this, the server key has to be loaded. However, if a plugin is
available, this requirement is dropped since the plugin is responsible for the server key
management. The same is applied to the unwrapping operation. The whole process, i.e.,
generating keys, adding metadata, loading the server key, wrapping, and preparing the out-
put is managed by tls_crypt_v2_write_client_key_file(). The plugin list is inaccessible
from the function, requiring a signature change. Inside, only key loading and wrapping
have to be modified to accommodate the plugin’s capabilities. OpenVPN hands over the
wrapping to the plugin if a plugin is available and no server tls-crypt-v2 file is set. The
program performs the plugin-based wrapping in tls_crypt_v2_plugin_wrap_client_key().
Since the operation is similar to unwrapping, only containing slight variations concerning
error handling and input/output management, details are omitted.

5.2. Java Card
The integration of smart cards with Java Card consists of two parts. One is the applet
on the smart card itself. The other, the plugin, acts as a bridge between OpenVPN and
the card.

5.2.1. Applet

For this thesis, the NXP JCOP3 J3H145 is available. It uses the Java Card 3.0.4 platform.
The device does not support AES-256-CTR or HMAC. However, AES-256-ECB and
SHA-256 are available, thus the Counter mode and HMAC calculation can be efficiently
implemented on the card. As a build tool, the project works with ant and ant-javacard
[26]. To install and test the applet on the JCard, Global Platform Pro [27] is used. For
better organization, the project is split into four parts as shown in fig. 3.

20

WrapApplet

+ serverAESKey: AESKey

+ serverHMACKey: HMACKey

+ aesEngine: AES_CTR

+ hmacEngine: HMAC

+ dataBuffer: byte[1024]

+ WrapApplet (byte[], byte, byte): void

+ readIncomingDataIntoBuffer (APDU, short): short

+ insertKey (APDU): void

+ unwrapKey (APDU): void

+ wrapKey (APDU): void

HMACKey

+ key: byte[]

+ HMACKey(byte): void

<<interface>> HMACKey

+ setKey(byte[], short, short): void

+ getKey(byte[], short): byte

HMAC

+ keyBuffer: byte[]

+ HMAC(byte): void

+ init(HMACKey, byte): void

+ update(byte[], short, short): void

+ doFinal(byte[], short, short, byte[], short): short

AES_CTR

+ ivsequence: byte[1024]

+ AES_CTR(): void

<<abstract>> Cipher

+ init(Key, byte): void

+ init(Key, byte, byte[], short, short): void

+ update(byte[], short, short, byte[], short): short

+ doFinal(byte[], short, short, byte[], short): short

<<abstract>> Applet

+ abstract install (byte[], byte, byte): void

+ abstract process (APDU): void

+ register(): void

Figure 3: Overview of the Java Card Applet. Some methods were omitted for clarity.

• WrapApplet — The main class for processing and executing all APDUs received.

• AES_CTR — An implementation of the Counter mode using AES-ECB. The class
supports 128, 192, and 256-bit keys.

• HMAC — An implementation of HMAC. It can theoretically work with any digest.
However, it is currently only implemented for SHA1 and SHA-256.

• HMACKey — A simple class implementing the HMACKey interface.

WrapApplet WrapApplet is the applet’s main class. It extends the abstract Applet class,
which provides two abstract methods, public static void install() and public void
process(). Every Java Card applet must implement these.

The install() method is called when the applet is installed onto the card. WrapApplet
instantiates all objects later needed, including an AES and HMAC key, as well as an HMAC
and AES_CTR object. Another task is the allocation of a large chunk, one kibibyte, of RAM
to later store the APDU data. The maximum size of WK c is 1024 Bytes [12]. Finally,
it calls register(), provided by the Applet class, to register itself with the Java Card
Runtime Environment, enabling a user to select it. Example APDUs are at appendix C.

21

The JCRE calls the process() method of the applet when it is selected, and the runtime
has received an APDU. After verifying the APDU for basic validity, depending on the
instruction byte, the program executes a different method. It receives an APDU object
as an argument, containing all data associated with the received command. The object
furthermore provides methods to handle the transmission. Wrapped client keys are more
than 255 Bytes, so extended APDUs as described in section 4.2 are used. Since the data
buffer of the APDU has a limited capacity, the applet has to repeatedly copy the current
data in the APDU buffer to the pre-allocated RAM array and then receive the next chunk
until no data is left.

The server key import requires two separate APDUs each containing a single key. P1
determines the key type. After reading the data from the APDU, either the HMAC or AES
key object is set to the received key.

Here the thesis will focus on the unwrapping. After the WK c is received, offsets for the
tag, key, and len in the RAM buffer are calculated. The method then decrypts the key
using the AES_CTR engine. With the decrypted key available, the tag can be computed
using the HMAC object. Afterward, the tag is checked, and the resulting Kc is sent back.
Should the check fail, an exception is thrown. Transmitting return data is accomplished
with the APDU object. The direction needs to be set to outgoing, which allows sending
data back to the host. Depending on the amount of transmitted data, different methods
are available.

HMACKey HMACKey implements the key object close to the specifications at Oracle [46]. A
HMACKey depends on the digest used. For example, an HMAC-SHA1 key has a different
maximum size compared to an HMAC-SHA-256 key. The internal block size determines
the upper limit. Whenever a key larger than the allowed limit is set, the HMACKey hashes
it with the digest specified at the object initialization. However, it should not happen
with the keys of tls-crypt-v2, since they are 32 Bytes long and within bounds.

HMAC HMAC performs HMAC calculations as defined in [47]. Java Card does not support
HMAC. The class follows the design principle of the MessageDigest class with a con-
structor, init(), update(), and doFinal() methods. During its construction, the HMAC
object creates a new digest object. Like the HMACKey, it supports SHA1 and SHA-256.
The init() method sets the key and already adds the inner padded key to the message
digest engine. The update() method adds more data to the inner digest calculation. The
doFinal() method first finalizes the inner hash and then directly performs the outer hash
using the already prepared outer padded key. After the operation is finished, the HMAC
object must be reinitialized with the AES key for the next cycle. The code could also be
modified to remember the inner and outer keys, saving some CPU time, but increasing
the memory footprint.

AES_CTR AES_CTR implements the Counter mode as described by Dworkin [48] for AES
by utilizing the available ECB mode. It is an extension of the javacardx.crypto.Cipher
class. AES_CTR only supports one-shot operations. tls-crypt-v2 does not need the update()

22

method, and omitting it simplifies the implementation. The init() method sets the key
for the AES-ECB instance. The doFinal() method is the core of this class, performing
the encryption. The Counter mode has the convenient property that the procedure for the
decryption is identical to the encryption. The in-place capabilities of the used AES-ECB
cipher object can be kept. With the current implementation, the nonce (number used
once) for every block is calculated and concatenated into a single array. The list can then
be encrypted in a single operation. By avoiding block-by-block encryption, performance
is drastically improved. The disadvantage of this approach is that a second same-sized
block of memory as the data has to be available. This requirement can be problematic
on a memory-constrained device such as a smart card. However, the card available for
this project has enough memory for 1024 Bytes of WK c and 1024 Bytes for the nonce
sequence.

5.2.2. Plugin

The Smart Card Key Wrapping plugin is the bridge between OpenVPN and the JCard.
The project is split into two files. openvpn_smartcard_key_wrapping.c is responsible for
communicating, i.e., receiving and sending data to OpenVPN, as well as performing
high-level tasks like key unwrapping. smart_card_handler.c handles the smart card with
APDUs utilizing the pcsclite library [29]. The project is written in C and built with
CMake. The project repository contains a small helper app, ImportKey, for importing
an existing key file onto the JCard for a seamless transition.

openvpn_smartcard_key_wrapping.c

During openvpn_plugin_open_v3(), a connection with the JCard is established. The card
connection context can later be used for communicating with the smart card. Furthermore,
the applet is selected during plugin load and only unselected at unloading. If an error
occurs while the plugin initializes, the OpenVPN start-up is aborted.

OpenVPN calls the openvpn_plugin_func_v3() during the runtime of the VPN. Depend-
ing on the type of action desired, the function then either calls smartcard_import_key()
to transmit the keys to the JCard or smartcard_process_key() for wrapping and unwrap-
ping. The code for the two operations is nearly identical and therefore consolidated into
a single function. To (un)wrap a key, the function first creates a new APDU, including
the operation-dependent return length. The plugin then sends the APDU to the smart
card and checks the result. The response is valid if the status bytes are 0x90 and 0x00. If
the check passes, the return data is base64 encoded and copied into the return struct.
Otherwise, if the library has returned no result because it enCountered a problem, the
plugin tries to reconnect with the card and resend the APDU.

The smartcard_import_key() function transmits the two server keys in separate APDUs
to the JCard. The plugin expects no return data. The applet does not require a passcode
to overwrite the keys, meaning a malicious actor with access to the card could delete
the server key. Therefore, a backup of the server key should be stored in a secure place.
Protection using a PIN to prevent tampering remains future work.

23

smart_card_handler.c

The file handles the interaction with the smart card. connectToCard() establishes a
connection with the JCard. To interact with a card reader and smart card, the plugin
creates a pcsclite card context. This SCARDCONTEXT is stored in a sub-structure, the struct
CardConnectionContext, of the plugin context. It is used to retrieve a list of available
readers. The plugin assumes only one reader is connected, so the first entry in the list is
taken to connect with the card already inserted into the reader. The resulting SCARDHANDLE
and connection protocol, either T0 or T1, are saved to the struct CardConnectionContext.

The selectApp() and unselectApp() functions use APDUs defined by [49] with a hard-
coded app ID specified in the applet project to select and unselect the program on the
smart card. sendAPDU() is a simple function, only sending an APDU to the smart card.
The APDU and response buffers are provided to the function.

5.3. YubiKey
The YubiKey plugin uses YubiKey’s HMAC-SHA1 capabilities to derive client-specific
server keys. The device does not provide or expose any AES or HMAC-SHA-
256 functionality. Similar to the JCard plugin, the project is split into two parts:
openvpn_yubikey_key_management.c and yubikey_handler.c. The first is responsible for
implementing the different procedures including the cipher and authentication as well
as data exchange with OpenVPN and the latter handles the communication with the
YubiKey. For cryptographic operations, OpenSSL is used. To communicate with the
YubiKey, the plugin utilizes the ykcore library and some other source files contained in
the YubiKey Personalization project [50].

The idea of this implementation, as described in section 4.3 and fig. 4, is to have a
root server key on the device and use client-specific information to derive server keys,
which can then be exported from the YubiKey and do not compromise other server keys.
A server breach could only compromise the server keys of clients which connect during
the attack window. Thus, no more harm is done compared to other solutions, since an
attacker will always have access to actively used client keys. Two keys for encryption
and authentication have to be derived. The client-server AES key Kec is generated with
the complete 32-byte-long tag of WK c, T and the root server key Ks. The tag is either
calculable or supplied before the encryption is performed. If the client were to supply a
wrong tag, a wrong key would be derived, ultimately leading to a failed tag check. To
derive the client-server HMAC key Kac the first 32 bytes of Kc and the Ks are used.
The client key is either available during wrapping or can be first decrypted during the
unwrapping of a WK c.

Kec = HMAC-SHA1(Ks, T)
Kac = HMAC-SHA1(Ks, Kc[0..32])

Two key derivations are required because, with a single derivation, either the tag or Kc
would need to be always available during the start of both key wrapping and unwrapping.
However, this is not the case since the two operations are performed in reverse.

24

Random
Client Key

HMAC-
SHA1

Client-specific
HMAC Key

HMAC-
SHA-256 [0:20]

[0:16]

Tag

Root AES Key HMAC-
SHA1

Client-specific
AES Key

Metadata AES-256-
CTR

Wrapped
Client Key

Root HMAC
Key

Yu
bi

K
ey

Yu
bi

K
ey

 P
lu

gi
n

Wrapping

Yu
bi

K
ey

Root AES Key HMAC-
SHA1

Client-specific
AES Key

Root HMAC
Key

HMAC-
SHA1

Client-specific
HMAC Key

Yu
bi

K
ey

 P
lu

gi
n Wrapped

Client Key
IV

[0:16]
Tag

AES-256-
CTR

Client Key ||
Metadata

HMAC-
SHA-256

Tag
(for verification)Unwrapping

[0:20]

[0:20]

[0:20]

Figure 4: Overview of YubiKey TLS Crypt V2 implementation. The length component
is omitted for improved clarity.

Instead of deriving Kac and then using it for HMAC-SHA-256, the output of the
HMAC-SHA1 challenge could be used as the tag (T = HMAC-SHA-256 1(Ks, Kc[0..32])),
since applying the HMAC-SHA-256 does not significantly increase the security parameter
of the implementation. The cipher can not so easily be replaced with a pure key
derivation approach, because the metadata within the wrapped key should be encrypted.
For improved security, both key slots on the YubiKey could theoretically be chained
together to derive either a client-specific HMAC or AES key. To get two different purpose
keys, applying individual strings like "Authentication" and "Encryption" with an XOR to

25

the key derivation input could be used.

openvpn_yubikey_key_management.c

openvpn_plugin_open_v3() During load, the plugin establishes a connection with the
YubiKey. The extension allows some customization through two arguments. Specifically,
the slot and its access code. A YubiKey has two slots, with the second one being usually
used for challenge-response procedures. In the configuration file, either slot one or two
can be chosen, with an option to use both slots at the same time for separate root keys
for cipher and authentication operations. The slots can be protected with an access
code. The protection requires a passcode for modifying the configuration. With an
access code, an adversary can not delete the root server key. If no backup was made,
a loss of the root key would require the reissuing of all client keys. The code is only
needed for generating the root key and should not be included in the regular OpenVPN
configuration. The plugin indicates support for OPENVPN_PLUGIN_CLIENT_KEY_WRAPPING
but also OPENVPN_PLUGIN_UP.

The ykcore library used by the plugin utilizes libusb in the background to communicate
with the YubiKey. This library requires elevated privileges or access to the YubiKey
device node via an udev rule. See [51]. The second option is advisable to follow the
principle of least privilege. OpenVPN is usually launched as a root process to initialize
its network interface. This circumstance allows libusb to work. However, OpenVPN can
"down root", i.e., drop its privileges, after setting up the network. The plugin would
lose access to the YubiKey device. This loss of permissions is a common problem for
plugins and can be solved by spawning a background process before down root, allowing
the plugin to retain the ability to talk with the token. The plugin performs a privilege
separation during OPENVPN_PLUGIN_UP. The callback is reached early during OpenVPN
start-up while OpenVPN still has root access. It is not reached during key generation.
For these kinds of tasks, OpenVPN is usually started as a user process, which typically
has access to all USB devices. The plugin also verifies that OpenVPN was compiled with
OpenSSL since it will need the library as the crypto backend.

OPENVPN_PLUGIN_UP When OpenVPN reaches this callback, the plugin sets up the back-
ground process to retain elevated permissions. For bidirectional communication, it creates
two pipes. After forking the main OpenVPN process, the parent stores the pipe file
descriptors in the persistent plugin context and waits for a response from the background
process. OpenVPN can become a daemon, which requires all child processes to follow
along. The child, after being spawned, checks if that is desired and, if so, daemonizes.
Afterward, it connects with the YubiKey. Then the background process writes a single
success byte into its sending pipe. After reading the byte, the plugin knows the back-
ground process is ready and returns control to OpenVPN. The child now waits for a
slot and fixed-length challenge from its receiving pipe. The use of fixed-length messages
simplifies the exchange. If the background process should fail its read() command, it
assumes the plugin is about to close, and exits.

26

Key Import The server key generation does not use the background process and has
to first connect with the YubiKey. The same applies to the wrapping for client key
generation. Both operations do not trigger the OPENVPN_PLUGIN_UP callback, which means
no background process is available. yubikey_handler.c handles the import.

Key (Un)Wrapping After the usual base64 decoding and some verification, the li-
brary performs the tag and cipher operations. Both functions calculate_cipher() and
calculate_tag() consist of two elements. In the first part, the client-specific key, Kec
or Kac, is derived with the challenge-response procedure of the YubiKey using some
client information as described in section 5.3. The second part consists of the cipher or
authentication function with OpenSSL.

The entry function for the challenge is do_challenge_response(). Depending on the
availability of the background process, an approach is chosen. For a local challenge, the
challenge_response() function in yubikey_handler.c is called with the challenge text
as an argument. For a background challenge, the plugin uses the pipe to first send the
slot and then the fixed-length text, so the tag, or the first part of the client key, as
raw bytes to the background process. The challenge needs to be 32 Bytes long since
the background process expects this amount of data. After receiving the challenge, it
calls challenge_response(). If the function should fail, the plugin makes a reconnection
attempt with the YubiKey. It should be able to recover from the YubiKey being removed
and reinserted. After receiving the fixed-length response from the YubiKey, the process
sends it back to the parent process, which can then use the key to perform the crypto
operation.

For AES-256-CTR, the EVP API of OpenSSL is used. The challenge response is 20
Bytes long and needs to be expanded to a 32-Byte-long AES key. The plugin pads
the key with zero bytes. Adding password-hashing would improve resilience against an
attacker with only knowledge of a client key, but HMAC-SHA1 and AES can be considered
secure enough to justify not spending the additional compute cost. For authentication,
OpenSSL’s HMAC() function is used. The CRYPTO_ECHECK() macro is utilized for error
handling. If a check does not pass, an error message is printed and the program jumps
to a label for the cleanup, such as securely deleting the client key.

yubikey_handler.c

The actual challenge-response procedure in the challenge_response() function is
straightforward and mostly handled by the ykcore library. This file is not con-
cerned with the background process mechanisms and just provides its functionality
to openvpn_yubikey_key_management.c. Connecting with a YubiKey, and creating a new
context is managed by ykcore. Only setting up a new slot is more involved. The extension
imports the server key in import_server_key(). For this, a new YubiKey configuration is
created and then written to the token. The configuration contains the slot and key as well
as if desired an access code. With ykpersonalize, the command would be $ ykpersonalize
[-c<curr_acc_code>] -<slot> -ochal-resp -ochal-hmac -a<server_key>. For the server
key, the plugin uses the first 20 Bytes of the AES key generated by OpenVPN. If both

27

slots are used, the AES and HMAC key is used. When an access code should be used,
it has to be already set for the slot. This can be done with ykpersonalize <-1|-2>
-oaccess=[new_acc_code]. To remove the current slot configuration, including the access
code, the following command can be used $ ykpersonalize -c<curr_acc_code> <-1|-2>
-z.

5.4. PKCS#11

"unwrap"

create_aes_key()

create_hmac_key()

pkcs11_wrap()

(*authentication function)()

(*cipher_function)()

perform_sha_256_hmac()

perform_hmac_key_derivation()

perform_aes_256_ctr()

perform_aes_with_ecb()

perform_aes()

perform_aes_key_derivation()

pkcs11_unwrap()

openvpn_pkcs11_key_wrapping.c

openvpn_plugin_func_v3()

pkcs11_generate_server_key()"import"

"wrap"

pkcs11_handler.cshared.h

 (*authentication_key_generation)()

(*cipher_key_generation)()

Figure 5: Overview of PKCS#11 plugin. Details are omitted for improved clarity. Execu-
tion is top to bottom. If multiple edges exit a node, only one path is followed.

The PKCS#11 plugin implements tls-crypt-v2 with tokens supporting PKCS#11. As
discussed in section 4.4, the standard gives no guarantees about available mechanisms.
This circumstance makes implementing a universal PKCS#11 plugin difficult. One
could implement tls-crypt-v2 using only AES-CTR and SHA-256-HMAC, but in reality,
almost no token supports these mechanisms, making the plugin useless. For example,
the SmartCard-HSM only supports AES-CBC and no HMAC generation. For the

28

implementation, multiple mechanisms defined by the specification were considered which
can be used to implement the functionality of tls-crypt-v2. For encryption, the following
are suitable.

• AES-256-CTR — The token supports CKM_AES_CTR with 256-bit keys, allowing the
plugin to offload the cipher operation to the token completely.

• AES-256 — The token supports a different AES encryption mode with 256-bit keys.
The available mechanism can then be used to implement AES-256-CTR with the
token utilized for the actual cipher operation.

• (H)MAC or Digest with DigestKey — If AES is not available, a key derivation
scheme, similar to the one used for the YubiKey, can be utilized.

For authentication, there are three different variations available.

• HMAC-SHA-256 — The token supports SHA-256-HMAC. Tag calculation can be
solely handled by the device.

• SHA-256 with DigestKey — This token supports the SHA-256 digest and the
DigestKey() functionality allowing internal keys to be hashed. This would enable
the implementation of HMAC-SHA-256. However, it is uncommon and will therefore
not be implemented.

• AES-256 or other (H)MAC — if the methods above are not available, either a
symmetric cipher or a different MAC could be used for a client-server key derivation
scheme like HMAC-SHA1 or even AES-CMAC. For encryption, 256-bit keys are
desired for future-proofing.

More mechanisms can be repurposed, but are out of the scope of this thesis. Considering
the options, the implementation is already complex enough. Similar to the other plugins,
the project is split into two parts, openvpn_pkcs11_key_wrapping.c, and pkcs11_handler.c,
with a third part containing some shared functions, structs, and variables. A broad
overview of the project is given in fig. 5

Plugin Load During the opening of the plugin, a connection with the PKCS#11 Token
is established and its capabilities determined. With PKCS#11, an application does not
communicate with the token directly but through a PKCS#11 library, which can be
either provided by the manufacturer like sc-hsm-embedded [39] for the SmartCard-HSM
or developed independently with support for various tokens. An example is OpenSC
[52]. The library is dynamically loaded during the start-up phase. The standard specifies
C_GetFunctionList() to get a list of pointers to all functions. The plugin saves the list
in its context. To perform a key operation, it is required to log in to the HSM with
a user pin, which can be set in the OpenVPN configuration plugin arguments. This
approach leaves the PIN vulnerable. An attacker would be able to read the PIN from the
configuration file and use it to delete the keys saved on the token. To prevent this, the key
could be set to non-destroyable and non-modifiable, but this would disable a legitimate

29

user from deleting the object. Only a token reset could delete the key. Therefore, a
different option was chosen where the user PIN is queried via the command line when the
plugin is loaded, removing the need to store the PIN in the configuration file. Another
approach for getting the PIN could be implemented using an environmental variable
containing the secret. PKCS#11 does not seem to have the capability of protecting an
object from modification using a passcode while still enabling read access without it.

The last step of the initialization queries the capabilities of the token. Depending on
them, the extension selects a cipher and authentication function or rejects the device.
It saves a pointer to the chosen ones in the plugin context as int (*cipher_function)()
and int (*authentication_function)(). The capabilities are printed to stdout. With
this technique, the cipher and authentication operation is transparent and abstracts the
used mechanism away from the wrapping functions. The same approach is also utilized
for key generation since, depending on whether a key derivation is used, a different type
of key has to be created. The plugin does not implement privilege separation, which
could be problematic for some PKCS#11 libraries.

Server Key Generation For server key generation, the plugin either loads the provided
server keys onto the card or generates them on-device. Not all PKCS#11 tokens,
including the SmartCard HSM [53], support the import of secret keys. This circumstance
is problematic because the key returned by OpenVPN to the user is not the one on the
token. If the token becomes inaccessible, a new server key and therefore new client keys
would need to be issued. It is highly advisable to not use any tokens not supporting
secret key import. The token identifies keys by a label, and old keys are deleted before
new ones are generated.

Key (Un)Wrapping The main functions for key wrapping and unwrapping are minimal-
istic and similar to the YubiKey plugin. Both are provided with pointers to a cipher and
authentication function. The actual operations depend on the capabilities of the token
and are performed in pkcs11_handler.c. For encryption, the following four functions are
available:

• perform_aes_256_ctr() — The function uses the AES-CTR PKCS#11 mechanism to
perform the AES CTR encryption

• perform_aes() — This function encrypts the nonce for every block of data separately
using an available AES mode. As previously discussed in the thesis, block-by-block
encryption is suboptimal for performance, because the static cost associated with
the operation can stack up when separately encrypting 32 or more blocks of data.

• perform_aes_with_ecb() — The function is similar, but an improvement to
perform_aes(). The performance of the AES function can be significantly im-
proved when the ECB mode is available. ECB allows the plugin to encrypt all
nonces of the Counter Mode with one operation, incurring the static cost only once
and not multiple times.

30

• perform_aes_key_derivation() — This function utilizes the HMAC-SHA-256 ca-
pabilities of the token for derivation of Kec. The extension then uses the key
to perform AES-256-CTR in the plugin with OpenSSL. The function could be
extended with support for other (H)MACs.

For authentication, only two functions are available. The first perform_sha_256_hmac()
uses the SHA-256-HMAC mechanism of PKCS#11 to calculate the tag. The other
perform_hmac_key_derivation() calculates the HMAC in OpenSSL with Kac as key.
Kac is derived with AES and a symmetric root key stored on the token.

6. Performance
6.1. Methods
The analysis of the plugins includes the duration of an unwrap procedure in total and
the cipher and authentication operation on the token. It is expected that the time for
authentication plus encryption should be close to the overall duration, with the plugin
only making up a small part. The performance of the server and client key generation will
not be measured, because these operations are rarely executed and not time critical. For
benchmarking, a small C++ project is used which loads a plugin and then executes it. For
the YubiKey plugin, it will also trigger a PLUGIN_UP callback allowing the plugin to create
a background process. The benchmarking tool provides a custom plugin_vlog() function
and includes the base64.c file from OpenVPN for encoding and decoding the keys. To
measure the time within the plugin for cipher and authentication, the POSIX function
clock_gettime() with CLOCK_MONOTONIC is utilized. This clock is counting the time from
an unspecified point in the past. For Linux, this is from the time of boot. The clock is
guaranteed to never go backward and is not affected by jumps in the system time [54]. The
clock source on the benchmarking computer used for CLOCK_MONOTONIC has a frequency of
3998.839 MHz and thus a period of 0.2501 ns. To measure the plugin execution duration
within the benchmarking tool, CPP’s std::chrono::steady_clock is employed. The tool
is non-destructive, and a base64 encoded WK c has to be set. A test run consists of
dynamically loading the plugin library, calling the openvpn_plugin_open_v3() function
and for YubiKey openvpn_plugin_func_v3() with PLUGIN_UP as callback type. If the set-up
is successful, the pre-set WK c is unwrapped 100 times, with a one-second sleep in between
each execution to try to prevent cache speed-ups on the host computer. During each
execution, the plugin measures the cipher and authentication duration and reports it to
the benchmarking tool with plugin_vlog().

The Java Card Plugin is tested with two JCards the NXP JCOP3 J3H145 and the
NXP JCOP4 J3R180 [55]. The first was available during the whole thesis project, while
the JCOP4 was only on-hand during the final stages of the writing process. The cards
are connected to the reader wirelessly via ISO 14433. The JCOP3 is tested with both
the memory-optimized solution, where the nonce is encrypted block-by-block, and with
the current speed-optimized solution, which requires twice the memory, but encrypts
the nonce sequence with a single encryption operation. The JCOP4 card is tested

31

with the current Counter mode implementation and the available inbuilt AES-CTR
implementation. While Java Card has introduced support for time measurements in
version 3.1, the JCards available do not support this release. To measure the time for
cipher and authentication operations on the smart cards, the benchmark was run three
times: once without any cryptographic functions performed, then with only the AES
engine or HMAC engine enabled. The base measurement enabled the determination of
the approximate times for AES and HMAC.

The SmartCard-HSM (SCH) will be measured using the PKCS#11 plugin with the
available AES-CBC and HMAC key derivation. Since the performance expected per-
formance is suboptimal, another method was added for informative purposes. The new
method utilized the AES on the card, not for encryption, but for the key derivation
of both a Kec and Kac and performs the cryptographic operations in software. Two
YubiKeys, the NEO and the 5C NFC, will be measured. The SoftHSM is not included,
because it would not be used in an actual deployment, since it does not provide any
additional security compared to just using the regular tls-crypt-v2 provided by OpenVPN.

6.2. Results
The results are plotted in fig. 6. Values have been rounded in this section. None of the
tokens performed particularly well compared to the existing implementation in OpenVPN,
taking from around 2’700 to 37’000 times as long. Even with the fastest device, the
YubiKey 5C NFC, performing an unwrapping within 27 ms, only 37 operations can be
performed per second or 2200 per minute allowing for 1100 connections per minute. The
YubiKey NEO performs notably worse, taking three times as long as the 5C, with 81 ms
on average to unwrap a key.

One of the slowest tokens is the JCOP3 JCard. When the applet encrypts each nonce
separately, an operation takes 373 ms. Even with the single encryption optimization, the
token still needs 201 ms. The JCOP3 JCard can thus only authenticate 150 clients per
minute. Depending on the number of clients and the time-locality of their logins, this
could already lead to longer connection times. However, for a small to medium-sized
institution, this may work. For example, the HU-Berlin only has an average daily peak of
150 OpenVPN and 600 total sessions. The newer JCOP4 JCard performs notably better.
With the custom AES-CTR implementation, unwrapping takes 93 ms, while the inbuilt
AES Counter mode completes an operation within an average of 58 ms. The actual cipher
only takes 8 ms, leaving the supporting code around it and the authentication (21 ms)
with 29 ms as the largest contributor to the overall runtime. The "Other" category is the
total time minus cipher and authentication. The Java Card has a significantly higher
"Other" time since the measurements for the cryptographic operation are taken on the
card instead of from within the plugin. With other plugins, the cryptographic device is a
black box, thus the cipher and authentication times include the whole call to the HSM.

32

JCOP3 JCOP3 Improv. JCOP4 JCOP4 Native CTR
0

50

100

150

200

250

300

350

400
Ti

m
e

in
 m

s
Cipher
Authentication
Other

YubiKey Neo YubiKey 5C NFC SCH SCH AES Key Deriv.
0

50

100

150

200

250

300

350

400

Ti
m

e
in

 m
s

Figure 6: Mean unwrapping duration for each plugin, including 90% confidence interval.
The YubiKeys have a reduced security parameter of 160 Bit compared to the
regular 256 Bit. Both the YubiKeys and SCH do not conform to the tls-crypt-v2
specifications and can therefore not be used as drop-in replacements for existing
setups. Data source at table 2

33

The SmartCard HSM has a decent encryption performance with a 12 ms static cost
plus 1.2 ms to encrypt a block of data: 1.2x + 12.2. Unfortunately, since the token only
supports the CBC mode, the WK c needs to be decrypted block-by-block, leading to 254
ms to unwrap a client key. If the SmartCard HSM supported AES-ECB, the decryption
could be implemented with one operation taking around 21 ms, if the performance were
to be comparable with the CBC mode. This fast speed is displayed when both the HMAC
and AES server keys are derived using AES. With this mode, unwrapping only takes 30
ms. While the Nitrokey HSM 2 was benchmarked, it is not included in the plot. The
token’s symmetric capabilities are significantly worse with high static and high per-block
encryption costs, resulting in a mean duration of 1.55 seconds for an operation.

6.3. Discussion
It is important to highlight, that even though the YubiKey 5C NFC is the fastest, it does
provide a smaller security parameter of only 160 Bits and is thus not directly comparable
to the JCards. The same applies to the YubiKey Neo. Both the YubiKey and the
SCH are not compatible with a current OpenVPN setup, since they do not conform to
the specifications of tls-crypt-v2. The results seem to indicate that the best HSM for
implementing tls-crypt-v2 would be a performant JCard. Thanks to its ability to import
existing server keys and compliance with the tls-crypt-v2 specification, it allows it to
fit seamlessly into an existing set-up. However, a PKCS#11 token with AES-CTR or
AES-ECB, HMAC-SHA-256 and support for secret key import is also a viable option,
which even has the advantage of being easier to set up.

The results paint a bleak picture for any DOS protection provided by OpenVPN. Even
though the regular OpenVPN implementation does not provide any additional DOS
protection compared to an unprotected control channel, using a hardware token to handle
tls-crypt-v2 reduces the DOS resilience to (almost) nothing. The plugins create a large
attack surface for adversaries to shut down an OpenVPN instance. Since OpenVPN is a
single-threaded application, data traffic can not be processed while it authenticates a
client. This problem is mitigated with the latest OpenVPN release. Version 2.6 introduced
the Data Channel Offload (DCO), which is a kernel module employed for handling data
channel packages [56]. With DCO, only control channel traffic has to be processed by
the user space OpenVPN application. Thus, a DOS attack should have a reduced impact
against already connected clients, only affecting new connections.

To improve performance, parallelization may help. An implementation could consist
of a dispatcher with a cache. When a new unwrap request is received by it, the cache
is checked. If a miss occurs, the request is added to the work queue and the plugin
response is deferred. OpenVPN can continue handling other requests and check back after
a second, while multiple HSMs asynchronously work through the queue. This approach
helps to reduce the cost of the double unwrap. It could be implemented using a meta
plugin, which forks a new plugin instance for each HSM.

Otherwise, performance on a smart card or affordable HSM is simply limited. Much
faster, business-grade solutions exist for smart cards and HSMs, such as the YubiKey
HSM 2, able to create an HMAC-SHA-256 within 4 ms [57] or the Thales Luna PCIe

34

HSM, which performs up to 20’000 AES-GCM transactions per second [58]. However,
at a price of several hundred to thousands of Euros, they are not a viable option for
small-scale or private usage but could be interesting for large organizations.

7. Conclusion
This bachelor thesis explored ways of implementing the functionality of OpenVPN’s
control channel protection tls-crypt-v2 with different hardware tokens. To add the
capability of using hardware tokens for tls-crypt-v2, OpenVPN’s plugin mechanism was
extended to support the mechanism.

For hardware tokens, three different approaches were showcased. The first employed
the Java Card technology. A custom applet was created to implement tls-crypt-v2 on
a JCard, enabling it to be used as a drop-in replacement for current setups. Testing
showed large performance varieties between different JCards highlighting the importance
of choosing an appropriately performant card for one’s use case.

While YubiKey’s wide availability, fast speed, and key protection make it a promising
device, the lack of AES and the alternative key derivation scheme, means the imple-
mentation is incompatible with regular tls-crypt-v2. Furthermore, the reduced security
parameter of 160-bit discourages its use.

The PKCS#11 plugin combines the ease of setup of the YubiKey with the wide range
of supported tokens. The plugin enables a variety of mechanisms to perform tls-crypt-v2.
Problematic is that not all tokens support key import, including the PKCS#11 libraries
of the SmartCard HSM. If the key has to be generated on-device, backups are limited or
impossible.

The biggest shortcoming of using an HSM to improve the security of the control channel
protection of OpenVPN is the drastically reduced performance and thus increase in DOS
attack surface for adversaries for connection establishment. Due to the single-threaded
nature of the VPN, lengthy unwrapping can impact both the control and data traffic
of all clients. This problem can be somewhat remedied by using the new Data Channel
Offload introduced in OpenVPN 2.6.

Overall, HSMs can be considered a viable solution in improving the security of the
tls-crypt-v2 mechanism as shown in this paper, but it is important to be aware of the
reduced performance and the cost of a powerful enough and feature-rich HSM.

35

A. Plugin Interface Specification
Available Plugin Hooks

Listing 3: Available callbacks as of OpenVPN release/2.6

define OPENVPN_PLUGIN_UP 0
define OPENVPN_PLUGIN_DOWN 1
define OPENVPN_PLUGIN_ROUTE_UP 2
define OPENVPN_PLUGIN_IPCHANGE 3
define OPENVPN_PLUGIN_TLS_VERIFY 4
define OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY 5
define OPENVPN_PLUGIN_CLIENT_CONNECT 6
define OPENVPN_PLUGIN_CLIENT_DISCONNECT 7
define OPENVPN_PLUGIN_LEARN_ADDRESS 8
define OPENVPN_PLUGIN_CLIENT_CONNECT_V2 9
define OPENVPN_PLUGIN_TLS_FINAL 10
/*# define OPENVPN_PLUGIN_ENABLE_PF 11 * REMOVED

FEATURE * */
define OPENVPN_PLUGIN_ROUTE_PREDOWN 12
define OPENVPN_PLUGIN_CLIENT_CONNECT_DEFER 13
define OPENVPN_PLUGIN_CLIENT_CONNECT_DEFER_V2 14
define OPENVPN_PLUGIN_CLIENT_CRRESPONSE 15
define OPENVPN_PLUGIN_N 16

36

B. Supported Mechanisms
SmartCard HSM with OpenSC
Available Mechanisms with OpenSC (version 0.23.0-1) and a SmartCard HSM (hardware
version: 24.13 and firmware version: 4.0)

[~] $ pkcs11 -tool --module /usr/lib/ pkcs11 /opensc - pkcs11 .so -M
Using slot 0 with a present token (0x0)
Supported mechanisms :

SHA -1, digest
SHA224 , digest
SHA256 , digest
SHA384 , digest
SHA512 , digest
MD5 , digest
RIPEMD160 , digest
GOSTR3411 , digest
ECDSA , keySize ={192 ,521} , hw , sign , verify , EC F_P , EC

parameters , EC OID , EC uncompressed
ECDSA -SHA384 , keySize ={192 ,521} , sign , verify
ECDSA -SHA512 , keySize ={192 ,521} , sign , verify
ECDSA -SHA1 , keySize ={192 ,521} , hw , sign , verify , EC F_P , EC

parameters , EC OID , EC uncompressed
ECDSA -SHA224 , keySize ={192 ,521} , hw , sign , verify , EC F_P , EC

parameters , EC OID , EC uncompressed
ECDSA -SHA256 , keySize ={192 ,521} , hw , sign , verify , EC F_P , EC

parameters , EC OID , EC uncompressed
ECDH1 -COFACTOR -DERIVE , keySize ={192 ,521} , hw , derive , EC F_P ,

EC parameters , EC OID , EC uncompressed
ECDH1 -DERIVE , keySize ={192 ,521} , hw , derive , EC F_P , EC

parameters , EC OID , EC uncompressed
ECDSA -KEY -PAIR -GEN , keySize ={192 ,521} , hw , generate_key_pair ,

EC F_P , EC parameters , EC OID , EC uncompressed
RSA -X -509 , keySize ={1024 ,4096} , hw , decrypt , sign , verify
RSA -PKCS , keySize ={1024 ,4096} , hw , decrypt , sign , verify
SHA1 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
SHA224 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
SHA256 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
SHA384 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
SHA512 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
MD5 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
RIPEMD160 -RSA -PKCS , keySize ={1024 ,4096} , sign , verify
RSA -PKCS -PSS , keySize ={1024 ,4096} , hw , sign , verify
SHA1 -RSA -PKCS -PSS , keySize ={1024 ,4096} , sign , verify
SHA224 -RSA -PKCS -PSS , keySize ={1024 ,4096} , sign , verify
SHA256 -RSA -PKCS -PSS , keySize ={1024 ,4096} , sign , verify
SHA384 -RSA -PKCS -PSS , keySize ={1024 ,4096} , sign , verify
SHA512 -RSA -PKCS -PSS , keySize ={1024 ,4096} , sign , verify
RSA -PKCS -OAEP , keySize ={1024 ,4096} , hw , decrypt

37

RSA -PKCS -KEY -PAIR -GEN , keySize ={1024 ,4096} , generate_key_pair

SmartCardHSM with sc-hsm-embedded
Available Mechanism with sc-hsm-embedded (version V2.12) and a SmartCard HSM
(hardware version: 24.13 and firmware version: 4.0)

[sc -hsm - embedded] $ pkcs11 -tool --module
./ src/ pkcs11 /. libs/libsc -hsm - pkcs11 .so -M

Using slot 0 with a present token (0x1)
Supported mechanisms :

RSA -X -509 , keySize ={1024 ,4096} , hw , encrypt , decrypt , sign ,
verify

RSA -PKCS , keySize ={1024 ,4096} , hw , encrypt , decrypt , sign ,
verify

RSA -PKCS -PSS , keySize ={1024 ,4096} , hw , sign , verify
SHA1 -RSA -PKCS , keySize ={1024 ,4096} , hw , sign , verify
SHA256 -RSA -PKCS , keySize ={1024 ,4096} , hw , sign , verify
SHA1 -RSA -PKCS -PSS , keySize ={1024 ,4096} , hw , sign , verify
SHA256 -RSA -PKCS -PSS , keySize ={1024 ,4096} , hw , sign , verify
ECDSA , keySize ={192 ,521} , hw , sign , verify
ECDSA -SHA1 , keySize ={192 ,521} , hw , sign , verify
AES -CBC , keySize ={128 ,256} , hw , encrypt , decrypt
AES -CMAC , keySize ={128 ,256} , hw , sign
RSA -PKCS -OAEP , keySize ={1024 ,4096} , hw , encrypt , decrypt
SHA -1, digest
SHA224 , digest
SHA256 , digest
SHA384 , digest
SHA512 , digest
ECDSA -KEY -PAIR -GEN , keySize ={192 ,521} , hw , generate_key_pair
RSA -PKCS -KEY -PAIR -GEN , keySize ={1024 ,4096} , hw ,

generate_key_pair
AES -KEY -GEN , keySize ={128 ,256} , hw , generate
mechtype -0 x80000001 , keySize ={1024 ,4096} , hw , sign , verify
mechtype -0 x80000003 , keySize ={1024 ,4096} , hw , sign , verify
mechtype -0 x80000010 , keySize ={192 ,521} , hw , sign , verify
mechtype -0 x80000011 , keySize ={192 ,521} , hw , sign , verify

38

C. Code Snippets
Plugin Hook Code

• I added a dummy struct tls_options data structure to do_pre_decrypt_check(),
which is the last function having access to the plugin list. This function then calls
tls_pre_decrypt_lite(). I had to change tls_pre_decrypt_lite() from calling
read_control_auth() with a NULL pointer to a pointer to the dummy struct
tls_options structure.

• read_control_auth() then calls tls_crypt_v2_extract_client_key() if the client
indicates it wants to use –tls-crypt-v2.

Listing 4: mudp.c

static bool
do_pre_decrypt_check (struct multi_context *m,

struct tls_pre_decrypt_state *state ,
struct mroute_addr addr)

// ...
+ struct tls_options dummy_temp_opts = { 0 };
+ dummy_temp_opts . plugins = m->top. plugins ;
+ dummy_temp_opts .es = m->top.es;

verdict = tls_pre_decrypt_lite (tas , state , &m->top.c2.from ,
- &m->top.c2.buf);
+ &m->top.c2.buf ,
+ & dummy_temp_opts);

// ...

Listing 5: ssl.c

bool
tls_pre_decrypt_lite (const struct tls_auth_standalone *tas ,

const struct link_socket_actual *from ,
- const struct buffer *buf)
+ const struct buffer *buf ,
+ struct tls_options *opts)

// ...
bool status = read_control_auth (& state ->newbuf ,

&state -> tls_wrap_tmp ,
- from , NULL);
+ from , opts);

// ...

39

Listing 6: Excerpt from tls_crypt_v2_plugin_unwrap_client_key() in [12] containing
the preperation for the plugin call. Slightly modified for better code formatting

static bool
tls_crypt_v2_plugin_unwrap_client_key (struct key2 *client_key ,

struct buffer *metadata ,
struct buffer

wrapped_client_key ,
const struct plugin_list

*plugins , struct
env_set *es)

{
// [...]
// Prepare unwrapped key for plugin
struct argv av = argv_new ();
char * b64_key ;
int plug_ret ;
ASSERT (openvpn_base64_encode (BPTR (& wrapped_client_key),

BLEN (& wrapped_client_key),
& b64_key)

>= 0);
ASSERT (argv_printf (&av , "%s %s", " unwrap ", b64_key)

== true);
free(b64_key);

// Prepare response structure
struct plugin_return pr;
plugin_return_init (&pr);

// Call the plugin
plug_ret = plugin_call (plugins ,

OPENVPN_PLUGIN_CLIENT_KEY_WRAPPING ,
&av ,
&pr ,
es);

40

Applet Code

// CLA = 0xA0
// Key Import (INS = 0x01)
// AES Key (param1 =0 x01)
A0 01 01 00 20 <AES key hex encoded >
// HMAC Key (param1 =0 x02)
A0 01 02 00 20 <HMAC key hex encoded >

// Unwrap APDU (INS = 0x02)
// The length and return length need to be adjusted for the

individual WKc , these are default values
A0 02 00 00 00012B <WKc hex encoded > 0109

// Wrap APDU (INS = 0x03)
A0 03 00 00 000109 <Kc + metadata hex encoded > 012B

Listing 7: private short readIncomingDataIntoBuffer(APDU apdu, short
bufferOffset)

private short readIncomingDataIntoBuffer (APDU apdu ,
short bufferOffset) {

byte [] apduBuffer = apdu. getBuffer ();
short offsetCData = apdu. getOffsetCdata ();
short bytesLeft = apdu. getIncomingLength ();
short readCount = apdu. setIncomingAndReceive ();
short bufferPosition = bufferOffset ;
while (bytesLeft > 0) {

Util. arrayCopyNonAtomic (apduBuffer ,
offsetCData ,
dataBuffer ,
bufferPosition ,
readCount);

bytesLeft -= readCount ;
bufferPosition += readCount ;
readCount = apdu. receiveBytes (offsetCData);

}

return (short) (bufferPosition - bufferOffset);
}

41

Listing 8: private void unwrap_key(APDU apdu)

private void unwrap_key (APDU apdu) {
short bytesReceived = readIncomingDataIntoBuffer (apdu ,

(short) 0);

short ciphertextLength = (short) (bytesReceived -
TAG_LENGTH - LEN_LENGTH);

short tagOff = 0;
short wrapOff = (short) (tagOff + TAG_LENGTH);
short lenOff = (short) (wrapOff + ciphertextLength);

short wrappedKeyLength = Util. makeShort (dataBuffer [lenOff],
dataBuffer [(short)(lenOff +1)]);

if (wrappedKeyLength != bytesReceived) {
ISOException . throwIt (ISO7816 . SW_WRONG_LENGTH);

}

aesEngine .init(serverAESKey ,
Cipher . MODE_DECRYPT ,
dataBuffer ,
tagOff ,
AES_CTR . IV_SIZE);

short bytesProcessed = aesEngine . doFinal (dataBuffer ,
wrapOff ,
ciphertextLength ,
dataBuffer ,
wrapOff);

if(bytesProcessed != ciphertextLength) {
throw new

CryptoException (CryptoException . ILLEGAL_VALUE);
}

hmacEngine .init(serverHMACKey , MessageDigest . ALG_SHA_256);
hmacEngine . update (dataBuffer , lenOff , LEN_LENGTH);
hmacEngine . doFinal (dataBuffer , wrapOff , bytesProcessed ,

apdu. getBuffer (), apdu. getOffsetCdata ());

if (Util. arrayCompare (dataBuffer ,
tagOff ,
apdu. getBuffer (),
apdu. getOffsetCdata (),
TAG_LENGTH)

!= 0) {
ISOException . throwIt (ISO7816 . SW_DATA_INVALID);

}

42

short le = apdu. setOutgoing ();

if (le != ciphertextLength) {
ISOException . throwIt (ISO7816 . SW_WRONG_LENGTH);

}
apdu. setOutgoingLength (ciphertextLength);

apdu. sendBytesLong (dataBuffer , wrapOff , ciphertextLength);
}

D. Result Data

Device Mean Cipher Auth Other 90% CI SD
JCOP3 373.22 298.67 32.92 39.87 0.53 0.17
JCOP3 Improv. 201.04 128.01 32.88 39.88 0.56 0.18
JCOP4 92.69 42.90 20.97 28.67 0.31 0.09
JCOP4 Native CTR 58.33 8.44 20.94 28.67 0.31 0.09
YubiKey NEO 80.62 40.51 40.39 0.20 0.99 0.31
YubiKey 5C NFC 27.01 13.57 13.32 0.20 4.87 1.53
SCH 253.69 237.42 15.20 0.14 1.11 0.35
SCH AES Key Deriv. 30.50 15.12 15.22 0.34 0.20 0.14

Table 2: Results of benchmark for unwrapping. Mean, Cipher, Auth and Other in ms.

43

Bibliography

Software
2. [SW exc.] OpenVPN Inc, “crypto_openssl.c”, from OpenVPN version release/2.6,

2023. OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6
.0/src/openvpn/crypto_openssl.c.

3. [SW exc.] OpenVPN Inc, “crypto_mbedtls.c”, from OpenVPN version release/2.6,
2023. OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6
.0/src/openvpn/crypto_mbedtls.c.

7. [SW exc.] OpenVPN Inc, “tls_crypt.h”, from OpenVPN version release/2.6, 2023.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src
/openvpn/tls_crypt.h.

8. [SW exc.] OpenVPN Inc, “ssl.c”, from OpenVPN version release/2.6, 2023. Open-
VPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/ope
nvpn/ssl.c.

10. [SW exc.] OpenVPN Inc, “options.c”, from OpenVPN version release/2.6, 2023.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src
/openvpn/options.c.

11. [SW Rel.] OpenVPN Inc, OpenVPN version release/1.0.2, 2002. OpenVPN Inc.
url: https://github.com/OpenVPN/openvpn2-historical-cvs/tree/9c59b61
26949ca1946dd3fb526bdf55df4b8ed0f.

12. [SW exc.] OpenVPN Inc, “tls_crypt.c”, from OpenVPN version release/2.6, 2023.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src
/openvpn/tls_crypt.c.

13. [SW exc.] OpenVPN Inc, “ChangeLog”, from OpenVPN version release/2.4, 2016.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.4.0/Cha
ngeLog.

14. [SW exc.] OpenVPN Inc, “ChangeLog”, from OpenVPN version release/2.5, 2020.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.5.0/Cha
ngeLog.

15. [SW exc.] OpenVPN Inc, “tls-crypt-v2.txt”, from OpenVPN version release/2.6,
2023. OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6
.0/doc/tls-crypt-v2.txt.

17. [SW exc.] OpenVPN Inc, “ChangeLog”, from OpenVPN version release/2.0, 2005.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn2-historical-cvs
/tree/openvpn-2-0/ChangeLog.

18. [SW exc.] OpenVPN Inc, “openvpn-plugin.h.in”, from OpenVPN version release/2.6,
2023. OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6
.0/include/openvpn-plugin.h.in.

44

https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/crypto_openssl.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/crypto_openssl.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/crypto_mbedtls.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/crypto_mbedtls.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/tls_crypt.h
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/tls_crypt.h
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/ssl.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/ssl.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/options.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/options.c
https://github.com/OpenVPN/openvpn2-historical-cvs/tree/9c59b6126949ca1946dd3fb526bdf55df4b8ed0f
https://github.com/OpenVPN/openvpn2-historical-cvs/tree/9c59b6126949ca1946dd3fb526bdf55df4b8ed0f
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/tls_crypt.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/tls_crypt.c
https://github.com/OpenVPN/openvpn/tree/v2.4.0/ChangeLog
https://github.com/OpenVPN/openvpn/tree/v2.4.0/ChangeLog
https://github.com/OpenVPN/openvpn/tree/v2.5.0/ChangeLog
https://github.com/OpenVPN/openvpn/tree/v2.5.0/ChangeLog
https://github.com/OpenVPN/openvpn/tree/v2.6.0/doc/tls-crypt-v2.txt
https://github.com/OpenVPN/openvpn/tree/v2.6.0/doc/tls-crypt-v2.txt
https://github.com/OpenVPN/openvpn2-historical-cvs/tree/openvpn-2-0/ChangeLog
https://github.com/OpenVPN/openvpn2-historical-cvs/tree/openvpn-2-0/ChangeLog
https://github.com/OpenVPN/openvpn/tree/v2.6.0/include/openvpn-plugin.h.in
https://github.com/OpenVPN/openvpn/tree/v2.6.0/include/openvpn-plugin.h.in

26. [SW] Paljak, M., ant-javacard 2015. url: https://github.com/martinpaljak
/ant-javacard.

27. [SW] Paljak, M., GlobalPlatformPro url: https://javacard.pro/globalplatf
orm/.

29. [SW] David Corcoran, L. R., PCSC lite project url: https://pcsclite.apdu.f
r/.

34. [SW Rel.] KeePassXC team, KeePassXC version release/2.7.4, 2022. url: https:
//github.com/keepassxreboot/keepassxc/tree/2.7.4.

37. [SW] OpenDNSSEC, SoftHSM version 2. url: https://github.com/opendnss
ec/SoftHSMv2.

39. [SW] CardContact Systems GmbH, sc-hsm-embedded url: https://github.com
/CardContact/sc-hsm-embedded.

42. [SW] Ehlert, E., OpenVPN TLS Crypt V2 Plugins 2022. url: https://gitlab
.informatik.hu-berlin.de/ehlertto/openvpn-tls-crypt-v2-plugins/-/tr
ee/811dbc295ef7622afee001ee6d3285553e82bfe1.

43. [SW exc.] OpenVPN Inc, “init.c”, from OpenVPN version release/2.6, 2023. Open-
VPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/ope
nvpn/init.c.

44. [SW exc.] OpenVPN Inc, “plugin.h”, from OpenVPN version release/2.6, 2023.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src
/openvpn/plugin.h.

45. [SW exc.] OpenVPN Inc, “mudp.c”, from OpenVPN version release/2.6, 2023.
OpenVPN Inc. url: https://github.com/OpenVPN/openvpn/tree/v2.6.0/src
/openvpn/mudp.c.

50. [SW], Yubikey Personalization Yubico Inc. url: https://github.com/Yubico
/yubikey-personalization.

52. [SW] OpenSC contributors, OpenSC url: https://github.com/OpenSC/OpenSC.
53. [SW exc.] CardContact Systems GmbH, “token-sc-hsm.c”, from sc-hsm-embedded

version release/2.12, 2022. url: https://github.com/CardContact/sc-hsm-emb
edded/tree/V2.12/src/pkcs11/token-sc-hsm.c.

References
1. Overview of OpenVPN — OpenVPN Community Wiki OpenVPN. https://commu

nity.openvpn.net/openvpn/wiki/OverviewOfOpenvpn, archived at https://we
b.archive.org/web/20220707113857/https://community.openvpn.net/openv
pn/wiki/OverviewOfOpenvpn on July 7, 2022.

4. Yonan, J. Reference manual for OpenVPN 2.6 (OpenVPN Inc). https://openv
pn.net/community-resources/reference-manual-for-openvpn-2-6/ (Feb. 6,
2023).

45

https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://javacard.pro/globalplatform/
https://javacard.pro/globalplatform/
https://pcsclite.apdu.fr/
https://pcsclite.apdu.fr/
https://github.com/keepassxreboot/keepassxc/tree/2.7.4
https://github.com/keepassxreboot/keepassxc/tree/2.7.4
https://github.com/opendnssec/SoftHSMv2
https://github.com/opendnssec/SoftHSMv2
https://github.com/CardContact/sc-hsm-embedded
https://github.com/CardContact/sc-hsm-embedded
https://gitlab.informatik.hu-berlin.de/ehlertto/openvpn-tls-crypt-v2-plugins/-/tree/811dbc295ef7622afee001ee6d3285553e82bfe1
https://gitlab.informatik.hu-berlin.de/ehlertto/openvpn-tls-crypt-v2-plugins/-/tree/811dbc295ef7622afee001ee6d3285553e82bfe1
https://gitlab.informatik.hu-berlin.de/ehlertto/openvpn-tls-crypt-v2-plugins/-/tree/811dbc295ef7622afee001ee6d3285553e82bfe1
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/init.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/init.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/plugin.h
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/plugin.h
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/mudp.c
https://github.com/OpenVPN/openvpn/tree/v2.6.0/src/openvpn/mudp.c
https://github.com/Yubico/yubikey-personalization
https://github.com/Yubico/yubikey-personalization
https://github.com/OpenSC/OpenSC
https://github.com/CardContact/sc-hsm-embedded/tree/V2.12/src/pkcs11/token-sc-hsm.c
https://github.com/CardContact/sc-hsm-embedded/tree/V2.12/src/pkcs11/token-sc-hsm.c
https://community.openvpn.net/openvpn/wiki/OverviewOfOpenvpn
https://community.openvpn.net/openvpn/wiki/OverviewOfOpenvpn
https://web.archive.org/web/20220707113857/https://community.openvpn.net/openvpn/wiki/OverviewOfOpenvpn
https://web.archive.org/web/20220707113857/https://community.openvpn.net/openvpn/wiki/OverviewOfOpenvpn
https://web.archive.org/web/20220707113857/https://community.openvpn.net/openvpn/wiki/OverviewOfOpenvpn
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/

5. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3 RFC 8446
(RFC Editor, Aug. 2018). https://www.rfc-editor.org/rfc/rfc8446.txt.

6. Security Overview — OpenVPN Community Wiki OpenVPN. https://community
.openvpn.net/openvpn/wiki/SecurityOverview, archived at https://web.arc
hive.org/web/20220710033757/https://community.openvpn.net/openvpn/wi
ki/SecurityOverview on July 10, 2022.

9. Streun, F., Wanner, J. & Perrig, A. Evaluating Susceptibility of VPN Implementa-
tions to DoS Attacks Using Adversarial Testing in Proceedings 2022 Network and
Distributed System Security Symposium (Internet Society, 2022). https://doi.org
/10.14722%2Fndss.2022.24043.

16. Rogaway, P. & Shrimpton, T. A Provable-Security Treatment of the Key-Wrap
Problem in Advances in Cryptology - EUROCRYPT 2006 (ed Vaudenay, S.) (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006), 373–390. isbn: 978-3-540-34547-3.

19. Yang, Z., Johannesmeyer, B., Olesen, A. T., Lerner, S. & Levchenko, K. Dead
store elimination (still) considered harmful in 26th USENIX Security Symposium
(USENIX Security 17) (2017), 1025–1040.

20. Ortiz, C. E. An Introduction to Java Card Technology - Part 1 https://www
.oracle.com/java/technologies/java- card/javacard1.html, archived at
https://web.archive.org/web/20220814102941/https://www.oracle.com/ja
va/technologies/java-card/javacard1.html on Aug. 14, 2022.

21. Ponsini, N. Announcing Java Card 3.2 Release https://blogs.oracle.com/java
/post/announcing-java-card-32-release.

22. NXP JCOP3 J3H145 Java Card 3.0.4 Dual-Interface CardLogix. https://www.car
dlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/,
archived at https://web.archive.org/web/20230205095611/https://www.car
dlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/
on Feb. 5, 2023.

23. Paljak, M. JavaCard Buyer’s Guide of 2018 https://github.com/martinpalj
ak/GlobalPlatformPro/tree/v21.12.31/docs/JavaCardBuyersGuide (May 1,
2023).

24. Chen, Z. & Giorgio, R. D. Understanding Java Card 2.0 InfoWorld. https://w
ww.infoworld.com/article/2076617/understanding-java-card-2-0.html
(Apr. 24, 2023), archived at https://web.archive.org/web/20210501210354/ht
tps://www.infoworld.com/article/2076617/understanding-java-card-2-0
.html.

25. Ort, E. Developing a Java Card Applet https://www.oracle.com/java/technol
ogies/java-card/developing-javacard-applet.html, archived at https://we
b.archive.org/web/20220209093147/https://www.oracle.com/java/technol
ogies/java-card/developing-javacard-applet.html on Feb. 9, 2022.

46

https://www.rfc-editor.org/rfc/rfc8446.txt
https://community.openvpn.net/openvpn/wiki/SecurityOverview
https://community.openvpn.net/openvpn/wiki/SecurityOverview
https://web.archive.org/web/20220710033757/https://community.openvpn.net/openvpn/wiki/SecurityOverview
https://web.archive.org/web/20220710033757/https://community.openvpn.net/openvpn/wiki/SecurityOverview
https://web.archive.org/web/20220710033757/https://community.openvpn.net/openvpn/wiki/SecurityOverview
https://doi.org/10.14722%2Fndss.2022.24043
https://doi.org/10.14722%2Fndss.2022.24043
https://www.oracle.com/java/technologies/java-card/javacard1.html
https://www.oracle.com/java/technologies/java-card/javacard1.html
https://web.archive.org/web/20220814102941/https://www.oracle.com/java/technologies/java-card/javacard1.html
https://web.archive.org/web/20220814102941/https://www.oracle.com/java/technologies/java-card/javacard1.html
https://blogs.oracle.com/java/post/announcing-java-card-32-release
https://blogs.oracle.com/java/post/announcing-java-card-32-release
https://www.cardlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/
https://www.cardlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/
https://web.archive.org/web/20230205095611/https://www.cardlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/
https://web.archive.org/web/20230205095611/https://www.cardlogix.com/product/nxp-jcop3-j3h145-java-card-3-0-4-dual-interface/
https://github.com/martinpaljak/GlobalPlatformPro/tree/v21.12.31/docs/JavaCardBuyersGuide
https://github.com/martinpaljak/GlobalPlatformPro/tree/v21.12.31/docs/JavaCardBuyersGuide
https://www.infoworld.com/article/2076617/understanding-java-card-2-0.html
https://www.infoworld.com/article/2076617/understanding-java-card-2-0.html
https://web.archive.org/web/20210501210354/https://www.infoworld.com/article/2076617/understanding-java-card-2-0.html
https://web.archive.org/web/20210501210354/https://www.infoworld.com/article/2076617/understanding-java-card-2-0.html
https://web.archive.org/web/20210501210354/https://www.infoworld.com/article/2076617/understanding-java-card-2-0.html
https://www.oracle.com/java/technologies/java-card/developing-javacard-applet.html
https://www.oracle.com/java/technologies/java-card/developing-javacard-applet.html
https://web.archive.org/web/20220209093147/https://www.oracle.com/java/technologies/java-card/developing-javacard-applet.html
https://web.archive.org/web/20220209093147/https://www.oracle.com/java/technologies/java-card/developing-javacard-applet.html
https://web.archive.org/web/20220209093147/https://www.oracle.com/java/technologies/java-card/developing-javacard-applet.html

28. Identification cards — Integrated circuit cards — Part 4: Organization, security
and commands for interchange en. Standard ISO/IEC 7816-4:2020 (International
Organization for Standardization, May 2022). https://www.iso.org/standard/7
7180.html.

30. YubiCo. YubiKey 5 NFC Product Page https://www.yubico.com/de/product/y
ubikey-5-nfc/ (May 1, 2023).

31. Yubico Homepage Yubico Inc. https://www.yubico.com.
32. Barker, E. Recommendation for key management tech. rep. (2020). https://doi

.org/10.6028/nist.sp.800-57pt1r5.
33. .NET YubiKey SDK: User’s Manual. Challenge-response Yubico Inc. https://d

ocs.yubico.com/yesdk/users-manual/application-otp/challenge-response
.html.

35. PKCS #11 Cryptographic Token Interface Base Specification Version 3.0 en. Stan-
dard (OASIS, June 2020). https://docs.oasis-open.org/pkcs11/pkcs11-base
/v3.0/os/pkcs11-base-v3.0-os.html.

36. PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version
3.0 en. Standard (OASIS, June 2020). https://docs.oasis-open.org/pkcs11/p
kcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html.

38. SmartCard-HSM home page https://www.smartcard-hsm.com/ (Jan. 17, 2023).
40. Nitrokey GmbH. Nitrokey HSM 2 https://shop.nitrokey.com/shop/product

/nkhs2-nitrokey-hsm-2-7 (Feb. 9, 2023).
41. SmartCard-HSM home page. Where to Buy https://www.smartcard-hsm.com/bu

y.html (Jan. 17, 2023).
46. Oracle. Java Card API. Interface HMACKey version 3.0.5. https://docs.orac

le.com/javacard/3.0.5/api/javacard/security/KeyBuilder.html (Jan. 18,
2023).

47. H. Krawczyk M. Bellare, R. C. HMAC: Keyed-Hashing for Message Authentication
RFC 2104 (RFC Editor, Feb. 1997). https://www.rfc-editor.org/rfc/rfc210
4.txt.

48. Dworkin, M. J. Recommendation for Block Cipher Modes of Operation: Methods
and Techniques tech. rep. (2001). https://doi.org/10.6028/nist.sp.800-38a.

49. GlobalPlatform Technology. Card Specification tech. rep. Version 2.3.1 (Mar. 2018).
https://globalplatform.org/specs-library/card-specification-v2-3-1/.

51. libusb. libusb Frequently Asked Questions https://github.com/libusb/libusb/w
iki/FAQ (Jan. 19, 2023).

54. IEEE Standard for Information Technology–Portable Operating System Inter-
face (POSIX(TM)) Base Specifications, Issue 7. clock_getres, clock_gettime,
clock_settime - clock and timer functions. IEEE Std 1003.1-2017 (Revision of
IEEE Std 1003.1-2008), 1–3951 (2018).

47

https://www.iso.org/standard/77180.html
https://www.iso.org/standard/77180.html
https://www.yubico.com/de/product/yubikey-5-nfc/
https://www.yubico.com/de/product/yubikey-5-nfc/
https://www.yubico.com
https://doi.org/10.6028/nist.sp.800-57pt1r5
https://doi.org/10.6028/nist.sp.800-57pt1r5
https://docs.yubico.com/yesdk/users-manual/application-otp/challenge-response.html
https://docs.yubico.com/yesdk/users-manual/application-otp/challenge-response.html
https://docs.yubico.com/yesdk/users-manual/application-otp/challenge-response.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/os/pkcs11-base-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/os/pkcs11-base-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://www.smartcard-hsm.com/
https://shop.nitrokey.com/shop/product/nkhs2-nitrokey-hsm-2-7
https://shop.nitrokey.com/shop/product/nkhs2-nitrokey-hsm-2-7
https://www.smartcard-hsm.com/buy.html
https://www.smartcard-hsm.com/buy.html
https://docs.oracle.com/javacard/3.0.5/api/javacard/security/KeyBuilder.html
https://docs.oracle.com/javacard/3.0.5/api/javacard/security/KeyBuilder.html
https://www.rfc-editor.org/rfc/rfc2104.txt
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.6028/nist.sp.800-38a
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://github.com/libusb/libusb/wiki/FAQ
https://github.com/libusb/libusb/wiki/FAQ

55. NXP JCOP3 J3H145 Java Card 3.0.4 Dual-Interface CardLogix. https://www.c
ardlogix.com/product/nxp-jcop-4-java-card-3-0-5-classic/, archived at
https://web.archive.org/web/20230205095457/https://www.cardlogix.com
/product/nxp-jcop-4-java-card-3-0-5-classic/ on Feb. 5, 2023.

56. OpenVPN Data Channel Offload (aka OVPN-DCO) OpenVPN. https://communi
ty.openvpn.net/openvpn/wiki/DataChannelOffload, archived at https://web
.archive.org/web/20220809131809/https://community.openvpn.net/openvp
n/wiki/DataChannelOffload on Aug. 9, 2022.

57. YubiCo. YubiHSM 2 Product Page https://www.yubico.com/products/hardwar
e-security-module/ (Mar. 8, 2023).

58. Thales. Luna-PCIe-HSM Product Page https://cpl.thalesgroup.com/de/encr
yption/hardware-security-modules/pcie-hsms (Mar. 8, 2023).

48

https://www.cardlogix.com/product/nxp-jcop-4-java-card-3-0-5-classic/
https://www.cardlogix.com/product/nxp-jcop-4-java-card-3-0-5-classic/
https://web.archive.org/web/20230205095457/https://www.cardlogix.com/product/nxp-jcop-4-java-card-3-0-5-classic/
https://web.archive.org/web/20230205095457/https://www.cardlogix.com/product/nxp-jcop-4-java-card-3-0-5-classic/
https://community.openvpn.net/openvpn/wiki/DataChannelOffload
https://community.openvpn.net/openvpn/wiki/DataChannelOffload
https://web.archive.org/web/20220809131809/https://community.openvpn.net/openvpn/wiki/DataChannelOffload
https://web.archive.org/web/20220809131809/https://community.openvpn.net/openvpn/wiki/DataChannelOffload
https://web.archive.org/web/20220809131809/https://community.openvpn.net/openvpn/wiki/DataChannelOffload
https://www.yubico.com/products/hardware-security-module/
https://www.yubico.com/products/hardware-security-module/
https://cpl.thalesgroup.com/de/encryption/hardware-security-modules/pcie-hsms
https://cpl.thalesgroup.com/de/encryption/hardware-security-modules/pcie-hsms

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für Texte,
Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt, dass
bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw.
Täuschung eingeleitet wird.

Berlin, den October 2, 2023

49

	Introduction
	OpenVPN
	Basics
	Control Channel Protection
	TLS Crypt v2
	Plugins

	Objective
	Hardware Security Modules for Key Wrapping
	Requirements
	Smart Cards with Java Card
	YubiKey
	PKCS#11
	SmartCard HSM

	Implementation
	Plugin Hook
	Java Card
	Applet
	Plugin

	YubiKey
	PKCS#11

	Performance
	Methods
	Results
	Discussion

	Conclusion
	Plugin Interface Specification
	Supported Mechanisms
	Code Snippets
	Result Data

