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Abstract

FIDO authenticators o↵er a promising method for client authentication in
web applications, gaining popularity due to their strong security, phishing
resistance, privacy protection, and high usability. These authenticators are
hardly used in other protocols that require client authentication, as they
were originally designed for web environments. This thesis proposes a TLS
extension designed to integrate FIDO authentication and key registration
directly into TLS at the transport layer, making it available to non-HTTP
applications. The extension is implemented for OpenSSL and deployed as
a C library. In order to evaluate and demonstrate it’s practicality, the
extension is integrated into hostapd and wpa supplicant to establish an
802.1X EAP-TLS Wi-Fi network that uses FIDO hardware authenticators,
replacing traditional X.509 client certificates.

1



Contents

1. Introduction 7
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Theoretical Framework 9
2.1. TLS 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. TLS 1.3 Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2. TLS 1.3 Custom Extensions . . . . . . . . . . . . . . . . . . . . . 12

2.2. FIDO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1. FIDO2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2. FIDO2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. EAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1. EAP-TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Related Work 26
3.1. Passwordless VPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2. FIDO2 authentication in OpenSSH . . . . . . . . . . . . . . . . . . . . . 27
3.3. EAP-FIDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4. FIDO as TLS Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Methodology 31
4.1. Design Principles & Requirements . . . . . . . . . . . . . . . . . . . . . . 32
4.2. Network & Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Extending TLS Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4. Integration into the TLS handshake . . . . . . . . . . . . . . . . . . . . . 35

4.4.1. Single Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2. Vulnerabilitiy of the Single Handshake Approach . . . . . . . . . 37
4.4.3. Double Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5. Control Mechanisms for Key Registration . . . . . . . . . . . . . . . . . . 41
4.6. Message Structure and Encoding . . . . . . . . . . . . . . . . . . . . . . 42
4.7. Determination of Origin and Relying Party ID . . . . . . . . . . . . . . . 44
4.8. The Finished Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8.1. TLS Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8.2. Communication to the Application Layer . . . . . . . . . . . . . . 48

5. Implementation 50
5.1. FIDO2 TLS1.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1. TLS Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.3. Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.4. Registering the Extension . . . . . . . . . . . . . . . . . . . . . . 54

2



5.1.5. Configuring the Extension . . . . . . . . . . . . . . . . . . . . . . 54
5.1.6. Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.7. Repository Access and Usage Instructions . . . . . . . . . . . . . 56

5.2. EAP-TLS with FIDO2 TLS1.3 Extension . . . . . . . . . . . . . . . . . . 57
5.2.1. Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3. Key Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.5. Repository Access and Additional Resources . . . . . . . . . . . . 60

6. Evaluation & Future Work 61
6.1. Key Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2. Message Size Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3. Modifying the TLS Library . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4. FIDO Authentication in Wi-FI Networks . . . . . . . . . . . . . . . . . . 66

7. Conclusion 67

A. Message Specifications 73
A.1. Pre Registration Indication . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2. Pre-Registration Request . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3. Pre-Registration Response . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4. Registration Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.5. Registration Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6. Registration Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.7. Pre-Authentication Indication . . . . . . . . . . . . . . . . . . . . . . . . 84
A.8. Pre-Authentication Request . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.9. Pre-Authentication Response . . . . . . . . . . . . . . . . . . . . . . . . 86
A.10.Authentication Indication . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.11.Authentication Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.12.Authentication Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B. Test PKI and Certificate Creation Guide 93
B.1. Certificate Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2. Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.3. Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C. Configuration Files for EAP-TLS 95
C.1. eap user file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.2. hostapd.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.3. wpa supplicant.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D. Scripting Simultaneous Startup and Shutdown of Client-Server Applications 98

E. Maximum Size Analysis of Message A5 100

3



Acronyms

2FA Two-Factor Authentication

AES Advanced Encryption Standard

AP Access Point

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CBC Cipher Block Chaining

CBOR Concise Binary Object Representation

CCA Client Certificate Authentication

CCMP Counter Mode Cipher Block Chaining Message Authentication Code Protocol

CN Common Name

CTAP Client to Authenticator Protocol

DER Distinguished Encoding Rules

DNS Domain Name System

EAP Extensible Authentication Protocol

EAPOL EAP over LAN

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards-curve Digital Signature Algorithm

FIDO Fast Identity Online

FTP File Transfer Protocol

GCM Galois/Counter Mode

GCMP Galois/Counter Mode Protocol

4



HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IoT Internet of Things

IV Initialization Vector

JSON JavaScript Object Notation

L2TP Layer 2 Tunneling Protocol

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Code

MITM Man-in-the-Middle

MQTT Message Queuing Telemetry Transport

NIST National Institute of Standards and Technology

NNTP Network News Transfer Protocol

OSI Open Systems Interconnection

OTP One-Time Password

PKCS Public-Key Cryptography Standards

PKI Public Key Infrastructure

PMK Pairwise Master Key

PoC Proof of Concept

PSK Pre-Shared Key

RADIUS Remote Authentication Dial-In User Service

REST Representational State Transfer

RFC Request for Comments

RP Relying Party

5



RSA Rivest Shamir Adleman

RTT Round-Trip Time

SAN Subject Alternative Name

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

SNI Server Name Indication

SRP Secure Remote Password

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TOFU Trust On First Use

TPM Trusted Platform Module

U2F Universal 2nd Factor

VPN Virtual Private Network

W3C World Wide Web Consortium

WPA Wi-Fi Protected Access

6



1. Introduction

1.1. Motivation

In the field of IT security and computer networks, securing client-server communications
has remained one of the most important objectives. The Transport Layer Security (TLS)
protocol plays a central role in securing these connections by ensuring confidentiality,
integrity and authenticity. While server authentication is a well-established norm through
the use of X.509 certificates, client authentication, particularly in outside of web-based
environments, has not seen a parallel level of emphasis or development. This discrepancy
leaves a gap in the security model, especially as the digital ecosystem evolves to include
a large number of client devices, from mobile and desktop environments to the growing
Internet of Things (IoT) landscape.
Traditionally, TLS relies on a range of authentication mechanisms, with client certifi-

cates being a widely recognized and robust method for client authentication. However,
this approach, despite its strengths, is not without its challenges. Client certificates
can be cumbersome to manage and deploy [19], especially if they are stored on secure
hardware like external tokens or smart cards. The requirement for a Certificate Authority
(CA) as part of the broader Public Key Infrastructure (PKI) to issue new certificates
makes it an administrative challenge. This challenge is particularly evident in large-scale
and dynamic networks like eduroam, a global service providing worldwide roaming access
for the research and education community.
In the web environment, a promising new method of client authentication known

as Fast Identity Online (FIDO) has been available for some years. This framework
aims to replace conventional password authentication with phishing-resistant public key
cryptography. FIDO uses dedicated authenticators, mostly external hardware tokens,
that securely store the private key component or key material to derive the private key of
a FIDO credential. Compared to traditional client certificates, FIDO o↵ers significantly
improved usability because a single authenticator can store key material for multiple
platforms, providing the user with a single token that grants access to all their services.
In addition, FIDO does not rely on a PKI, thereby eliminating associated administrative
challenges. Instead of having a public key signed by a CA and shared between parties, it
adheres to a one-key-per-service policy. Each public key is registered directly with the
service during enrollment. This approach significantly enhances user privacy compared to
traditional client certificates because public keys are unique to each service, preventing
user tracking.
Despite its potential, FIDO’s adoption has been largely confined to the web, limiting

its use in other protocols that rely on client authentication. Recognizing this limitation,
this thesis proposes a TLS 1.3 extension, that aims to bridge this gap by integrating
FIDO directly into the TLS handshake process, thus decoupling it from its traditional
Hypertext Transfer Protocol (HTTP)-based constraints. Since TLS cryptographically
validates the server identity for each connection, it has the capability to e↵ectively enforce
FIDO’s one-key-per-service policy.
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By embedding FIDO directly into TLS, the extension enables strong client authen-
tication across the entire spectrum of applications build atop TLS. This advancement
holds particular promise for 802.1X TLS-Extensible Authentication Protocol (EAP)
networks, o↵ering them the opportunity to shift from the traditional Client Certificate
Authentication (CCA) to the secure, user-friendly and privacy-preserving FIDO authen-
tication method. This thesis provides a Proof of Concept (PoC) implementation of the
aforementioned extension and integrates it into the EAP-TLS protocol, demonstrating
that Wi-Fi networks such as eduroam can benefit from the new authentication method.

1.2. Structure of the Thesis

The structure of this thesis is outlined as follows: Section 2 o↵ers an overview of all
protocols involved in the proposed extension, providing the necessary context for the
integration. It starts by explaining the TLS 1.3 handshake and the TLS 1.3 extension
mechanism. This is followed by a step-by-step description of the FIDO registration
and authentication ceremonies. Subsequently, an overview of the EAP-TLS handshake
is given to understand the role of TLS in 802.1X authentication. Section 3 presents
four examples of related work, where FIDO authentication is already used in non-web
environments. Section 4 describes the methodology of the thesis, starting by defining
design principles, requirements, and a network and threat model. It then explains how
the FIDO message exchange could be integrated into the TLS handshake, it details how
messages could be structured, encoded, and how key registration can be controlled by the
server. This section also includes various integration details that must be considered when
adapting FIDO to a non-web environment. The Section concludes with how the outcomes
of FIDO ceremonies are communicated to the other peer using TLS alerts. Section 5
presents two PoC implementations: First, the proposed TLS extension as a C library
which can be used in conjunction with OpenSSL, secondly the use of the extension in
EAP-TLS Wi-Fi networks. Section 6 evaluates the implementations, conducts worst and
average case estimations of message sizes, and assesses the practicality of the extension.
The Section also discusses possible improvements and future work on this topic. Section 7
concludes this thesis by summarizing the most important findings.
The thesis also includes an extensive set of appendices. The first appendix defines the

fields, structure, and encoding of the newly defined messages of the protocol. The second
appendix provides a guide on how to create X.509 certificates for a test environment
of TLS applications. The third appendix includes the necessary configuration files for
hostapd and wpa supplicant needed to set up an EAP-TLS Wi-Fi network that uses
FIDO authentication. Finally, the last appendix contains a helper script that facilitates
the development of client-server applications.
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2. Theoretical Framework

This thesis builds upon the foundational protocols of TLS, FIDO and EAP-TLS, each of
which serves as a prerequisite for comprehending the proposed extension. The subsequent
chapter will explore the fundamentals of these protocols, laying the groundwork for the
following methodology.

2.1. TLS 1.3

TLS is a crucial cryptographic protocol that ensures secure communication over computer
networks, most commonly the internet. Initially developed as Secure Sockets Layer
(SSL) by Netscape in the 1990s [26], TLS has become a robust standard for securing
data transmissions between applications and servers. It operates at the transport layer
of the Open Systems Interconnection (OSI) model, ensuring privacy, integrity, and
authentication in communications.
TLS has undergone several iterations since its inception, each version refining and

enhancing security, performance, and functionality. Following its predecessor, TLS 1.0 was
introduced as an upgrade to SSL 3.0 to address inherent security vulnerabilities [26, p. 61].
Subsequent versions, TLS 1.1 and TLS 1.2, introduced more cryptographic algorithms
and improved protections against attacks such as Cipher Block Chaining (CBC) padding
attacks and Browser Exploit Against SSL/TLS (BEAST) [16, p. 30-32].
A significant step was made with TLS 1.3, which not only further enhanced security by

removing outdated cryptographic algorithms and reducing the risk of misconfigurations
but also improved connection latency through a more concise handshake process [16, p. 27].
One of the notable advancements in TLS 1.3 is its reduction in Round-Trip Times (RTTs)
during the handshake phase. Whereas TLS 1.2 and earlier versions require two full
round trips between client and server to complete the handshake, TLS 1.3 has e↵ectively
reduced this to just one round trip, significantly speeding up the initial connection setup.
This enhancement is crucial for performance, particularly in applications where speed and
low latency are important, such as in cellular networks. Furthermore, TLS 1.3 introduces
”0-RTT” resumption, allowing clients to send encrypted data to the server in the same
round trip as the initial handshake, under certain conditions. This feature can further
reduce latency for subsequent connections to the same server, at the cost of some security
trade-o↵s [7].
For the purposes of this thesis, the focus will be exclusively on TLS 1.3. This choice is

motivated by TLS 1.3’s advancements in security and e�ciency, which make it the most
relevant version for addressing contemporary cybersecurity challenges and ensuring the
secure transmission of data in modern computer networks. The following subsections
outline the TLS 1.3 handshake and custom extension mechanism. Both parts are essential
for the following methodology.
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server to securely establish a shared secret without it ever being transmitted over
the network.

Upon establishing the shared secret for encryption, the server proceeds to dispatch
EncryptedExtensions, which may carry additional extensions necessary for the ses-
sion. Next, if the server requires client authentication, it sends a CertificateRequest
indicating the types of certificates supported and the allowed CAs, as part of its
response. This is followed by the server’s Certificate message, where it presents
its own X.509 certificate to the client. The server also sends a CertificateVerify
message to prove possession of the private key corresponding to the public key in
its certificate.

The server concludes this phase with a Finished message, which contains a Message
Authentication Code (MAC) computed over all previous handshake messages.
This MAC, derived from the shared secret, assures the client of the integrity and
authenticity of the handshake process, confirming that the messages have not been
tampered with. It signifies that the server’s part of the handshake is complete
and establishes a secure, encrypted channel for exchanging application data. The
verification of this MAC by the client ensures that both parties have a consistent
view of the handshake and are in possession of the same shared secret, marking the
transition to secure communication.

3. If the server requests client authentication, the client responds with a series of
messages to complete the mutual authentication process. Initially, the client sends
a Certificate message, provided it possesses a suitable certificate that it is willing to
share. This certificate should be issued by a CA that is part of a trust chain ending
with a CA trusted by the server, as specified in the server’s CertificateRequest
message. Following this, the client sends a CertificateVerify message, which uses a
digital signature to prove that the client holds the private key corresponding to the
public key in the certificate it presented.

The client completes its response with a Finished message, analogous to the server’s
earlier Finished message, but computed from the client’s perspective. This message
includes a MAC that covers all handshake messages exchanged from the ClientHello
up to and including the server’s Finished message. This MAC is derived from keys
that are generated from the shared secret established during the handshake. By
successfully verifying this MAC, the server can confirm the integrity and authenticity
of the handshake messages exchanged with the client. This verification ensures
that the handshake has not been tampered with and that both parties have agreed
upon the same parameters and shared secrets. The Finished message from the
client e↵ectively signals the completion of the mutual authentication process and
confirms the readiness of both parties to secure application data exchange over
the encrypted channel. TLS 1.3 enables the client to send encrypted application
data immediately along with the Finished message. This capability underpins the
classification as a 1-RTT handshake, despite the handshake technically extending
beyond a single request-response cycle.
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The PKI plays a crucial role in this handshake, as it underpins the trustworthiness
of the certificates exchanged. Certificates issued by recognized CAs within the PKI
framework help ensure that the entities involved in the communication are indeed who
they claim to be. This handshake mechanism thus establishes a secure channel protected
by encryption and authenticated by PKI, where both parties can be assured of the
other’s identity (if client authentication is used), and that the data exchanged thereafter
maintains confidentiality and authenticity.

2.1.2. TLS 1.3 Custom Extensions

TLS 1.3 introduces predefined extensions such as the ”Pre-Shared Key Extension” and
the ”Early Data Extension”, designed to fulfill a variety of cryptographic needs and
enhancements, as documented in RFC 8446 [21, p. 52-55]. Beyond these predefined
options, TLS 1.3 also supports the integration of custom extensions. These extensions
enable developers to tailor the protocol to meet unique requirements or expand its
capabilities beyond the core specifications. Custom extensions adhere to the structural
and encoding guidelines established by TLS 1.3, yet they are distinguished by unique
extension type codes not allocated by the Internet Assigned Numbers Authority (IANA).
This design ensures that custom extensions can coexist with standard extensions without
causing conflicts or interoperability issues.
Custom extension data can be integrated into several handshake messages. Specif-

ically, the ClientHello and ServerHello messages can incorporate custom extensions,
facilitating the preliminary exchange of additional functionalities or demands between
clients and servers. It is important to note, however, that since these initial messages
are sent unencrypted, any embedded extension data also remains unencrypted. As the
handshake process progresses and encryption is established, subsequent messages like
EncryptedExtensions, CertificateRequest, and Certificate can carry custom extensions.
This feature permits the secure transmission of sensitive or application-specific infor-
mation. Nonetheless, not all handshake messages in TLS 1.3 support the inclusion of
custom extension data. For example, the CertificateVerify and Finished messages are
not allowed to carry custom extensions. The ”*” notation in Figure 1 indicates that a
handshake message can be supplemented with extension data.
While the primary aim of extensions is to augment the message they accompany

logically, it is also feasible to transmit arbitrary data within their payload. For instance, a
custom extension in the Certificate message might include data unrelated to the certificate
itself.
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2.2. FIDO2

The FIDO Alliance is an open industry association that brings together companies such as
PayPal, Google, Microsoft, Meta, Lenovo, and Yubico to create a new client authentication
method based on asymmetric cryptography that does not rely on passwords. FIDO
authentication uses authenticators, which can be either external hardware tokens—like
USB security keys, NFC, or Bluetooth variants—or integrated into the platform running
the client software, known as platform authenticators. These authenticators store
cryptographic key material that is never shared with any party. Possession of the
authenticator serves as proof of identity. In addition, factors such as PINs, passwords,
and biometrics can be used locally to unlock the authenticator.
The original FIDO protocol, FIDO 1.0, was the first iteration of the FIDO standard. It

included the Universal 2nd Factor (U2F) protocol and the less widely adopted Universal
Authentication Framework (UAF). The part of U2F dealing with communication between
the authenticator and the client was later named Client to Authenticator Protocol
(CTAP)1 [34]. In 2016, the FIDO Alliance collaborated with the World Wide Web
Consortium (W3C) to standardize FIDO for the web, resulting in the WebAuthn L1
authentication API. At the time of this writing, FIDO2 is the latest iteration of the
FIDO standard, including the newer versions CTAP 2.0 and WebAuthn L2.
Throughout this thesis, ”FIDO” will often be used as an umbrella term; however,

strictly speaking, it specifically refers to the latest FIDO specification, FIDO2, which
builds on CTAP 2.0 and WebAuthn L2. Before providing a detailed exploration of
the FIDO internals, we introduce the key terminology essential for understanding its
operation and implementation:

• Relying Party (RP): The service requiring user authentication, typically a
website or application.

• Client: The user’s device, such as a smartphone or computer, requesting authenti-
cation.

• Authenticator: The device, such as a hardware token, mobile device, or platform-
integrated authenticator, employed to verify a user’s identity with the RP.

• Ceremony: A series of steps performed during authentication or registration,
involving interaction between the client, relying party, and authenticator.

• Credential: One keypair registered with a specific RP, which can be either a
Discoverable Credential (or Resident Key), stored directly on the authenticator and
enabling user authentication without specific credential ID, or a Non-Discoverable
Credential (or Non-Resident Key), which is stored by the RP in an encrypted form
and requires a unique credential ID for identification.

• Assertion: Proof of possession of a credential, generated by the authenticator
during authentication.
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• Attestation: A process whereby an authenticator provides cryptographic proof of
its integrity and identity to the RP during registration.

• User Presence: A simple gesture, like touching a button, indicating the user is
physically present.

• User Verification: A stronger form of verification, such as a PIN, fingerprint, or
facial recognition, confirming the user’s identity.

At its core, FIDO consists of two components: WebAuthn and CTAP. WebAuthn,
short for Web Authentication, is a web standard that defines a JavaScript Application
Programming Interface (API), implemented by modern web browsers such as Fire-
fox, Chrome, and Safari. JavaScript applications running in a client’s browser can
use this API to interact with authenticators connected to the user’s platform. CTAP
is the protocol used for communications between the client platform and the FIDO
authenticator, regardless of the type or form factor. CTAP revolves around two funda-
mental operations: authenticatorMakeCredential for registering new credentials and
authenticatorGetAssertion for authentication with existing credentials. Within FIDO
terminologies, these are referred to as ceremonies rather than protocols. This distinction
is made due to the direct participation of the human user, often through user presence
checks. In essence, ceremonies highlight the active involvement of users in authentication
processes, reinforcing security through human verification steps.

Client / Platform Relying Party (RP)

(External) Authenticator

Figure 2: FIDO2 Architecture. Graphic created by author based on [4].
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Figure 2 illustrates the architecture of FIDO, which comprises both WebAuthn and CTAP.
To provide an overview, let’s consider a typical FIDO ceremony at a high level, without
going into the details. The sequence is based on the WebAuthn L2 specification [31]:

1. The client requests a web page with Hypertext Transfer Protocol Secure (HTTPS).

2. The RPs web application sends JavaScript code to the client’s browser as part of
the web page.

3. This JavaScript code, which represents the RPs logic and functionality, calls the
WebAuthn API to perform authentication or registration operations.

4. The WebAuthn API, provided by the browser, ensures the request’s origin matches
the RP ID for security. Once verified, the API uses the CTAP to establish
communication with the authenticator connected to the client’s platform, sending
a specific request to perform the desired operation.

5. Upon receiving commands from the WebAuthn API, the authenticator performs
the necessary operations based on the requested action. For example, during
authentication, the authenticator may prompt the user to perform a biometric
verification or provide evidence of user presence.

6. The authenticator generates a response, like an assertion, depending on the specific
operation requested by the WebAuthn API.

7. The authenticator sends the response back to the client device through the CTAP.

8. The WebAuthn API receives the response from the authenticator via the CTAP
and the JavaScript application running in the client’s browser forwards it to the
RP via HTTP.

9. The RP’s web application verifies the response, depending on the context of the
operation.

10. If the verification is successful, the RPs web application grants access to the
requested service or completes the registration process, allowing the user to proceed
with the intended action on the web page.

These steps provide a broad overview of the control flow, omitting specific details
regarding the contents of request and response packets. However, to integrate FIDO into
the TLS handshake, it is crucial to comprehend the creation, verification, and contents of
these packets. The subsequent sections will elaborate on the key aspects of registration
and authentication in detail.
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unique user ID assigned by the RP, as well as the user’s name and a display name
that is human-readable. These user details—specifically the user name and display
name—are linked back to the user’s identity as verified in the preliminary authenti-
cation step outlined previously. For an exhaustive breakdown of all parameters,
please refer to the detailed listing provided in Section 5.4 of [31].

After assembling the PublicKeyCredentialCreationOptions object, the RP securely
transmits it to the client as a JavaScript Object Notation (JSON) payload through
an HTTP response. The JavaScript Application then calls the navigator.credent
ials.create() method, passing the object as an argument. This action e↵ectively
delegates the operation to the browser.

2. In the next step, the browser forwards the request to the authenticator to begin the
creation of a public key credential, utilizing the authenticatorMakeCredential()
function. During this process, the browser generates clientData, which includes
the operation type, denoted by the string ”webauthn.create”, the challenge issued
by the RP (encoded in Base64url), and the origin. The origin in web security is a
combination of the scheme (in this case always HTTPS), host (domain or IP), and
implicitly the port of a URL, which together define the source of a web request. By
encapsulating the scheme and host, the origin e↵ectively anchors the registration
request to the specific web application that initiated the call to the WebAuthn
API.

Additionally, the browser performs a validation check to ensure that the RP ID
specified in the WebAuthn request corresponds to the origin’s registerable domain
su�x, thereby confirming that the request is legitimately intended for the designated
RP. Should an RP ID not be provided, the origin itself is used as the RP ID.

The JSON-serialized clientData, after being hashed with Secure Hash Algorithm
(SHA)256, and combined with user and RP details, pubKeyCredParams, along with
any additional optional parameters specified by the server, is transmitted to the
authenticator using CTAP. This information is encoded in Concise Binary Object
Representation (CBOR) to ensure e�cient processing. Detailed information on all
these parameters can be found in Section 5.1 of [31].

3. The authenticator, upon receiving the request, asks the user to confirm their
presence and intent to register. This user interaction could be a simple gesture
like tapping a button on the authenticator device, entering a PIN, or performing a
biometric verification such as a fingerprint scan, depending on the authenticator’s
capabilities and the level of user verification required by the RP. Once the user’s
consent is obtained, the authenticator generates a new public/private key pair
specifically for this registration. For discoverable credentials, the private key is
securely stored on the authenticator. In contrast, non-discoverable credentials are
not stored on the authenticator; instead, the private key is encrypted with a master
secret unique to the authenticator and then sent back to the RP as a wrapped
private key. This approach o↵ers the significant advantage that an authenticator
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can generate and manage a practically unlimited number of credentials without the
need for extensive memory capacity. It is especially beneficial for hardware tokens,
which typically have limited storage, enabling them to serve numerous RPs and
user accounts.

4. The attestationObject, which is sent back to the client, is a CBOR-encoded structure
that includes the attestationStatement and authenticatorData. The authentica-
torData itself encompasses the newly generated public key and a credential ID
(which in turn is the wrapped private key in case of a non-discoverable credential),
while the attestationStatement provides proof of the authenticator’s authenticity
to the RP. This statement contains information about the authenticator model,
its cryptographic key, and may also include a certificate from the manufacturer
and a signature. It is important to acknowledge that the provision of attestation is
optional; should the RP decide against requiring attestation, a Trust On First Use
(TOFU) approach is adopted instead. The detailed CBOR encoded structure of
the attestationObject can be found in Section 6.5 of [31].

The browser gathers the attestationObject and encapsulates it within a PublicK-
eyCredential object, which is formatted as a JSON structure. Alongside the
attestationObject, this object contains additional details, including the type of
public key generated and the clientData utilized during the registration process.
Upon completion, the navigator.credentials.create() method returns this
JSON object to the JavaScript application as its output.

5. Upon receiving the PublicKeyCredential object, which encapsulates the attesta-
tionObject, the JavaScript application initiates an HTTP POST request. This
request is directed to the webauthn/register-finish endpoint on the RPs server.
The payload of this request is the AuthenticatorAttestationResponse, comprising
both the attestationObject and clientDataJSON. These elements are serialized in
JSON format.

6. The next step involves a series of validations to ensure the integrity and authenticity
of the data provided. The RP first decodes the AuthenticatorAttestationResponse
from its JSON serialization to extract the attestationObject and clientDataJSON.
The RP then validates the clientDataJSON to confirm that the credential creation
was initiated by a legitimate request from the user. This validation checks that the
challenge in the clientDataJSON matches the challenge originally sent by the RP
in the PublicKeyCredentialCreationOptions, and that the operation type is indeed
”webauthn.create”.

Next, the RP processes the attestationObject to verify the attestationStatement
and to extract the newly generated public key and credential ID. Depending on the
RPs policy, the signature of the attestation is validated against a PKI. Once the
attestation is verified and the credential is validated, the RP stores the credential
ID and public key associated with the user’s account in a database. This step
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0. The authentication process typically begins when the user attempts to access a
service or application requiring authentication. The user interacts with the RP’s
web interface, usually by entering a username or selecting an account. This action
triggers an HTTP POST request to the RPs webauthn/authenticate-begin
endpoint. This step is crucial for the RP to initiate the WebAuthn authentication
process and prepare the necessary parameters for the authenticator.

1. The RP, upon receiving the authentication request, creates a PublicKeyCredential-
RequestOptions object. This object contains several essential parameters, including
the RP ID, a new unique challenge, and user verification requirements. Crucially,
it specifies allowedCredentials, which are the credential IDs registered during the
registration process. However, including allowedCredentials in the PublicKeyCre-
dentialRequestOptions can be optional when the authenticator is in possession of
discoverable credentials. With discoverable credentials, it can identify the correct
key using only the RP ID.

Moreover, the RP ID parameter in the PublicKeyCredentialRequestOptions is also
subject to conditions: While it is generally necessary to specify the RP ID if it
di↵ers from the RPs origin, this parameter is optional when the RP ID is the same
as the origin. In such cases, the origin itself is used as the RP ID. It is essential to
use the same RP ID for both the registration and authentication ceremonies. If
di↵erent RP IDs are used, the authenticator won’t match the credentials, causing
the authentication to fail.

After preparing the PublicKeyCredentialRequestOptions, the RP sends it to the
client as a JSON payload via an HTTP response. The client’s JavaScript application,
receiving this payload, calls the navigator.credentials.get() method of the
WebAuthn API, passing the object as an argument. For a comprehensive list of
the PublicKeyCredentialRequestOptions parameters, refer to Section 5.5 [31]

2. The browser, acting as an intermediary between the JavaScript application and the
authenticator, forwards this request to the authenticator through CTAP. During
this step, the browser constructs clientData, similar to the registration process. The
clientData includes the operation type ”webauthn.get”, the challenge from the RP,
and the origin. The browser then hashes the JSON-serialized clientData using SHA-
256. The hashed clientData, along with the PublicKeyCredentialRequestOptions, is
transmitted to the authenticator via CTAP.

3. In scenarios where allowedCredentials are not specified in the request—typical
for discoverable credentials—the authenticator itself determines the appropriate
credential. It does this based on the RP ID and the user ID, both of which are part
of the request. The authenticator internally locates the credential that matches
these identifiers. If there are multiple matching credentials, the authenticator may
prompt the user to select the desired one.

For non-discoverable credentials, where allowedCredentials are explicitly provided
in the request, the authenticator uses the provided credential ID to directly locate
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the corresponding user’s private key. In both cases, once the appropriate credential
is identified, the authenticator requests user interaction to confirm the intention to
authenticate, usually by checking user presence and/or doing user verification. This
interaction can vary from a simple gesture to more stringent methods like a PIN
or biometric verification, tailored to the authenticator’s capabilities and the RPs’s
requirements. After obtaining the user’s consent, the authenticator then generates
an assertion using the identified private key.

4. The authenticator then sends the response back to the client. This response, known
as an AuthenticatorAssertionResponse, includes the authenticatorData and the
signature. The authenticatorData contains information about the authenticator
and the user interaction—just like during key registration—, while the signature is
generated by signing the concatenation of the authenticatorData and the hashed
clientData using the user’s private key.

5. The client’s JavaScript application receives the AuthenticatorAssertionResponse
and forwards it to the RPs server by making an HTTP POST request to the
‘webauthn/authenticate-finish‘ endpoint. The payload of this request includes
the AuthenticatorAssertionResponse, which contains the authenticatorData, the
signature, and the clientDataJSON. The full specification of the AuthenticatorAsser-
tionResponse can be found in Section 5.2.2 of [31].

6. Upon receiving the AuthenticatorAssertionResponse, the RP performs a series of
validations to ensure the authenticity and integrity of the authentication attempt.
The RP verifies the signature using the user’s public key that was registered and
stored during the initial registration process. It also checks the clientDataJSON to
confirm that the operation type is ”webauthn.get” and that the challenge matches
the one sent in the PublicKeyCredentialRequestOptions. Additionally, the RP
validates the authenticatorData to ensure the correct credential ID was used and
that the user was present during the authentication process. If all validations are
successful, the RP confirms the user’s identity by granting access to the requested
service or application.

7. The RP then communicates this outcome back to the client, typically via an HTTP
response. This communication informs the JavaScript application of the successful
or unsuccessful authentication, enabling it to react to the result by either providing
or denying access to the requested web resource. It is important to note that, just
like in the registration steps provided earlier, this final message from the RP to the
client is not depicted in Figure 4.

2.3. EAP

EAP is an authentication framework widely used in wireless networks and Point-to-Point
connections. Rather than specifying how to authenticate users, EAP allows protocol
designers to build their own EAP methods, subprotocols that perform the authentication
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transaction [9, p. 130]. Unlike traditional authentication mechanisms that operate at
the application layer, EAP operates directly on the link layer, allowing it to support
multiple authentication methods without depending on the transport protocol. The
802.1X standard specifies how EAP should be encapsulated and transported across
networks, whether it is a wired Local Area Network (LAN) or a wireless LAN. The
standard defines the encapsulation of EAP within Ethernet frames and operates on the
Data Link Layer. In practice, 802.1X secures the network by preventing unauthorized
access until the user or device successfully authenticates with the network authentication
server. This is typically achieved by proving possession of the private key corresponding
to a registered digital certificate, or by submitting credentials through a secure tunnel.
EAP exchanges are composed of requests and responses. The authenticator sends

requests to the system seeking access, and based on the responses, access may be
granted or denied [9, p. 131]. At the conclusion of an EAP exchange, the user has either
authenticated successfully (EAP-Success) or has failed to authenticate (EAP-Failure).
Success and Failure frames are not authenticated in any way [9, p. 134]
802.1X outlines three key entities in the authentication dialogue. The Supplicant (or

Station for wireless networks) refers to the end-user device requesting access to network
services. The authenticator (or Access Point (AP) for wireless networks) serves as the
gatekeeper to network access. It forwards all incoming requests to an Authentication
Server, like a Remote Authentication Dial-In User Service (RADIUS) server, for verifi-
cation and processing. EAP methods define the actual authentication mechanism used
during the EAP exchange between the supplicant and the authenticator. Some of the
most commonly used EAP methods include:

• EAP-TLS: Uses TLS with client certificates for mutual authentication. Despite its
security, EAP-TLS is not widely adopted because it requires every network user to
have a digital certificate. The complexity of generating, distributing, and verifying
these certificates poses significant challenges. Organizations with an existing PKI
find it easier to implement, many others opt for alternative methods to avoid the
burdens of establishing a PKI [9, p. 137].

• EAP-TTLS (or tunneled TLS): Uses TLS to create a secure tunnel with server-side
authentication only, eliminating the need for client certificates. The purpose of
the TLS tunnel is to provide encryption for another authentication protocol that
verifies the client’s identity to the network. The TLS tunnel is often called the
”outer” authentication, as it protects the ”inner” authentication process. The inner
authentication can employ various methods, from straightforward passwords to
more complex challenge-response mechanisms. EAP-TTLS is widely adopted as it
allows organizations to integrate with existing authentication infrastructures, such
as Windows domains, Lightweight Directory Access Protocol (LDAP) directories,
or Kerberos realms, without the necessity of establishing a separate PKI system.

• EAP-PEAP (or protected EAP): Similar to EAP-TTLS, it creates a secure
TLS tunnel to protect subsequent authentication exchanges. The slight di↵erence
between TTLS and PEAP is in the way the inner authentication is handled.
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TTLS uses the encrypted channel to exchange attribute-value pairs (AVPs), while
PEAP uses the encrypted channel to start a second EAP exchange inside of the
tunnel [9, p. 138].

• EAP-MD5: A simple method that uses Message-Digest Algorithm (MD5) hash
function for authentication. Due to its lack of mutual authentication and encryption,
it is considered less secure than TLS-based methods.

• EAP-FAST: Developed by Cisco as an alternative to PEAP and EAP-TTLS, it
uses a protected access credential (PAC) for establishing a TLS tunnel and supports
multiple inner authentication methods.

2.3.1. EAP-TLS

This thesis introduces a unique modification to an 802.1X network that uses EAP-TLS.
To understand the context of this modification, the EAP-TLS handshake process is
examined in detail in the following section. As a matter of notation, packets transmitted
as part of an EAP method exchange are written Request/Method when they come from
the authenticator, and Response/Method when they are sent in response [9, p. 134].
From the Supplicant to the Access Point, the protocol is EAP over LAN (EAPOL), as
defined by 802.1X. From the Access Point to the Authentication Server, EAP is carried in
RADIUS packets. Some documentation may refer to it as ”EAP over RADIUS.” Figure 5
illustrates the sequential steps that occur during the handshake process:

1. The process begins with the presumption that the Supplicant is already associated
with the AP. The Supplicant initiates the handshake by transmitting an EAPOL
Start message, signaling the beginning of the authentication sequence.

2. The Authenticator sends an EAP Request/Identity message to the Supplicant,
soliciting the user’s identity.

3. In response, the Supplicant provides an EAP Response/Identity packet that includes
its identity information back to the Authenticator.

4. The Authenticator then relays this identity information to the Authentication Server
encapsulated within a RADIUS Access-Request packet, initiating the backend
authentication process.

5. Following the exchange of identity information, the authentication process advances
to the crucial phase where a full TLS handshake with client certificates is performed.
Unlike a standard TLS handshake, as described in Section 2.1.1, the EAP-TLS
handshake involves the AP as an intermediary. Each TLS message generated
during this handshake is encapsulated within EAP request and response packets
for transport. Communication is bidirectional: the Supplicant sends these packets
to the AP via EAPOL, which then forwards them to the Authentication Server
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encapsulated within RADIUS packets, and vice versa, ensuring a complete run of
the TLS handshake.

Once the handshake is completed, the TLS tunnel is not utilized for the transmission
of any application data. Instead, it is closed and the established shared secret is
retained for subsequent use in the 4-Way EAPOL handshake.

6. If the TLS handshake is successful, the Authentication Server sends an EAP Success
packet to the Access Point, which is transmitted within a RADIUS packet.

7. Upon receiving the EAP Success packet, the Access Point then relays this packet
to the Supplicant via an EAPOL frame, indicating the successful authentication of
the Supplicant.

8. Following the successful EAP authentication, the 4-way EAPOL handshake between
the Supplicant and the AP is conducted. This phase utilizes the shared secret
derived from the TLS handshake as input for generating the Pairwise Master Key
(PMK). The PMK is then used to derive the session’s encryption keys, ensuring
secure communication under the Wi-Fi Protected Access (WPA)2/3 protocols.

9. Once session keys are derived, a secure data channel is activated. While Counter
Mode Cipher Block Chaining Message Authentication Code Protocol (CCMP) is
commonly employed in WPA2 for robust encryption, WPA2/3 networks might
utilize Galois/Counter Mode Protocol (GCMP) in WPA3 for enhanced security,
depending on network settings and device capabilities.
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3. Related Work

The essence of this thesis revolves around investigating the potential for FIDO, an
authentication framework initially designed for web applications, to be adapted for
integration within the TLS protocol. This attempt requires the disentanglement of FIDO
from its native HTTP and JavaScript environments, alongside a conceptual abstraction
of certain implementation specifics, thereby facilitating its application in alternative
contexts that rely on client authentication. The subsequent section on related work
outlines various studies and explorations concerning such an adaptation. These include
both successful implementations and theoretical investigations that, while not yielding
fully operational outcomes, contribute significantly to the discourse on extending FIDOs
utility beyond its original web-centric domain.

3.1. Passwordless VPN

In the work titled ”Passwordless VPN using FIDO Security Keys: Modern Authenti-
cation Security for Legacy VPN Systems” [10], Emin Huseynov explores an innovative
method to incorporate FIDO authentication within legacy Virtual Private Network
(VPN) protocols, notably Layer 2 Tunneling Protocol (L2TP), which typically do not
support advanced authentication mechanisms. The paper emphasizes the significance
of Two-Factor Authentication (2FA) in VPN systems to protect against phishing and
other security threats. Most existing VPN systems, however, lack native support for 2FA,
leading to workarounds that are vulnerable to social engineering attacks.
To address these challenges, the paper proposes a web-based VPN portal solution that

enables the use of FIDO security keys as either a single or a second-factor authentication
method. This solution necessitates that the user possesses a modern web browser and
requires the VPN service to provide a public-facing web interface, in addition to the
VPN server. The client connects to this web interface and performs a traditional FIDO
authentication. Upon successful authentication, the FIDO authentication server engages
the RADIUS server to create a temporary user record in its database. The temporary
username and password are transferred to the end user in text format, allowing the
user to copy and paste the credentials into the VPN client. Alternatively, this can be
done in a more user-friendly manner, such as through a batch file containing all the
necessary credentials and settings, which automatically establishes the VPN connection
when executed. Since the FIDO authentication server and the VPN server are located
behind the same private firewall, the communication between them is considered secure.
Upon the establishment of the VPN connection with the temporary credentials, said
credentials are immediately deleted from the server’s database to prevent credential reuse.
While this approach does not fully integrate FIDO into the VPN protocol, it constructs a

bridging infrastructure that logically connects both protocols. It is critical to acknowledge,
however, that this solution’s practicality is diminished due to the cumbersome process of
transferring temporary credentials between systems, a↵ecting overall user experience.
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3.2. FIDO2 authentication in OpenSSH

Secure Shell (SSH) operates on a client-server model to enable secure communication
over unsecured networks. In this protocol, the client—often an SSH-agent—initiates a
connection to the SSH-server. After successful authentication, which typically involves
public-key cryptography, a secure and encrypted channel is established between them.
This channel ensures confidentiality and authenticity in data exchange, allowing for
secure remote login, file transfers, and command execution. SSH has seen various
implementations, with OpenSSH being one of the most widely recognized and utilized.
Beginning with OpenSSH 8.2 (released in February 2020), built-in support for FIDO

and U2F hardware authenticators has been introduced. Unlike the core SSH protocol,
which is thoroughly outlined in RFC 4251 to RFC 4256, there is no formal standard
detailing the integration of FIDO within the SSH framework. As a result, the use
of FIDO as an authentication method is a distinct feature of OpenSSH, potentially
limiting compatibility across di↵erent SSH implementations. Given the absence of a
formal standard, it is challenging to precisely understand how this integration operates.
Nevertheless, analysis of OpenSSH’s changelog, examination of git commit messages, and
review of the source code facilitate certain insights into this extension [1] [2].
OpenSSH supports Public-Key Cryptography Standards (PKCS)#11 for standard

cryptographic operations with hardware tokens and smart cards. However, directly
integrating FIDO with PKCS#11 has proven to be unfeasible. As noted by the OpenSSL
developer team, ”the U2F protocol cannot be trivially used as an SSH protocol key type
as both the inputs to the signature operation and the resultant signature di↵er from those
specified for SSH. For similar reasons, integration of U2F devices cannot be achieved via
the PKCS#11 API” [17]. These constraints required the adoption of a new middleware
library approach to bridge the gap between OpenSSH and FIDO hardware tokens. This
middleware can be configured within OpenSSH via the ”SecurityKeyProvider” directive
in the sshd config file or through the SSH SK PROVIDER environment variable. This
approach enables OpenSSH to interface with a wide array of FIDO hardware tokens,
including those that may be developed in the future, without requiring significant changes
to the core OpenSSH codebase.
FIDO authentication in OpenSSH introduces two new key formats:

• sk-ecdsa-sha2-nistp256@openssh.com

• sk-ssh-ed25519@openssh.com

The former utilizes the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm
over the National Institute of Standards and Technology (NIST) P-256 curve, while
the latter employs the Edwards-curve Digital Signature Algorithm (EdDSA) over the
elliptic curve 25519. The ”sk-” prefix stands for ”Security Key” and indicates that these
private/public key files require an external hardware token.
In addition to the underlying signature primitive, these key formats incorporate

additional information within both the public and private keys, as well as within the
signature object itself. In the public key file, an application string has been incorporated,
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representing the RP ID of the FIDO protocol. By default, this application string is set
to ”ssh:”, although it can be overridden during key enrollment. In the private key file,
several attributes have been introduced. These include the same application string as in
the public key, a Flags byte containing information on whether user verification and user
presence checks are required, and a key handle corresponding to the credential ID in the
FIDO protocol.
The ceremony for enrolling discoverable and non-discoverable credentials diverges

significantly from the traditional FIDO protocol. Unlike the standard FIDO flow, it does
not involve the RP (in our case, the SSH-server). Instead, keys are generated locally on
the client machine using ssh-keygen, similar to typical SSH key generation. Throughout
this process, a hardware token must remain attached. Once the private and public key
files have been generated, the public key component can be transferred from the client
to the server using the command line tool ssh-copy-id. In contrast to conventional
FIDO, the user ID is not determined by the RP, but is left empty. Given that an SSH
endpoint is inherently tied to a single user account, there is usually no need for the
SSH-server to multiplex between users. Typically, each SSH server is associated with
a single user account, although exceptions may exist, such as shared environments. If
multiple SSH resident keys on a single token are desired, then it may be necessary to
override the default RP ID or user ID values using the ssh-keygen "-O application="
or "-O user=" options.
The integration of FIDO into OpenSSH represents a significant deviation from the

original FIDO protocol. It liberates the RP from the necessity of maintaining state in the
form of a database. The only user context an SSH-server needs to retain is the public key
and the RP ID, both stored within the new formats of public key files. In addition, this
deviation from the FIDO protocol unintentionally introduces a security enhancement for
non-resident keys, making them more resilient against stolen FIDO tokens. An attacker
in possession of a stolen FIDO token without PIN protection can authenticate with any
RP registered with the credentials on the token, regardless of whether it is discoverable
or non-discoverable. In the case of non-discoverable keys, the credential ID required
to derive the private key on the token is provided by the RP during authentication.
However, in OpenSSH, the key handle is stored on the client’s device, requiring the
attacker to have both possession of the token and somehow obtain the private key file
under $HOME/ssh/. Nevertheless, once users set a PIN on their tokens, stolen tokens
become ine↵ective for attackers.

3.3. EAP-FIDO

In October 2023, Stefan Winter and Jan-Frederik Rieckers from Deutsches Forschungsnetz
(DFN) published an Internet-Draft entitled ”EAP-FIDO” within the Internet Engineering
Task Force (IETF), proposing a new EAP method leveraging FIDO authentication [22].
Although still a work in progress at the time of writing, the draft’s general procedure
is outlined clearly. Similar to EAP-TTLS, as described in Section 2.3, the protocol
consists of two phases: the TLS handshake phase (the outer authentication) and the
FIDO exchange phase (the inner authentication). In the TLS handshake phase, TLS is
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employed to authenticate the server to the client. Subsequently, the established TLS
tunnel safeguards the inner FIDO authentication, which authenticates the client to the
server. Upon successful completion of the FIDO exchange, the client and server can
implicitly derive keying material from the TLS handshake phase. The messages involved
in the inner FIDO authentication are encoded in CBOR format before being transmitted
via the TLS record layer. These messages adhere to a custom format defined within the
protocol specification, encompassing elements such as message types, attributes, and
error codes.
It is important to note that the EAP-FIDO draft focuses exclusively on the authentica-

tion phase of utilizing FIDO as EAP-method. Key enrollment and management processes
are beyond the scope of this document. Instead, these processes are expected to be
carried out using traditional HTTP-based web interfaces, which provide a well-established,
secure, and user-friendly mechanism for enrolling FIDO keys with the respective services.
The PoC implementation of the EAP-FIDO draft also served as an initial investigation

into the practicality and e�ciency of using this novel EAP method in eduroam networks.
Considering eduroam’s emphasis on user experience and relatively modest security
demands, utilizing platform authenticators such as the Trusted Platform Module (TPM)
and Apple’s Secure Enclave could provide robust FIDO authentication while ensuring
the convenience of network users by eliminating the need for external hardware tokens.
Platform authenticators, combined with silent authentication (which entails no user
verification or presence checks), would maximize usability, o↵ering users a seamless
experience where they are not involved in any interaction.

3.4. FIDO as TLS Extension

In his thesis ”FIDO2 als TLS-1.3-Erweiterung”, written in German in 2020, Tom-Lukas
Johann Breitkopf lays the groundwork for the concept that this research seeks to further
explore and expand upon: the integration of the FIDO authentication ceremony within
the TLS handshake as a TLS extension [6]. Breitkopf outlines an architecture for such
integration including the detailed structure and encoding of messages exchanged between
peers. Although Breitkopf’s thesis does not address key enrollment, it does focus on the
authentication ceremony, specifically addressing both discoverable and non-discoverable
credentials. He introduces two modes of operation within the TLS-FIDO extension: ”FI-
mode” for authentication with discoverable credentials, maintaining the protocol flow of
the original FIDO specification, and ”FN-mode” for non-discoverable credentials. Unlike
the FI-mode, FN-mode e↵ectively doubles the TLS handshake process by executing two
consecutive TLS handshakes in a row, each augmented with extension data to ensure the
secure transmission of the client’s identity.
While Breitkopf uses the standard TLS extension mechanism described in RFC 8446 to

signal the desire for FIDO authentication to the remote peer, the FIDO challenge-response
messages are not carried as extension data within existing TLS handshake messages.
Instead, he incorporates new message types into the handshake, positioned precisely
where the server’s CertificateRequest and the client’s Certificate (as depicted in Figure 1)
would typically be sent. Yet, these messages diverge by carrying FIDO challenge-response
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content, maintaining the traditional sequence, but altering the payload to facilitate FIDO
authentication. Despite introducing new message types to the handshake, Breitkopf’s
modified TLS library maintains interoperability with existing TLS implementations.
Should a peer not recognize the FIDO extension, it simply disregards the initial signal
for FIDO authentication, allowing the communication to proceed under the standard
TLS protocol.

Breitkopf not only o↵ers a detailed specification and critical assessment of alternatives
but also brings his concepts to life through a PoC using the tlslite-ng Python library.
The selection of this TLS library is advantageous for its ease of prototyping and rapid
development capabilities. However, it is noteworthy that tlslite-ng is not commonly
used in production environments, highlighting a distinction between its use for conceptual
demonstration and practical application. To bridge that gap, another thesis (authored
by Mario Freund) addresses the need for a more production-suited implementation of
the proposed concept [8]. Freund’s focus lies in the implementation of the FIDO-TLS
extension using GNUtls, a TLS library written in the low-level language C. Given that
Freund’s work predominantly builds upon the concepts and foundational research provided
by Breitkopf, this thesis does not receive further attention in the current discussion.

3.5. Summary

The investigation of FIDO authentication in various settings, as outlined in the previous
sections, demonstrates its adaptability and potential for broader application beyond its
original design for web applications. The development of a bridge infrastructure for using
FIDO with legacy VPN systems, its incorporation into OpenSSH, the introduction of a
new EAP method, and the proposal to integrate FIDO as a TLS extension are indicative
of the versatility and growing relevance of FIDO in di↵erent technological domains.
In the following chapter, significant focus will be placed on examining Breitkopf’s

methodology for integrating FIDO into the TLS protocol. Building upon Breitkopf’s
foundational ideas, this thesis extends his concept to not only cover the authentication
ceremony, but also to integrate the credential enrollment process into the TLS handshake.
Additionally, it seeks to extend and improve the specification of message types, focusing
on elevating the security and operational e�ciency of the overall system.

30



4. Methodology

In traditional network architecture, as described by the OSI model, each layer is assigned
specific responsibilities, irrespective of its underlying internal structure and technology.
This hierarchical approach not only simplifies the understanding and troubleshooting of
network issues but also establishes a clear conceptual separation between the functions
of each layer [13, p.77].
According to the OSI model, TLS should ensure confidentiality, integrity, and endpoint

authentication for data transmission at the Transport Layer. Traditionally, TLS has been
designed to provide this mutual authentication, however, in practice, the mechanisms
available for client authentication within TLS—such as client certificates, TLS-Pre-Shared
Key (PSK), and Kerberos—have not achieved widespread popularity or usability. The
complexity inherent in managing client certificates, along with the operational challenges
of deploying TLS-PSK or Kerberos in diverse environments, have often led to client
authentication being either omitted or addressed through alternative solutions. Emerging
as a notable advancement, FIDO aims to resolve many of these usability and security
challenges but traditionally does so at the Application Layer. This deviation introduces a
cross-layer design where authentication extends beyond its intended OSI layer, embedding
authentication logic into higher-level application processes.
This deviation from the OSI model is not just theoretical but has practical implications.

Implementing authentication at the Application Layer requires that each application
protocol independently incorporates its own authentication mechanism. Although it is
entirely feasible to integrate FIDO to protocols such as Simple Mail Transfer Protocol
(SMTP), EAP, Lightweight Directory Access Protocol (LDAP), File Transfer Protocol
(FTP), Message Queuing Telemetry Transport (MQTT), Network News Transfer Protocol
(NNTP) and OpenVPN individually, integrating it directly into the Transport Layer
presents a more universally applicable and protocol-agnostic approach. Applications that
rely on the Transport Layer can inherently utilize its functions, ensuring that FIDO’s
authentication capabilities are readily available across a wide range of services without
the need for individual protocol adjustments.
The core idea of this thesis is to integrate FIDO into the TLS protocol, thereby

restoring the conceptual integrity of the OSI model and aligning security mechanisms
with the appropriate layer. This integration aims to standardize authentication processes
across di↵erent protocols by embedding them directly within the Transport Layer, rather
than at the Application Layer. There is no need for the application layer to implement a
protocol-specific authentication mechanism or the protocol logic that terminates the TLS
channel in the event of an authentication failure. Once the TLS channel is successfully
established, the application can be assured that all required safety properties, including
endpoint authentication, are fulfilled.
The following chapter details the methodology for integrating FIDO with TLS, covering

design principles and requirements, the network and threat model, and strategies for
embedding FIDO ceremonies as TLS extensions. It also discusses the definition of message
types, their structure, and encoding. Additionally, the chapter explores how errors are
communicated within the system via TLS alerts and discusses the communication of
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FIDO outcomes to the application layer.

4.1. Design Principles & Requirements

To ensure the successful integration of FIDO authentication and key enrollment with the
TLS protocol, it is crucial to define a robust set of design principles and requirements
that guide the development process. These requirements are presented in descending
order of importance.

• E↵ectiveness: The extension must uphold the existing security properties of
TLS, providing confidentiality, integrity, and server authentication. Additionally, it
should enhance TLS by integrating client authentication according to the FIDO
standard, thereby augmenting the protocol’s security framework with a robust,
client authentication mechanism.

• Privacy: User identity and authentication details must be protected throughout
the authentication process. This includes safeguarding sensitive information from
unauthorized access or exposure during and after the authentication transaction.

• Interoperability:

– The extension must be compatible with TLS implementations that do not sup-
port the extension, ensuring backward compatibility and broad applicability.

– The extension should seamlessly integrate with existing FIDO tokens, enabling
users to utilize their current authentication devices without encountering any
disruptions or complications.

• Protocol Agnostic: In keeping with the original layer segregation of the OSI model,
the extension should be agnostic to application layer protocols. This principle
ensures that the solution can be universally applied across di↵erent application
contexts that build on TLS.

• E�ciency: The integration’s impact on performance is a critical consideration.
Specifically:

– The runtime of the FIDO ceremonies within TLS should not significantly
exceed that of traditional FIDO authentication executed over HTTP.

– The number of RTTs should not increase substantially, to prevent degradation
in connection establishment times.

– Packets sent over the wire should maintain a comparable size to, or preferably
be smaller than, those observed with traditional FIDO ceremonies.

• Scalability: The solution must support scalability in terms of both the number
of FIDO devices and users it can accommodate. This scalability is essential for
widespread adoption and the long-term viability of the integration.
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• Modularity: The design of the extension should enable easy integration into or
removal from the TLS protocol stack. This flexibility facilitates the adoption of
the extension in diverse environments and use cases.

• Usability: The user experience should be as seamless and straightforward as pos-
sible. This involves minimizing user interactions, thereby reducing the complexity
and potential for user error.

• Standardization: Where possible, the extension should adhere to existing stan-
dards to promote interoperability and consistency across implementations.

4.2. Network & Threat Model

A network model is presented that illustrates the relationship between clients, servers,
and adversaries within a potentially insecure network environment. This model forms
the basis for the following discussions and analyses. The key components and their
interactions within the model are detailed as follows:

• Client: The entity that integrates both TLS client and FIDO client capabilities.
Communication between the client and the FIDO authenticator is assumed to be
secure.

• Server: The entity that integrates both TLS server and FIDO server capabilities.
Communication between the server and the FIDO backend, whether it be a database
or an external FIDO authentication server, is considered secure.

• Adversary: The adversary is an entity that attempts to compromise the security
of the client-server communication. The capabilities of the adversary in this model
are the following:

– Eavesdropping: Listening to communications between the client and the
server.

– Man-in-the-Middle (MITM) Attacks: Intercepting and potentially alter-
ing the communication between the client and server.

– Replay Attacks: Capturing data from the network and retransmitting it to
create unauthorized transactions or sessions.

– Phishing Attacks: Deceiving users into providing sensitive information by
masquerading as a trustworthy entity.

The model assumes that the adversary has the capability to exploit vulnerabilities
in the communication protocol and the network but does not have the ability to
breach cryptographic functions.

• Insecure Network: The network connecting the client and server is considered
insecure and is susceptible to the forms of interception and attacks as mentioned in
the adversary’s capabilities. This includes networks like the internet or any other
environment where inherent security cannot be guaranteed.
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• Message: This term describes a collection of related attributes that together
form a meaningful unit in a communication process. Each attribute in a message
contributes to its overall purpose, ensuring semantic cohesion. Messages are the
basic units in communication protocols, encapsulating the necessary information
to perform a specific operation or convey a particular piece of data. The message
type acts as an identifier, distinguishing each message’s role and function within
the communication sequence.

• Packet: A packet is an assembly of one or more messages prepared for transmission
across a network. It represents the physical packaging of these messages into a
single, coherent unit that is sent over the network.

4.3. Extending TLS Peers

This subsection outlines the enhancements made to both the traditional TLS client and
server to support FIDO authentication and key registration functionalities.

The extension of the TLS client involves equipping it with the capabilities to access
and interact with FIDO authenticators. These authenticators can be external hardware
tokens, such as USB security keys, or platform authenticators that are built directly into
the user’s device, such as biometric sensors or TPMs. The integration assumes that the
TLS client, now also functioning as a FIDO client, has access to these authenticators
through appropriate APIs. With this extension, the TLS client’s responsibilities are
expanded to include initiating and managing FIDO authentication and key registration
ceremonies:

1. Detection of FIDO authenticators connected to the system and communication
with them via CTAP.

2. Integration of the FIDO authentication and key registration process within the
TLS protocol flow. Failure in FIDO authentication impacts the TLS handshake,
enhancing security by ensuring only authenticated sessions are established.

3. Management of FIDO credentials, ensuring secure storage and retrieval during
authentication or key enrollment.

The extension of the TLS server involves equipping it with the capabilities to interact with
and verify FIDO authentication data provided by clients, as well as to register and manage
FIDO keys. The specification does not dictate whether storage of credential information
on the server side should occur via an internal/external database or through interaction
with an external FIDO authentication server. This flexibility allows implementers to
choose the most appropriate method based on their specific security needs, infrastructure,
and operational preferences. Regardless of the backend architecture, the server must be
capable of the following:
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1. Verification of FIDO authentication data, such as signatures and attestation state-
ments, which are sent by the client.

2. Storage of credential information, such as credential IDs, public keys and user data.

3. Changing the state of the TLS session based on the outcome of FIDO ceremonies.

4.4. Integration into the TLS handshake

Section 2.2 highlights that both FIDO ceremonies involve a series of message exchanges
between the client and the server across a potentially unsecured network. These messages
can be broadly classified into four abstract types: Indication, Request, Response and
Result. Specifically, the initial messages in Step 0 of Section 2.2.1 and 2.2.2 are identified
as registration or authentication Indication. The subsequent messages in Step 1 of
both ceremonies fall under the Request category, either requests for registration or
authentication. The messages in Step 5 represent registration or authentication Response
messages. Lastly, step 7 corresponds to the Finished type.

4.4.1. Single Handshake

The primary strategy of this research involves encapsulating FIDO protocol messages
for both authentication and key enrollment ceremonies within the TLS handshake. As
detailed in Section 2.1.2, TLS 1.3 provides a mechanism for including arbitrary extension
data within specific handshake messages. In a TLS 1.3 handshake that does not involve
client certificates, the extension mechanism allows arbitrary data to be exchanged between
the client and server within a single round-trip. Specifically, the client can transmit data
to the server within the ClientHello message. The server, in turn, can include additional
extension data in its response, which may be part of the ServerHello, EncryptedExtensions,
or Certificate messages. When client certificates are used in a TLS 1.3 handshake, there
is an additional opportunity for the client to send arbitrary data back to the server within
its Certificate message, utilizing the extension mechanism. This capability extends the
data exchange sequence to include a third transmission of arbitrary data: First from the
client to the server in the ClientHello, second from the server to the client within the
ServerHello, EncryptedExtensions, Certificate, or CertificateRequest messages, and third,
from the client back to the server in the Certificate message of the client. Each of these
steps utilizes the extension mechanism to transmit additional, potentially custom data,
along with the standard required handshake information.
Integrating FIDO ceremonies within the TLS 1.3 handshake framework is feasible

if the final FIDO message type, the Result, is not transmitted during the handshake
itself. This approach allows the first three FIDO message types—Indication, Request,
and Response—to align with the three exchange windows provided by TLS 1.3 when
client certificates are used. It will be demonstrated in Section 4.8 that TLS alerts can be
used to transmit the necessary information of the Result message, thus ensuring complete
transmission of all FIDO message types. Following this strategy, Figure 6 illustrates
an example of such integration, highlighting potential TLS handshake messages where
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4.4.2. Vulnerabilitiy of the Single Handshake Approach

On closer examination, the proposed integration exhibits some vulnerabilities that need
careful consideration and mitigation. As explained in Section 2.1.2, the ClientHello
message in TLS is not protected. For authentication with discoverable credentials, the
Indication doesn’t contain sensitive data; it merely signals the RP that authentication
with discoverable credentials is intended. Since this information is not confidential, the
proposed integration is suitable in this context. However, during key enrollment and
authentication with non-discoverable credentials, the Indication message must include
the client’s identity. Given the privacy requirement of this study, protecting the client’s
identity is essential. Therefore, this straightforward approach is not viable here, as it
would expose sensitive identity information in an unprotected ClientHello message.

Breitkopf, in his thesis, explores various strategies to address this design flaw [6, p. 27-
30]. The first strategy he discusses is encrypting the Indication with the server’s static
public key. However, he concludes that this method lacks forward secrecy, leading to
the decision not to pursue it further. Another proposed idea is the use of a dynamic,
ephemeral user identity for each new connection, previously agreed upon in an earlier
interaction. This, however, fails to provide a solution for bootstrapping the very first
connection between peers, making it impractical for production. An alternative strategy
involves delaying the transmission of the user’s identity until after the first RTT, when
a shared secret is established, and the handshake messages are encrypted. While this
is a valid approach, it fundamentally alters the TLS 1.3 handshake to an extent that
it becomes incompatible with the TLS extension mechanism. This would require a
restructuring of the TLS state machine to introduce an additional RTT, conflicting with
the requirement for Modularity. Although this strategy is not used in this thesis, a
detailed discussion of the idea is presented in Section 6.3. Finally, Breitkopf suggests a
double TLS handshake as a potential solution. This concept is illustrated in Figure 7.

4.4.3. Double Handshake

The rationale behind the double handshake approach is tailored to circumvent the confiden-
tiality limitations of the ClientHello message. Recognizing that achieving confidentiality
at this point is not feasible, this method shifts the transmission of the user’s identity to a
preceding TLS handshake. In this initial handshake, the sensitive information is securely
embedded within a Response message, thus ensuring its protection. The subsequent
handshake then references this earlier exchange in its non-protected Indication message.
The server temporarily stores all information received in the first handshake and later
accesses it using the reference provided in the second handshake. In order to introduce
an unambiguous terminology, the first handshake’s Indication, Request, and Response
messages will be termed PreIndication, PreRequest, and PreResponse.
The concept of a double handshake introduces a mechanism for securely transferring

the user’s identity to the server, all while preserving privacy from potential eavesdroppers.
This process unfolds as follows:

1. PreIndication: The client initiates the process by sending a PreIndication message.
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This message signals the client’s intention to either authenticate with or register a
new FIDO key. Given that this initial communication does not contain sensitive
information, the lack of encryption at this stage does not pose a security risk.

2. PreRequest: Acknowledging the client’s initial request, the server sends back a
PreRequest message. This message includes a unique, ephemeral reference that the
client will use in the subsequent handshake.

3. PreResponse: The client sends its user identity within the PreResponse message,
protected from potential eavesdropping.

4. Indication: In the second handshake, the client sends the previously provided
ephemeral reference. This reference links the current handshake with the previously
established context. Like all Indication messages, no confidentiality is provided
here; however, this does not compromise security as the ephemeral reference alone
gives no insight into the user’s identity to an adversary.

5. Request: Utilizing the ephemeral reference to retrieve the cached identity infor-
mation, the server constructs a Request packet. This packet is created according to
the requirements of FIDO’s authentication or registration ceremony.

6. Response: Finally, the client responds with a Response packet that, again, aligns
with the FIDO ceremony for either registration or authentication.

While this procedure appears secure at a glance, it inadvertently introduces another
vulnerability. During step 4, an adversary could execute a MITM attack, intercepting
and replaying the Indication message that contains the ephemeral reference. This action
would enable them to subsequently obtain the server’s Response message. The ephemeral
reference used by the client does not reveal the user’s identity directly to the adversary.
However, once the server interprets this reference to generate the response, the message
it sends back inherently contains information specific to the user. This could include, but
is not limited to, credential IDs of previously enrolled credentials, details regarding the
authenticator, or the client’s username in plaintext. Thus, while the adversary does not
initially know the client’s identity, the server’s response inadvertently exposes sensitive
client information.
In order to address this design flaw, an additional security measure can be implemented

within the double handshake. Specifically, the server can employ symmetric encryption
to safeguard all sensitive information included in its Request message. The key material
required for this encryption is exchanged during the first handshake. It is sent from the
server to the client within the PreRequest message, alongside the ephemeral reference.
This key is uniquely tied to the reference, making it ephemeral as well. It is used only
once: To encrypt the sensitive data in the server’s Request message, and subsequently, to
decrypt this information at the client side. Using this additional security measure, the
revised sequence of operations is as follows:
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1. PreIndication: The client initiates the process by sending a PreIndication message,
signaling its intention to authenticate with or register a new FIDO key. Since
this initial communication does not contain sensitive information, the absence of
encryption at this stage poses no security risk.

2. PreRequest: In acknowledgment of the client’s initial request, the server sends
back a PreRequest message, which is confidentially transmitted. This message
includes a unique, ephemeral reference and a symmetric encryption key. The client
stores both the reference and the key for use in the subsequent handshake.

3. PreResponse: The client transmits its user identity within the PreResponse
message, protected from potential eavesdropping.

4. Indication: During the second handshake, the client sends the previously received
ephemeral reference. This reference serves to link the current handshake to the
previously established context. As with all Indication messages, no confidentiality
is provided here, yet this poses no security risk since the ephemeral reference itself
does not reveal any identifiable information about the user.

5. Request: Using the ephemeral reference to access the stored identity information,
the server constructs a Request message. If the message contains sensitive, client-
related data, then it is encrypted using the previously shared symmetric key. The
content of the Request message adheres to the requirements of FIDO’s authentication
or registration ceremony.

6. Response: The client decrypts the encrypted content of the Request packet using
the symmetric key, then sends back a Response packet that conforms to the FIDO
ceremony for either registration or authentication.

In determining the appropriate symmetric encryption algorithm for the double hand-
shake strategy, it is essential to select a protocol that ensures both security and compliance
with established TLS standards. Advanced Encryption Standard (AES) Galois/Counter
Mode (GCM) emerges as a highly suitable choice due to several key advantages it o↵ers,
which align well with the requirements of this extension. This choice is particularly
advantageous because AES GCM operates without padding, thereby minimizing trans-
mission overhead. Most importantly, the choice of AES GCM is strongly supported by
compliance requirements. According to RFC 8446, a ”TLS-compliant application must
implement the TLS AES 128 GCM SHA256 cipher suite” [21, Section 9.1]. This mandate
ensures that by selecting AES GCM, the proposed security mechanism adheres to the
standards required for modern TLS implementations, guaranteeing that our encryption
approach is not only robust but also standardized across platforms that adhere to TLS
specifications.
Typically, AES GCM requires a random Initialization Vector (IV) for each new ci-

phertext to ensure cryptographic security. However, in this specific application, each
GCM key is ephemeral and designed for a single use only. This approach allows for the
IV to be constant for each encryption process, as the key itself changes with every new
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encryption. This eliminates the need for a random IV for each operation, thus simplifying
the encryption process and reducing overhead. While it is technically feasible to omit
transmitting the constant IV along with the ciphertext, to maintain clarity and explicit
cryptographic practice, it may be beneficial to include it. Transmitting the IV explicitly
ensures that the encryption process remains transparent and verifiable, adhering to best
practices in cryptographic implementations.

4.5. Control Mechanisms for Key Registration

The original FIDO registration ceremony lacks control mechanisms to determine which
users are permitted to register a new FIDO key with the RP. As explained in Section 2.2.1,
the outer web context typically conducts a preliminary authentication step, acting as a
gatekeeper for new key enrollments. However, since FIDO registration on the transport
layer lacks this outer web context, incorporating a control mechanism into the registration
ceremony becomes necessary. While this might initially appear as a chicken-and-egg
problem—requiring authentication to register keys that provide authentication—several
concepts exist to address this issue.
One approach is to delegate responsibility to TLS. TLS already supports various client

authentication methods (such as CCA, Kerberos, TLS-Secure Remote Password (SRP),
TLS-OpenID, TLS-OAuth), which, as outlined earlier, are not widely adopted due to
their individual di�culties. Despite the limited adoption of these methods, using them
to authenticate a user during a new FIDO key registration could prove beneficial. With
an authenticated client, the RP can then decide, based on its configuration, whether
the client is authorized to register a FIDO key with the service. Alternatively, both
peers may utilize a shared secret such as an OTP, PSK, or ”ticket” known prior to the
registration ceremony. The distribution of this shared secret can occur out of band or
through various key distribution mechanisms, utilizing the same physical connection
between the client and server as TLS [25, Section 7.3].
Initially, TLS-PSK was considered as a solution. This mechanism anchors the shared

secret in the TLS protocol and would align with the standardization requirement. However,
this idea posed di�culties because the PSK mechanism is also incorporated into TLS
through an extension. Attempting to develop a TLS extension that builds upon another
TLS extension resulted in a cross-extension dependency that was practically infeasible [21,
Section 4.1.1]. Consequently, this thesis will adopt the concept of a ticket, assumed to
be distributed to the peers prior to the registration ceremony out of band. During the
handshake, the client sends its ticket to the server in the encrypted Pre-Registration
Response. The server compares it to its own list of tickets, proceeding with the registration
ceremony if a match is found, or aborting otherwise.
Tickets can be generated randomly or may contain semantic meaning, combined with

su�cient entropy to prevent forgery. Examples of semantic information:

• User Name or User ID: Specifies the identity of the user associated with the
ticket, ensuring that this identity is securely bound to the FIDO identity created
during the registration process.
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• Expiration Date: Indicates the date and time until which the ticket remains valid.
This helps enforce time-bound constraints on the registration ceremony.

• Issuer Information: Provides details about the entity or system that issued the
ticket, allowing the server to verify the authenticity and trustworthiness of the
ticket.

• Purpose or Usage Context: Describes the intended purpose or context for
which the FIDO keys can be enrolled using the ticket, ensuring that they are used
appropriately.

• Authenticator Properties: Specifies the properties that the FIDO authenticator
must fulfill for successful key enrollment. These properties may include the authen-
ticator type, capabilities, and supported authentication methods. Verification of
these properties occurs during the attestation step of the registration ceremony.

4.6. Message Structure and Encoding

Having outlined the integration of FIDO messages into the TLS handshake as extension
data in Section 4.4, this section focuses on the message structure and encoding, specifically
those exchanged between the client and the RP. The structure of messages between the
client and the authenticator has already been specified by the CTAP. TLS extension
data is inherently binary, allowing for a variety of encoding schemes. To determine the
most appropriate encoding method, it is useful to consider the encoding practices of the
related protocols:
WebAuthn relies on binary serialization of JSON objects for communication within

HTTP requests and responses. Although this method facilitates easy parsing and aids in
debugging due to its readability, it is far from being space-e�cient, as JSONs textual
format, consisting of characters such as curly braces, square brackets, colons, and commas,
inherently consumes more space compared to binary serialization formats [27, p.13].
In contrast, CTAP utilizes CBOR encoding for its transactions. CBOR is a schema-less

binary serialization specification o↵ering compact binary representation for self-describing
data. It supports diverse data types such as numbers, strings, booleans, arrays, and
maps, with a layout enabling e�cient representation of complex data structures. CBORs
design prioritizes resource e�ciency, making it suitable for use in environments with
memory and processor constraints [27, p.60-63] [5].
TLS, notably, adopts a custom binary encoding scheme. This scheme organizes data

into fixed-length fields sequenced in a predetermined order, with variable-length data
managed through an extra length field. Moreover, specific elements of TLS, like X.509
certificates, are formatted using Abstract Syntax Notation One (ASN.1), employing
Distinguished Encoding Rules (DER) for the encoding process. ASN.1 supports a variety
of data types, including integers, real numbers, strings, booleans, enumerations, unions,
and lists, making it highly versatile for encoding diverse data structures. However, unlike
CBOR, ASN.1 requires schemas to be predefined, which can add complexity and overhead
to the encoding and decoding processes. Furthermore, while ASN.1 provides e�cient
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space utilization through its encoding rules, it may not be as flexible or lightweight as
CBOR in resource-constrained environments [27, p.23-26] [11].
The upper size limit for TLS extension data is critically important in the design and

encoding of FIDO messages, as all such messages are encapsulated within TLS extension
data fields during the handshake. The maximum size for a TLS record, according to
the TLS 1.3 specification, is 214 bytes (16 kilobytes) [21, Section 5.1], encompassing the
entire payload, headers, and other data within the record. Consequently, the actual space
available for the sum of all extension data is slightly less than 214 bytes, considering the
space occupied by other elements of the handshake message. If a TLS message exceeds
the 16 kilobytes limit of the record layer, TLS automatically fragments it across multiple
records [21, Section 5.1]. Thus, in theory, there is no upper size constraint for extension
data. However, to ensure robustness and e�ciency, this thesis aims to avoid scenarios
where TLS must fragment records due to long extension data. It is important to note
that there are instances where TLS already fragments handshake messages, even without
extensions. For example, the Certificate message can contain a potentially very long
chain of Rivest Shamir Adleman (RSA) certificates with long keys, which can exceed the
16 kilobytes limit. Apart from the Certificate message, TLS handshake messages usually
do not exceed 512 bytes. Therefore, if fragmentation is not desired, it is estimated that
the available space for the sum of all extension data is approximately 214 � 512 = 15872
bytes.
In web-based FIDO, data exchanged between peers is serialized using JSON, which

exhibits significant space ine�ciency due to its verbose textual format and key-value struc-
ture. These attributes present opportunities for optimization. One potential improvement
could involve organizing all data fields, both required and optional, in a predetermined,
sequential format, thereby eliminating the necessity for keys. Optional fields should also
follow this sequence, and their presence can be compactly encoded using a single byte,
where each bit clearly indicates whether a specific optional field is present. While this
approach significantly reduces packet size, it requires a custom encoding scheme. Such a
custom scheme is di�cult to parse and extend due to its reliance on precise bit patterns.
Additionally, the complex nature of this custom encoding makes the implementation
error-prone, complicating both development and future modifications.
Given the size constraints, the requirement for standardization and the complexity

associated with a custom binary encoding scheme, this thesis adopts a hybrid encoding
strategy, choosing CBOR over alternatives such as ASN.1 and proprietary binary formats.
The preference for CBOR stems from its e�ciency, compactness, and inherent schema-less,
self-descriptive properties. Furthermore, the use of CBOR aligns with its established use
within the FIDO protocol, ensuring uniformity in data encoding across components and
eliminating the need to introduce novel encoding mechanisms.
The proposed extension suggests encoding required data fields in a predefined sequence

within a CBOR array, removing the necessity for keys. Optional fields are encoded in a
CBOR map, which facilitates presence checks through simple key lookups. Each key’s
overhead is minimized to a one-byte identifier by assigning a unique enum value to each
optional field, avoiding the space-consuming verbose text strings typically used for keys.
This method substantially reduces the storage space required for keys while preserving

43



the flexibility and accessibility advantages of the CBOR map structure. CBOR inherently
embeds the size and data type of each element within its encoding, thus eliminating
the need for explicit length fields. Some optional data elements are grouped into tuples.
If present, these tuples are stored in a sub-array, preserving their relational structure.
Furthermore, certain optional tuples may exhibit zero or multiple occurrences, in which
case they are organized into nested CBOR arrays. Enums are frequently used within the
specification to represent specific choices or states. As CBOR does not natively support
enum types, these are encoded as integers. CBOR automatically uses tiny integers for
integer values between 0 and 23, encoding them in a single byte to minimize the data
size.
Based on the analysis of message structure and encoding strategies detailed in this

section, specifications for each message type are precisely defined in Appendix A. Messages
are generally structured to adhere to the upper size constraints imposed by the TLS
record layer (without fragmentation), with notable exceptions being messages A.5, A.11,
and A.12. These messages have the potential to exceed the maximum record size due to
their inclusion of extensive lists of excludeCredentials, allowCredentials, or custom
FIDO extensions. The FIDO protocol, in general, does not specify limits on the number
of these elements. A detailed examination of how the number of allowable list entries
in specific message types impacts TLS record fragmentation will be further explored in
Section 6.2 of this thesis.

4.7. Determination of Origin and Relying Party ID

In the FIDO specification, the origin is a security-critical concept that ensures the
authentication request comes from and returns to a trusted source. The origin typically
includes the scheme (e.g., https), the host or domain (e.g., example.com), and, implicitly,
the standard port for the scheme [28]. It is used to ensure that authentication requests
and responses are tied to the specific website or web application, thereby preventing
phishing and MITM attacks by ensuring that FIDO credentials are not shared across
di↵erent origins. In the WebAuthn process, the origin is obtained from the secure context
of HTTPS, thus HTTPS is responsible for validating this origin before FIDO initiates the
authentication request. In a FIDO-TLS extension, where the HTTPS context is absent,
the concept of origin must be adapted to fit a non-web environment, thereby falling back
to the underlying TLS mechanism.
In TLS, the server domain is typically identified by either the Common Name (CN) or

the Subject Alternative Name (SAN) field of its certificate. The CN field historically
served as the primary means of specifying the server’s domain. However, due to security
concerns and the evolving nature of internet standards, its usage has been deprecated in
favour of the SAN field [20, Section 3.1]. The client determines its intended connection
destination by specifying either a domain name or an IP address. Additionally, this
intended endpoint can be further refined using Server Name Indication (SNI), an extension
to the TLS protocol. The SNI allows the client to indicate the hostname at the beginning
of the TLS handshake. This feature proves particularly valuable for servers hosting
multiple domains (virtual hosts) under a single IP address, as it enables the server to
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present the correct certificate for the requested domain, enhancing the security and
compatibility of the connection process. RFC 6066 strongly recommends the use of SNI,
particularly when clients connect via Domain Name System (DNS) names [3, Section 3].
To ensure that the client’s target endpoint matches the server’s verified identity, TLS
authenticates the server by comparing the SNI (or the hostname, if SNI is unavailable)
with the DNS domains or wildcard entries listed in the SAN field (or, if the SAN field is
missing, the CN field).
In a non-web context where FIDO is integrated within TLS but lacks the traditional

HTTPS context, the SNI proves to be a viable candidate for the domain component of
the origin. By utilizing the SNI to define the domain part, the origin can be e↵ectively
constructed to ensure that FIDO authentication and key registration are securely anchored
to a specific server identity. If the SNI is not available, the origin could potentially fall
back to the hostname or IP address of the underlying connection. Nevertheless, since the
use of SNI is explicitly advocated for in RFC 6066, the proposed extension will focus on
utilizing the robust definition provided by the SNI.
The construction of the origin would typically combine the SNI-derived domain with a

predetermined scheme. In traditional FIDO contexts, the https:// scheme specifically
indicates the application layer protocol in use. However, in a pure TLS context where
HTTPS is not employed, the concept of a ”scheme” does not inherently apply because
TLS functions at the transport layer, securing data transmission without specifying the
application protocol. One could argue for the adoption of the conventional https://
prefix in the origin definition, even when the underlying protocol is not HTTP. This
approach could o↵er several advantages, particularly in maintaining compatibility with
existing FIDO infrastructure and allowing a smoother integration with systems that expect
traditional web origins. However, this adaptation must be carefully considered against
the backdrop of protocol purity and the semantic implications. It would be essential to
ensure that such a usage does not mislead system components or administrators about the
underlying communication protocols in use. The decision whether to adopt the https://
prefix in non-HTTP TLS contexts for compatibility is intentionally left open for
discussion.
As mentioned in Section 2.2.2, the RP ID for a WebAuthn operation is set to the origin’s

e↵ective domain. This default can be overridden by the RP, as long as its value is a
registrable domain su�x of or is equal to the caller’s origin’s e↵ective domain [31, Section 3].
The proposed extension preserves the concept of allowing the RP ID to override the
origin; it merely adapts the method by which the origin is derived to accommodate
environments where the traditional HTTPS context is absent.

4.8. The Finished Message

As outlined in Section 4.4, the FIDO key registration and authentication ceremonies
both conclude with a Finish message. Given the constraints of TLS 1.3 extensions, which
prohibit a full two-round trip message exchange, this section will explore an e↵ective
alternative for communicating essential outcomes of these processes. The Finish messages
of registration or authentication ceremony contain the following data:
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• Key Registration Finish Packet:

– Attestation Object: Typically includes attestation data related to the
registration process, such as signature, X.509 certificate chain, and the format
of the attestation.

– Authenticator Data: Provides details about the authenticator and registra-
tion process, such as credential ID, public key, signature counter, and flags
indicating e.g. user presence, user verification.

– Client Data: Encodes information such as the challenge, origin, and type of
the client data involved in the registration process.

– Device Information: Includes details about the device used for registration,
such as its name, type, and certifications.

– Certificate: Provides the certificate in PEM format.

– Status: Indicates the status of the registration process.

• Authentication Finish Packet:

– Authentication Data: Contains details about the authenticator and authen-
tication process, including credential ID, public key, signature counter, user
presence, and user verification flags.

– Client Data: Includes information such as the challenge, origin, and type of
the client data involved in the authentication process.

– Username: Indicates the username associated with the authentication pro-
cess.

– Status: Indicates the status of the authentication process.

Most of the data in the Finish messages—such as the attestation object, authenticator
data, client data, device information, username or certificate—is already known to the
client. This data originates from the authenticator, passes through the client, and is sent
to the RP, primarily in CBOR encoding. The RP’s role is to decode this information,
verify it, and typically send back a JSON-parsed version upon successful verification.
However, this retransmission of already known data from the RP back to the client is not
strictly necessary. The client, being informed of the ceremony’s status, can independently
parse and utilize the data without needing it echoed back by the RP in a JSON format.
Given this understanding, the essential information that needs to be communicated can
be condensed to just the status of the registration or authentication process.

4.8.1. TLS Alerts

Since transmitting known data back to the client is unnecessary, it is possible to avoid
sending the Finish message by directly using TLS alerts to convey the essential status
of the FIDO ceremony. This approach utilizes the existing TLS alert mechanism, tradi-
tionally employed to signal various session states, to e�ciently communicate a range of
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possible statuses. This strategy avoids the need for extra messages during the handshake
process.
While TLS itself can be extended via extensions, its alert system unfortunately cannot

be directly extended to include new alert types without altering the base TLS implemen-
tation. To adhere to the requirement of not modifying existing TLS implementations,
existing TLS alert codes can be repurposed to signal the outcome of FIDO operations.
RFC 8446 defines TLS 1.3 alerts as follows [21, Section 6]:

enum {
close_notify(0),
unexpected_message(10),
bad_record_mac(20),
record_overflow(22),
handshake_failure(40),
bad_certificate(42),
unsupported_certificate(43),
certificate_revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal_parameter(47),
unknown_ca(48),
access_denied(49),
decode_error(50),
decrypt_error(51),
protocol_version(70),
insufficient_security(71),
internal_error(80),
inappropriate_fallback(86),
user_canceled(90),
missing_extension(109),
unsupported_extension(110),
unrecognized_name(112),
bad_certificate_status_response(113),
unknown_psk_identity(115),
certificate_required(116),
no_application_protocol(120),
(255)

} AlertDescription;

While the CTAP has a huge amount of very specific errors, the actual errors being
communicated to the RP are abstracted for privacy reasons. When an error occurs during
an authentication event such as a fingerprint validation error, the authenticator provides
detailed feedback to the client. However, when relaying this information to the RP,
the errors are typically generalized. In the context of WebAuthn, FIDO uses standard
DOMException error names to communicate these errors [29, Section 2.8.1]. These names
are well-integrated within the web API ecosystem but are less meaningful in a non-web
context where browser-based handling is irrelevant. Therefore, to maintain consistency
with the underlying TLS protocol and simplify the error handling process, DOMException
names are omitted in favor of utilizing the TLS alert mechanism. The following typical
outcomes of FIDO operations are defined, maintaining a balance between informative
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and privacy-preserving error reporting:

• Success: The operation (authentication or registration) completed successfully.

• Invalid Credentials: The credentials provided were incorrect or not recognized.

• Device Incompatibility: The device used is not compatible with the requested
operation.

• Timeout: The operation timed out due to user inactivity or device response delays.

• Internal Error: An unspecified error occurred within the authenticator or the
TLS integration.

To align FIDO outcomes with TLS alert codes, the following mappings can be established:

• Success: No alert is necessary; normal operation continuation.

• Invalid Credentials: Mapped to access denied (49), indicating that the pro-
vided credentials do not grant access.

• Device Incompatibility: Mapped to illegal parameter (47), repurposed to
indicate unsupported device characteristics.

• Timeout: Mapped to user canceled (90), this alert signifies that the operation
ended due to a timeout. This could be because data processing took too long or
required user action wasn’t completed promptly.

• Internal Error: Mapped to internal error (80), used for reporting unspecified
system failures.

4.8.2. Communication to the Application Layer

TLS alerts e↵ectively communicate the outcome of the FIDO ceremony to the application
layer by signaling the status of the authentication or registration processes. These alerts
are inherently designed to be propagated up through the network stack. While TLS alerts
provide a concise indication of status, the application layer often requires access to more
detailed information than just the outcome. In order to fully replicate the functionality
of traditional FIDO implementations, the application must gain access to the full content
of the original Finished messages. This ensures that all relevant data, beyond just the
outcome status, is available for processing and utilization within the application layer.
In practice, this might involve extending the TLS library with specific API functions

that allow applications to query the TLS layer for items such as user names, credential
IDs, public keys, and user verification details. These APIs would provide a standardized
method for accessing FIDO session data, just like the application would normally query
the TLS layer for information about the TLS sessions.
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With the proposed extension, the RP no longer echoes parsed data from the authen-
ticator’s CBOR-encoded messages back to the client. This change significantly alters
the client’s responsibility in handling CBOR-encoded data. Traditionally, the client
merely acts as a conduit, forwarding CBOR-encoded data to the server without needing
to decode it. However, with this new approach, the client must now parse the CBOR
blob coming from the authenticator to provide the application layer with the necessary
data. According to the WebAuthn specification, in traditional FIDO implementations,
the client is not required to perform CBOR operations. Instead, it relies on the server
to handle the decoding process. Consequently, with the proposed extension, there is an
implicit requirement for the client to be capable of CBOR decoding. With the extension
already employing CBOR encoding and decoding for all messages transmitted between
the client and the RP, the necessity for the client to handle CBOR decoding is inherently
satisfied, without the need for additional modifications.
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5. Implementation

This chapter details the practical execution of the concepts proposed in earlier sections
through two implementations, both developed in C code. The first implementation
presents a PoC that demonstrates the feasibility of embedding FIDO directly within the
TLS 1.3 protocol. This PoC serves to validate the theoretical models discussed previously,
showing that the proposed TLS extension can function within the defined constraints and
capabilities. The second part of the implementation applies the FIDO2 TLS 1.3 Extension
within an EAP-TLS framework, illustrating its application in real-world scenarios such
as Wi-Fi authentication.
Both implementations aim to showcase the realization of the concept more than the

creation of a secure implementation ready for broad deployment. This emphasis helps to
highlight the extension’s potential to enhance protocol functionality, while also recognizing
that further refinements are necessary for production-level deployment.

5.1. FIDO2 TLS1.3 Extension

5.1.1. TLS Library

When extending the TLS protocol, the choice of an appropriate TLS library is fundamental.
Various libraries like OpenSSL, WolfSSL, GnuTLS, and forks of OpenSSL such as LibreSSL
and BoringSSL, o↵er di↵erent functionalities and have their unique strengths. All these
libraries are primarily written in C, a language chosen for its e�ciency and control
over system resources, which is crucial in high-performance environments required by
cryptographic operations. While TLS libraries exist in many programming languages,
the need for high performance makes a low-level language an essential choice. Initially,
there was interest in implementing the extension using a TLS library written in Rust.
However, the absence of a widely used application capable of showcasing the extension’s
use in Wi-Fi authentication, particularly one written in Rust, led to the decision to
use a more established library. Thus, OpenSSL, with its extensive documentation, wide
adoption, and robust integration with other popular software and libraries, was chosen.
At the time of this writing, the latest version available is OpenSSL 3.2.1.

5.1.2. Structure

This subsection outlines the structure of the implementation, providing an overview of the
system’s components and their interactions. The PoC is designed for use with external
FIDO hardware tokens via USB. For this purpose, the implementation uses libfido2, a
C library that enables communication with FIDO authenticators and supports essential
user authentication and credential management operations. Notably, libfido2 provides
an API that implements CTAP, facilitating direct communication between clients and
authenticators through CTAP operations.
There are multiple approaches to implementing the FIDO backend on the server side.

The proposed specification deliberately leaves the backend implementation open-ended,
allowing for di↵erent strategies that may better suit specific requirements or use cases.
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One possible approach is to have a dedicated FIDO server that either resides on the same
machine as the TLS server or on a separate machine. This setup enhances modularity
and allows the FIDO functionalities to be scaled independently from the TLS server. It
also facilitates maintenance and updates without impacting the TLS operations directly.
However, this approach may introduce additional latency. Latency arises from inter-
process communication when both servers are on the same machine, or from network
communication when the servers are separate. Secure configurations are required to
protect the data, whether in transit or during process exchanges. Another approach is to
integrate the FIDO server functionalities directly within the TLS server. This method
simplifies the system architecture by reducing the components involved and eliminating
the need for inter-server communication, which can lower latency and improve data flow.
While this integration can make the system easier to manage and potentially more secure,
as it reduces the number of points vulnerable to attack, it also concentrates the workload
on a single server, which may a↵ect scalability and performance under high demand.

TLS-Client
& FIDO-Client

TLS-Server
& WebAuthn-Server

DatabaseFIDO2-Token

Figure 8: Structure of the FIDO2 TLS 1.3 Extension. Graphic created by author.

Both integration strategies—embedding the FIDO server functionality into the TLS
server and maintaining it as a separate entity—are valid approaches for consideration.
This implementation chooses to integrate the FIDO server functionality directly into
the TLS server. This choice takes advantage of a simplified architecture and reduced
latency, thus increasing the e�ciency of the system. At the time of writing, there is no
complete implementation of a FIDO server in C. However, libfido2 o↵ers API calls
that can also be used on the server side, such as verifying a FIDO assertion. Nonetheless,
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custom development is necessary to handle the complete verification procedure, parse
CBOR blobs generated by the authenticator, and to manage the storage of new FIDO
credentials and user data.
For storage, this implementation utilizes a SQL backend, specifically SQLite3. SQLite3

o↵ers a lightweight and e�cient solution for storing FIDO credentials and user data. Its
simplicity and ease of integration make it well-suited for PoC implementations where a
full-fledged database management system may be unnecessary. However, it is important to
note that in production environments, the choice of backend database should be carefully
evaluated based on factors such as scalability, reliability, and security requirements.
Figure 8 illustrates the structure of the implemented extension.

5.1.3. Scope and Limitations

This section describes the boundaries and constraints under which the FIDO2 TLS 1.3
extension implementation operates. Given the largo scope of the FIDO2 specification,
a focused approach was necessary to manage the workload in a feasible manner and
focus on the novel concepts essential to adapting FIDO to a non-web environment. The
implementation is limited to the following functionalities:

• Key Registration: The implementation supports the registration of only dis-
coverable credentials. This process utilizes the double handshake approach as
outlined in Section 4.4.3 to protect the user’s identity by securely transmitting
sensitive information in the second phase of the handshake. This method ensures
that sensitive identity data is protected from potential eavesdroppers during the
initial unencrypted exchange. Both TLS handshakes can be executed over the same
Transmission Control Protocol (TCP) socket, thereby avoiding the overhead of a
second TCP connection.

• Authentication: The system supports authentication using discoverable creden-
tials, utilizing the single handshake approach as detailed in Section 4.4.1. This
approach is chosen because no sensitive identity information is transmitted during
authentication with discoverable credentials, minimizing the complexity and en-
suring security. Currently, the implementation does not support non-discoverable
credentials; however, the architecture is designed to be extendable. Adding support
for non-discoverable credentials is feasible using the double handshake approach
described in Section 4.4.3, which allows for the secure transmission of identity
information.

• Key Registration Control: Key registration is regulated by a shared secret,
specifically a ticket as outlined in Section 4.5. Both the client and server are
pre-configured with this ticket. The ticket may possess semantic meaning. However,
the server does not implement mechanisms to validate this semantic content. In
the current implementation, the server can only be configured with a single ticket.
Additionally, the server does not invalidate the ticket after it has been used. For
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practical use, particularly to support multiple clients, the server should ideally man-
age a list of tickets. Each ticket should be invalidated after use. This configuration
would allow the registration of several clients, with each authenticated through
their own individual ticket.

• Concurrency Limitations: The TLS extension does not support multiple con-
current FIDO authentication or key registration processes within the same TLS
session.

• Attestation: Attestation during key enrollment is not implemented. Instead, a
TOFU approach is adopted, wherein the server trusts the first contact it has with
an authenticator.

• FIDO Extensions: The implementation does not support FIDO extensions,
focusing instead on core functionalities.

• Authenticator Support: The client only supports external USB hardware tokens
and does not integrate with platform authenticators.

• Cryptography Support: On the server side, only the most prevalent public
key algorithm, ES256 (ECDSA with SHA256 on a P-256 curve), is supported [23,
Section 8.1] . However, the server is structured to allow easy expansion to other
algorithms by extending the parsing capabilities of CBOR blobs.

• Message Specification and Encoding: Communication between the client and
server adheres to the message specifications and encoding methods outlined in
Section 4.6 and detailed in Appendix A. This ensures a consistent and e�cient
format for data transfer, utilizing CBOR for encoding the data, which aligns with
FIDO specifications for compact and e↵ective data representation.

• Error Handling: Errors occurring on the client side are pushed to OpenSSL’s error
stack, allowing the client application to be informed about the specific type of error
encountered. For communication with the server, only three generalized error types
are transmitted via TLS alerts, as detailed in Section 4.8.1: SSL AD ACCESS DENIED,
SSL AD INTERNAL ERROR, and the SSL AD USER CANCELED error. This method re-
stricts the detail of client-side errors exposed to the server while still providing
necessary contextual information for security and operational purposes.

• API Extensions for Success Outcomes: While the implementation e↵ectively
handles error notifications through OpenSSL’s error stack and TLS alerts, it does
not extend OpenSSL’s client API to provide additional information following the
successful completion of a FIDO ceremony. Although theoretically feasible, this
implementation does not include an API that would allow applications to query
detailed results, such as user names or credential IDs, directly from the TLS layer
after a successful authentication or registration event. This limitation acknowledges
the potential for future enhancements that could include these capabilities to fully
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align with traditional FIDO operations where such data is accessible via a finished
message, as discussed in Section 4.8.2.

5.1.4. Registering the Extension

OpenSSL allows for the addition of custom TLS extensions via callback functions, which
provide a flexible mechanism for developers to enhance the protocol without altering the
core source code [18]. These callbacks are designated to handle specific tasks related
to the lifecycle of an extension: Adding extension data to outgoing messages, parsing
incoming extension data, and freeing any allocated resources. OpenSSL separates SSL CTX
objects from SSL objects. The SSL CTX serves as a configuration template, while the
SSL object, as an instance derived from a SSL CTX, handles individual connections.
This separation enables configurations to be reused across multiple TLS connections,
optimizing resource management and simplifying the setup process. The custom callback
functions, which encapsulate the logic of the TLS extension, are registered using the
SSL CTX add custom ext() function. This registration links the callbacks directly to the
SSL CTX object. Consequently, any SSL object that is instantiated from this SSL CTX will
inherit the custom extension capabilities, allowing the defined logic to be executed as
part of the TLS handshake process for every individual connection.
Each custom extension is identified by a unique extension type code. O�cial extensions

use codes that are registered with the IANA. However, for this PoC, a non-o�cial, custom
code, 0x1234, is used. This code falls within the range reserved for private use [12],
ensuring it does not conflict with any o�cially registered extension codes. It is critical
that both the client and server register this extension; if only one peer registers it, the
TLS protocol mandates that unknown extensions be ignored, which would prevent the
extension from functioning.
The entire extension is deployed as a static library. An application that wishes to utilize

this extension links against this library and registers the provided callback functions to
the SSL CTX object. This approach ensures that the custom extension logic is seamlessly
integrated into the application’s existing TLS infrastructure.

5.1.5. Configuring the Extension

Configuration of the extension is managed through an options table provided during the
registration of the callback function. This table enables specific FIDO configurations to
be set, tailoring the extension’s behaviour to meet particular operational requirements.
The central configuration on the client side is the mode parameter, which is essential
as it dictates the primary function of the operation—either registering a new user or
authenticating an existing one. Unlike the client, the server side does not have a mode
parameter because it is always reactive; it adapts its behaviour based on the client’s
initial request, aligning with the mode specified by the client to facilitate the appropriate
FIDO ceremony. In future implementations, the server could be configured with a policy
that dictates which modes a client is permitted to execute. Each option listed below has
a length constraint, with maximum lengths specified in Appendix A.

54



Client Options

• mode: Specifies the operation mode, which can be either FIDOSSL REGISTER for
registering a new user or FIDOSSL AUTHENTICATE for authenticating an existing user.
This parameter is mandatory as it defines the primary function of the operation.

• user name: The username associated with the FIDO device. This field is manda-
tory for the key registration mode, but not for authentication with discoverable
credentials. The value is a UTF-8 string.

• user display name: A displayable name for the user, primarily used for user-
friendly UI displays. This parameter is optional and will default to the value of
user name if not provided. The value is a UTF-8 string.

• ticket b64: A base64 encoded ticket, used specifically in registration mode to
control key registration processes.

• pin: The Personal Identification Number for the authenticator. This is optional
and is required only if the authenticator demands it for user verification or device
unlocking.

• debug level: An integer indicating the level of debugging information to output.
This is optional.

Server Options

• rp id: The identifier of the RP. This is optional; if not provided, it is derived from
the origin.

• rp name: The name of the RP, which is mandatory.

• ticket b64: A base64 encoded ticket used by the server to control a new key
registration. The ticket is not needed in authentication mode.

• user verification: A policy enum indicating the level of user verification re-
quired (REQUIRED, PREFERRED, DISCOURAGED). Optional, with the default being
PREFERRED.

• resident key: A policy enum indicating the support or requirement for resident
keys (REQUIRED, PREFERRED, DISCOURAGED). Must be set to REQUIRED as the PoC
currently only implements discoverable credentials.

• auth attach: Indicates the type of authenticator attachment used (PLATFORM,
CROSS PLATFORM). Must be set to CROSS PLATFORM because the PoC currently does
not support platform authenticators.

• transport: Specifies the transport medium (USB, NFC, BLE, etc.). Must be set to
USB because the PoC currently only implements USB tokens.
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• timeout: The maximum time in seconds allowed for the operation before timing
out. This is optional.

• debug level: An integer indicating the level of debugging information to output.
This is optional.

5.1.6. Dependencies

The FIDO2 TLS 1.3 Extension was designed to operate with as few dependencies as
possible to ease its integration and maintenance. However, the implementation ultimately
requires five essential libraries. The following section details these dependencies and
explains their roles in supporting the extension’s functionality:

• OpenSSL (libssl and libcrypto): As an extension for OpenSSL, the libraries of
OpenSSL are inherently a dependency.

• libfido2: Essential for interfacing with FIDO devices, this library o↵ers high-level
APIs for WebAuthn and CTAP, facilitating communication with FIDO authentica-
tors and handling credential management and user authentication.

• tinycbor: This library is used to encode and decode CBOR formatted data and is
known for its very low resource footprint.

• SQLite3: Selected for its simplicity and lightweight footprint, SQLite3 provides
the database functionality for storing FIDO credentials and user data on the server
side.

• libjansson: While most JSON dependencies typical of WebAuthn have been
removed in this extension, JSON is still required for constructing and parsing the
ClientdataJSON. This library facilitates these operations with JSON, although it is
possible to manually build and parse the ClientdataJSON, potentially eliminating
the need for this dependency.

5.1.7. Repository Access and Usage Instructions

The implementation of the FIDO2 TLS 1.3 extension is available in a public Git reposi-
tory, which contains all necessary files and comprehensive instructions for incorporating
the extension into C projects. The README.md file in the repository provides detailed
instructions on configuration, building, installation, and integration of the extension.
Additionally, it includes practical C code examples demonstrating usage. For testing the
extension’s functionality, refer to the dedicated test code provided in the test/ directory
within the repository.

Repository URL: https://github.com/tummetott/fidoSSL
Commit Hash: 8e38d849eb355d1d0f768620d1afce7f111c16e0
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This specific commit hash can be used to access the exact version of the code that was
used and referred to in this document. By doing so, the content remains unchanged and
secure against any future modifications, preserving the accuracy and reliability of the
thesis.

5.2. EAP-TLS with FIDO2 TLS1.3 Extension

To demonstrate the practicality and versatility of the FIDO2 TLS 1.3 Extension, it has
been implemented within an EAP-TLS framework, which is commonly used in wireless
network setups such as eduroam. As outlined in Section 2.3.1, EAP-TLS traditionally
utilizes TLS with client certificates to achieve mutual authentication. By incorporating
the FIDO2 TLS 1.3 Extension, the traditional reliance on client certificates in EAP-TLS is
replaced with FIDO authentication mechanisms. In this setup, the TLS handshake packets,
which now include FIDO authentication messages as extension data, are encapsulated
within the EAP request and response packets.

5.2.1. Software Packages

The implementation utilizes two of the most prominent software packages in wireless
network management and security: hostapd and wpa supplicant. hostapd is a user
space daemon software enabling a network interface card to act as an Access Point. It
allows for the configuration of various parameters related to Wi-Fi Access Points, including
authentication mechanisms, encryption methods, and network settings. hostapd supports
a wide range of security protocols, including WPA2 and WPA3, as well as authentication
mechanisms such as 802.1X/EAP [14]. When using EAP for authentication, hostapd can
be configured to utilize either an external RADIUS server or an internal one. hostapd is
commonly used in scenarios where a Linux-based device needs to provide Wi-Fi access,
such as setting up public Wi-Fi hotspots, enterprise Wi-Fi networks, or home Wi-Fi
routers.
wpa supplicant complements hostapd by operating as the Station on the client side,

managing wireless connectivity and authentication and serving as the counterpart to
hostapd’s role as an Access Point. Like hostapd, wpa supplicant supports a broad
array of security protocols and authentication mechanisms, including those necessary for
engaging with EAP-based authentication frameworks like EAP-TLS [15]. While hostapd
handles the authentication, association, and overall management of the network from
the APs side, wpa supplicant ensures that client devices can securely and e↵ectively
connect to these networks. It manages the setup and maintenance of the client’s network
connections, handles the negotiation of network authentication as specified by hostapd,
and maintains the ongoing integrity and security of the connection. At the time of this
writing, the latest available version of hostapd and wpa supplicant is 2.10.
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approach facilitates a more interactive session, allowing users to register new keys without
the pressures of immediate network access. For instance, in the case of eduroam, users
could log into their institution’s website, such as a university portal, to register new FIDO
credentials with an authenticator. This ensures that once they attempt to connect to the
network via Wi-Fi, their devices or external hardware tokens are already configured and
ready for secure authentication using the previously enrolled credentials. This approach
mirrors how client certificates are usually registered and managed outside of the direct
Wi-Fi authentication process. For this PoC, keys can be registered by using the test code
provided in the repository of the first implementation, as detailed in Section 5.1.7

5.2.4. Implementation Details

The PoC was designed to be ”quick and dirty”, implementing shortcuts that resulted in
only minimal modifications to the existing codebase. The implementation is intentionally
simple to emphasize that integrating the FIDO2 TLS 1.3 Extension into an established
system like EAP-TLS can be achieved with relatively few changes. This approach
demonstrates the practicality, yet it also highlights the potential for a cleaner and more
refined implementation in future developments. For instance, on the client side, options
such as the PIN for the FIDO token and the debug level are hardcoded. While this
method e↵ectively demonstrates the extension’s feasibility, it is not intended for production
use. In a more developed setup, these options could be made configurable through the
supplicant.conf file. On the server side, however, the configuration is handled with
greater care. FIDO options are not hardcoded but are instead made configurable through
the hostapd.conf file, demonstrating how FIDO configurations could be integrated into
existing config files.
Since EAP-TLS traditionally relies on client certificates, wpa supplicant is pro-

grammed to return an error if no certificate is provided. In the PoC, this behavior
was not modified, so a client certificate must still be presented to the supplicant. How-
ever, the server does not verify this certificate because FIDO authentication supersedes the
need for client certificates. Ideally, in a fully developed implementation, wpa supplicant
should be adjusted so that presenting a client certificate—valid or not—is no longer
necessary.
The proposed extension requires the use of TLS 1.3, which means that both hostapd

and wpa supplicantmust be configured to use this protocol version during the handshake.
Although current versions of these tools support TLS 1.3, it is not enabled by default and
must be explicitly activated. This involves setting the compile-time configuration option
CONFIG EAP TLSV1 3=y to ensure that TLS 1.3 capabilities are included in the binary.
Additionally, TLS 1.3 must be explicitly enabled in the runtime configuration within the
hostapd.conf file. The need for these multiple steps to activate TLS 1.3 suggests that
its adoption in Wi-Fi networks is not very widespread at the time of writing.
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5.2.5. Repository Access and Additional Resources

The second implementation is available in the following public git repository:

Repository URL: https://github.com/tummetott/hostap-fido2
Commit Hash: b7a1eea00e00db292ea8f4f22598f3c0d1d8b864

Instructions for establishing a local PKI and generating necessary certificates are provided
in Appendix B. This appendix outlines the process for creating a test CA, as well
as client and server certificates using OpenSSL. Configuration files for hostapd and
wpa supplicant, which include the settings necessary to test the implementation, are
detailed in Appendix C. Additionally, Appendix D provides a convenience script that
uses tmux to simplify simultaneous launching and restarting of client and server instances.
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6. Evaluation & Future Work

The previous chapter demonstrated the practical feasibility of integrating FIDO authen-
tication and registration within the TLS handshake, as outlined in Section 4. This
chapter evaluates the proposed TLS extension, taking into account more than just its
e↵ectiveness. It also explores ideas for improving the integration and outlines directions
for future research.
It has been shown that FIDO authentication using discoverable credentials can be

e�ciently implemented using the single handshake method. This approach does not
extend the round trips required for TLS, maintaining a protocol flow similar to that
of TLS with client certificates. However, for key registration or authentication using
non-discoverable credentials, a single handshake would compromise the user’s identity.
To address this issue, a double TLS handshake method with symmetrically encrypted
FIDO payload was proposed. Although this method doubles the original RTT and
adds complexity, its impact might be less concerning given the anticipated decline
in the relevance of non-discoverable credentials. Today’s newer generations of FIDO
authenticators are equipped to support discoverable credentials, thanks to enhanced
storage capacities in hardware tokens and increased integration of platform authenticators
in devices like laptops, smartphones, and tablets. Current FIDO tokens already possess
enough storage to accommodate all the discoverable credentials an average user might
need [35], and storage is expected to increase significantly according to Moore’s Law.
Therefore, non-discoverable credentials may become less relevant in the future. By o↵ering
a solution that is both e↵ective and e�cient for discoverable credentials, this extension is
well-positioned to support the predominant method of FIDO authentication expected in
the future. However, key registration remains a critical component that requires detailed
evaluation, especially given its reliance on the less e�cient double handshake method.

6.1. Key Registration

First, it is important to note that key registration, compared to authentication, is a less
frequent process. Consequently, the e�ciency of the enrollment process may not be as
critical as that of authentication. Furthermore, registration does not necessarily need to
occur within a TLS handshake. As discussed in Section 5.2.3, out-of-band methods, such
as a traditional web interface, are often more suitable, particularly in scenarios where
users register FIDO credentials for interactive use. A web interface provides greater
flexibility and enhances user experience by interactively guiding users through setting
up their security requirements. For example, it can dynamically inquire whether user
presence checks or verifications are needed, or which type of biometrics the user wants to
use.
Conversely, integrating FIDO key registration within TLS may be advantageous for

non-interactive scenarios, such as with IoT devices. Upon initial activation, these devices
can automatically perform a FIDO key registration with their cloud service via TLS,
creating credentials that are stored, for example, on a platform authenticator. Since the
security requirements are typically predefined by the device’s application, user interaction
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may not be necessary. These devices could be pre-configured in the factory with a ticket
that authenticates the key registration and includes semantic information defining the
security parameters.
The PoC provided does not implement any semantic meaning of tickets; however,

they could include various pieces of information such as the user name, expiration date,
or issuer details, as discussed in Section 4.5. Instead of merely adding random bytes
to each ticket to ensure su�cient entropy to prevent forgery, the semantic information
could be directly signed or used to generate a MAC. This signature or MAC would be
generated using a private key or secret known only to the issuing service. To verify a
ticket, the service can use the corresponding public key (in the case of a signature) or the
same secret key (in the case of a MAC). If the verification process confirms the ticket’s
authenticity and integrity, the service can trust the ticket’s semantic information. This
method ensures that any tampering with the ticket would be detectable, as the signature
or MAC would not match if the content were altered. This approach has the advantage
that the service does not need to be configured with a potentially very long list of valid
tickets; it only requires holding a single secret or public/private key pair.

6.2. Message Size Evaluation

In Section 4.6, it was detailed that FIDO messages should not exceed the approximate
upper limit of 15,872 bytes in order to avoid message fragmentation of the TLS record
layer. It was also noted that messages of types A.5, A.11, and A.12 might potentially
exceed this limit due to their variable list of credentials or custom extensions. To evaluate
the impact of the size constraint on the variable parameters of these messages, a worst-
case and average-case analysis of the message size will be conducted. This analysis
will focus on the largest message type, type A.5, as size constraints are expected to be
less stringent for the other packet types. While Appendix A already provides detailed
upper and lower size limits for each component of a message, it omits consideration of
how CBOR encoding influences the overall size of the message. To address this gap,
Appendix E presents a comprehensive analysis of the maximum message size for message
type A.5, accounting for CBORs overheads. The Appendix yields the following formula
for for calculating the maximum message size:

Max message size = 1191 +N ⇥ 261 +M ⇥ 4358 bytes (1)

where N is the number of excludeCredentials and M is the number of possible FIDO
extensions. Let’s consider a practical scenario with M = 2, implying the use of two
FIDO extensions. Substituting into the formula with the upper limit of 15,872 bytes, the
permissible value of N , representing excludeCredentials, is calculated as follows:

15872 = 1191 +N ⇥ 261 + 2⇥ 4358 (2)
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Solving for N and rounding down to the nearest integer yields 22. It should be noted that
this is a conservative estimate. It assumes that all elements within the message, such as
credential IDs and user names, occupy their maximum potential sizes, which is rarely
the case in typical implementations. Credential IDs of 256 bytes and user names of 255
characters represent extreme cases, not common usage scenarios. Therefore, in practical
applications, the number of possible excludeCredentials could be significantly higher
than this estimate.
Given the conservative estimates used previously, a more practical example involves

assuming average field sizes, rather than maximal. For instance, if we consider the
Challenge field size to be typically 32 bytes instead of the maximal 64 bytes, and the
name fields (RP Name, User Name, User Display Name) are more commonly around 50
bytes each instead of 255, the dynamics of the message size change notably. Similarly,
if the Credential ID within excludeCredentials averages 128 bytes rather than 256
bytes, and assuming the Extension Data is typically around 250 bytes, the formula for
maximum message size becomes:

15872 = 544 +N ⇥ 132 +M ⇥ 512 bytes (3)

Solving this with M = 2, rounding down to the nearest integer results in N equal to
108. This more realistic average case scenario illustrates that during a key registration
ceremony involving two FIDO extensions, the RP is still able to accommodate a list of
more than 100 excludCredentials, without TLS fragmenting the message. However,
such a large list is highly unlikely in practical scenarios. The excludCredentials list is
primarily intended to prevent a user from inadvertently registering the same authenticator
multiple times with the same RP. Typically, users register a credential for each of their
hardware tokens or, in the case of platform authenticators, for each of their devices
(e.g., phone, laptop, tablet). This generally results in only a handful of credentials being
registered with a single RP. Therefore, the likelihood of the credential list exceeding ten
entries is rather low. This calculation demonstrates that fragmentation of TLS handshake
messages does not usually occur in practice with the proposed FIDO extension.

6.3. Modifying the TLS Library

One of the requirements of this work was to integrate FIDO into the TLS handshake
only using the TLS extension mechanism. The core library of OpenSSL is not modified;
instead, the extension is registered by the overlying application using OpenSSL’s o�cial
callback mechanism. This approach has the benefit of isolating the FIDO logic from
TLS, thereby simplifying maintainability, auditing, and deployment. However, it has also
led to some clearly unfavorable design decisions, such as reusing TLS alerts as discussed
in Section 4.8.1 and the requirement for the server to send a CertificateRequest as
detailed in 4.4.1. Eliminating the restriction of not modifying the TLS library would
lead to a cleaner design. Firstly, TLS could be enhanced with specific FIDO alerts,
thus eliminating the current ambiguity of some TLS alerts. Secondly, introducing new
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a MITM attack. However, it carries no sensitive user information and therefore
requires no additional protection.

3. For non-discoverable credentials or key registration, the client sends a newly in-
troduced TLS handshake message, the FIDOIdentity. As this transmission occurs
after a shared secret has been established between peers, the identity information
and all following messages are encrypted and authenticated by TLS.

4. The server replies with a FIDORequest message, which includes either PublicK-
eyCredentialCreationOptions or PublicKeyCredentialRequestOptions depending on
the type of FIDO operation. This message is sent along with the traditional TLS
Finished message, which includes a hash of the entire handshake up to this point,
including the newly introduced FIDO messages. This hash is then sent through
the authenticated TLS channel.

5. The client then sends a FIDOResponse, according to the traditional FIDO protocol.
This response is accompanied by the client’s Finished message, which hashes the
entire handshake from the client’s perspective, including the new FIDO messages. In
line with the TLS 1.3 protocol, encrypted application data may also be transmitted
along with this packet.

The illustrated handshake e↵ectively integrates the entire FIDO ceremony into TLS,
eliminating the need for a double handshake. However, it also introduces an additional
round-trip to the protocol for FIDO key registration and authentication with non-
discoverable credentials. In the case of discoverable credentials, the server can combine
the packets from steps 2 and 4, while the client omits sending the packet from step 3.
This eliminates the additional round-trip, reducing it to the original TLS 1.3 sequence.

Since new TLS messages are introduced, the client’s Certificate message is no longer
required to carry the FIDOResponse. Consequently, the server does not need to send
a CertificateRequest, eliminating the reliance on placeholder client certificates. The
transmission of the client’s identity is delayed until both parties have established a shared
secret and is therefore protected. An adversary could still attempt a MITM attack;
however, the server only discloses user-specific information after receiving the user’s
identity from the client. Since the adversary can not learn this ephemeral identity from
a previous handshake, additional symmetric encryption as detailed in Section 4.4.3 is not
required.
This integration of FIDO into TLS represents more than just an extension; it sig-

nificantly amends the protocol by modifying the handshake process itself. While this
modification extends beyond typical TLS extensions, it retains interoperability with TLS
1.3. The FIDOIndication is transmitted as an extension during the initial ClientHello
message. If the server does not recognize this extension, it simply ignores it, allowing
the client to decide whether to continue the TLS handshake without engaging in the
new FIDO-specific message exchanges. Conversely, if the server does not receive a
FIDOIndication, it may also choose to proceed with the handshake without involving
FIDO functionalities. If either the client or server expects FIDO usage but does not
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receive the appropriate FIDOIndication or FIDOAcknowledgment, the peer in question
can abort the handshake by issuing a Missing Extension alert (alert 109). This setup
enables FIDO operations to be negotiated at the start of the handshake, similar to how
cipher suites are negotiated.
While it is true that TLS 1.3 was designed to minimize handshake times, reducing

them to a single RTT to improve performance in long-latency networks such as those
encountered with mobile devices, the integration of FIDO into the TLS handshake appears
at first to counter these advancements by potentially increasing the number of RTTs.
Critics might view this as a step backward, given the potential hidden complexities
and implications of modifying the handshake structure. However, it is important to
consider the broader context of the whole process. Typically, when FIDO is used in
conjunction with HTTPS, the process involves an initial TLS handshake RTT followed by
an additional two RTTs for FIDO authentication conducted over HTTP. Therefore, by
integrating FIDO directly into the TLS handshake, although we reintroduce an additional
RTT into the TLS process, we potentially reduce the overall number of RTTs required
for authentication. In other words, this approach adds complexity to the TLS protocol
but reduces complexity at the application layer.

6.4. FIDO Authentication in Wi-FI Networks

Section 5.2 demonstrated how the FIDO2 TLS 1.3 extension could be used in actual
applications such as Wi-Fi networks. However, this showcase is far from being truly
practical. In a wireless environment like eduroam, the emphasis is often on high usability
rather than high security requirements. The current PoC, however, requires users to
physically connect an external FIDO USB token and actively participate in a user presence
check. This level of interaction can detract from the user experience typically desired
in such settings. To address this, integrating platform authenticators like TPMs or
Apple’s secure enclave could significantly enhance usability. These built-in authenticators
would allow authentication to proceed without the need for external tokens. Additionally,
adopting silent authentication, which eliminates the need for user interaction, would align
with current Wi-Fi practices. This would make the authentication process completely
automatic, closely mirroring the convenience of traditional authentication methods in
Wi-Fi.

The EAP-FIDO draft, mentioned in Section 3.3, successfully integrated FIDO into
Wi-Fi using a slightly di↵erent approach. Instead of performing the FIDO authentication
ceremony during the TLS handshake, the ceremony was tunneled through an established
TLS connection as ”inner authentication”. This method allows for a variable number
of round-trips between the client and the RP, depending on the outcome of the FIDO
authentication, the user presence or user verification assertions, and the policy for a specific
FIDO credential. The RP may then choose to initiate a second FIDO authentication
with a di↵erent set of authentication requirements. The PoC of this work, however, does
not have this flexibility, as the number of round-trips is limited to one ceremony at a
time. Nevertheless, the RP could abort the handshake and signal the client to start a
new one with a new TLS connection.
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7. Conclusion

The FIDO protocol provides a method for strong client authentication with high entropy,
phishing resistance, high usability, and hardware security through external tokens. How-
ever, FIDO was developed for the web and is therefore rarely used in applications that
do not build on HTTP. This thesis proposed a TLS 1.3 extension that integrates FIDO
authentication and key registration into TLS at the transport layer, thereby decoupling it
from its web-based constraints and extending the method’s applicability to non-web-based
applications.
TLS has proven to be an e↵ective protocol for integrating FIDO. It protects FIDO

ceremonies with strong encryption, ensuring the confidentiality and integrity of the data
exchanged. Additionally, server authentication using X.509 certificates provides a robust
mechanism for validating the identity of the RP. It was demonstrated that authentication
with discoverable credentials can be integrated into the TLS handshake without increasing
the RTT. Authentication with non-discoverable credentials and key registration can be
integrated by performing two consecutive TLS handshakes over the same TCP connection.
A ticket-based solution has been proposed for controlling FIDO key registration without
preliminary web-based user authentication. The evaluation showed how tickets could be
improved by adding semantic meaning and incorporating signatures or MACs for better
scalability.
The thesis included an extensive set of FIDO message type definitions. It was shown

that CBOR o↵ers an e�cient encoding scheme for messages exchanged between client
and RP, reducing the message size compared to web-based FIDO ceremonies that use
JSON serialization.

The FIDO2-TLS extension has been implemented for the OpenSSL library, demonstrat-
ing the practical feasibility of the methodology. In addition, the extension was showcased
in a practical application, specifically in a Wi-Fi environment using 802.11X EAP-TLS.
It was shown that FIDO key registration within TLS is possible but not always desirable.
In IoT environments, this method could prove advantageous, while for scenarios involving
user interaction, such as with eduroam, out-of-band key enrollment through traditional
web interfaces may be more suitable.
The specification of the extension does not mandate how the backend of the FIDO

server is implemented. Depending on the use case, the backend can be a dedicated FIDO
authentication server, or it could utilize an internal or external public key database. The
provided PoC uses an internal SQLite database to store public key material and the
corresponding metadata.
The methodology of this thesis mandated that FIDO be integrated only using the

o�cial TLS extension mechanism. This approach allows for quicker adoption, easier
standardization, and thorough testing of new features without the lengthy audit processes
associated with core library changes. Even if the extension isn’t formally standardized,
it can still function alongside the core TLS library and be deployed in production as
a non-standard extension. Should it prove successful, this extension might eventually
be incorporated into the core protocol. The evaluation further illustrated how such an
integration into the core library might be structured. It presented an alternative TLS
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handshake that incorporates FIDO directly, eliminating the need for a double handshake.
This approach increases the RTT of the handshake for non-discoverable credentials and
key registration. However, the overall RTTs of the whole authentication process does
not increase.
Integrating FIDO within the transport layer of the OSI model has proven advantageous

because it allows applications to utilize this authentication method without needing to
implement FIDO logic within their own protocols. Given the successful integration of
FIDO authentication into EAP-TLS, it is reasonable to suggest that other TLS-based
protocols such as OpenVPN, IMAPS, SMTPS, FTPS, and NNTPS might similarly
benefit from this extension, requiring only minor modifications to their source code.
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A. Message Specifications

This appendix details the message types and structures used within the proposed protocol,
which exclusively uses CBOR for encoding all data elements. CBOR is a binary data
serialization format that allows for the encoding of data structures including integers,
floating-point numbers, strings, arrays, and maps. CBOR inherently embeds the size
and data type of each element within its encoding, thus eliminating the need for explicit
length fields. All messages utilize a CBOR array as the top-level container, encapsulating
required data fields. For messages that contain optional data, these fields are encoded
within a CBOR map. This structure enables simple key-based lookups, allowing for quick
verification of the existence and retrieval of optional values. Some optional data elements
are grouped into tuples. If present, these tuples are stored in a sub-array, preserving their
relational structure. Furthermore, certain optional tuples may exhibit zero or multiple
occurrences, in which case they are organized into nested CBOR arrays.
Enums are frequently used within the specification to represent specific choices or

states. As CBOR does not natively support enum types, these are encoded as integers.
CBOR automatically uses tiny integers for integer values between 0 and 23, encoding
them in a single byte to minimize the data size.

A.1. Pre Registration Indication

• MESSAGE TYPE:
Type: Integer
Value: 1
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Registration Indication.

Figure 11: Message Type Definition: Pre-Registration Indication. Graphic created by
author.
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A.2. Pre-Registration Request

• MESSAGE TYPE:
Type: Integer
Value: 2
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Registration Request.

• EPHEMERAL USER ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: A ephemeral reference that links this handshake to the following one.

• GCM KEY:
Type: Byte String
Length: 28� 44 Bytes
Description: A key used for symmetric encryption, utilizing the AES algorithm in
conjunction with GCM.

Figure 12: Message Type Definition: Pre-Registration Request. Graphic created by
author.
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A.3. Pre-Registration Response

• MESSAGE TYPE:
Type: Integer
Value: 3
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Registration Response.

• USER NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: The username associated with the end user’s account.

• USER DISPLAY NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: The full name of the user, intended for display purposes within user.

• TICKET:
Type: Byte String
Length: 128� 512 Bytes
Description: A unique ticket that enabled the user to register new FIDO keys with
the RP.

Figure 13: Message Type Definition: Pre-Registration Response. Graphic created by
author.

75



A.4. Registration Indication

• MESSAGE TYPE:
Type: Integer
Value: 4
Length: 1 Byte
Description: Specifies the type of message, indicating a Registration Indication.

• EPHEMERAL USER ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: A ephemeral reference to a previous handshake.

Figure 14: Message Type Definition: Registration Indication. Graphic created by author.
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A.5. Registration Request

• MESSAGE TYPE:
Type: Integer
Value: 5
Length: 1 Byte
Description: Specifies the type of message, indicating a Registration Request.

• CHALLENGE:
Type: Byte String
Length: 16� 64 Bytes
Description: Random challenge from the RP.

• RP ID:
Type: UTF-8 String
Length: Variable, up to 256 Bytes
Description: Relying Party identifier.

• RP NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: A human-readable name for the Relying Party, used mainly for display.

• USER NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: The username associated with the end user’s account. This value is
encrypted with the GCM Key.

• USER DISPLAY NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: The full name of the user, intended for display purposes within user.
This value is encrypted with the GCM Key.

• USER ID:
Type: Byte String
Length: Variable, up to 64 Bytes
Description: A unique identifier for the user in the context of the Relying Party.
This value is encrypted with the GCM Key.

• PUBKEY CRED PARAMS:
Type: Array of Integers
Length: 1� 6 Bytes
Description: List of possible public key algorithms, in descending preference. Each

77



Integer represents a enum value, mapped to following public key algorithms:
0: COSE ES256
1: COSE ES384
2: COSE EDDSA
3: COSE ECDH ES256
4: COSE RS256
5: COSE RS1

• OPTIONALS:
Type: CBOR map
Description: Contains optional values that can be probed by their keys.

– TIMEOUT:
Type: Integer
Key : 1
Length: 4 Bytes
Description: Maximum time, in milliseconds, that the client should wait for
the user to complete the action.

– AUTHENTICATOR SELECTION:
Type: CBOR array
Key : 2
Description: Criteria the RP wants to impose regarding the authenticators to
be used. All values of the array are encrypted with the GCM key.

∗ ATTACHMENT:
Type: Integer
Length: 1 Byte
Description: Criteria the RP wants to impose regarding authenticator
attachment. Enum value that maps to:
0: PLATFORM
1: CROSS-PLATFORM

∗ RESIDENT KEY:
Type: Integer
Length: 1 Byte
Description: Criteria the RP wants to impose regarding discoverable
credentials. Enum value that maps to:
0: REQUIRED
1: PREFERRED
2: DISCOURAGED

∗ USER VERIFICATION:
Type: Integer
Length: 1 Byte
Description: Criteria the RP wants to impose regarding user verification.
Enum value that maps to:
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0: REQUIRED
1: PREFERRED
2: DISCOURAGED

– EXCLUDED CREDENTIALS:
Type: Nested N ⇥ 3 CBOR array
Key : 3
Description: This array contains credentials already registered with the user.
If the authenticator detects any of these credentials as existing on the device,
it must return an error to prevent the creation of duplicates. All values of the
array are encrypted with the GCM key.

∗ CREDENTIAL TYPE: Type: Integer
Length: 1 Byte
Description: Specifies the type of credential. Currently, only one type is
supported by Webauthn, but the design is structured to allow for future
expansions. Enum value that maps to:
0: PUBLIC KEY

∗ CREDENTIAL ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: Unique identifier for a FIDO credential

∗ TRANSPORTS:
Type: Integer
Length: 1 Byte
Description: Mode of transportation for this credential. Enum value that
maps to:
0: USB
1: NFC
2: BLE
3: INTERNAL

– ATTESTATION:
Type: Integer
Key : 4
Length: 1 Byte
Description: Specifies the desired attestation conveyance preference of the RP.
This values is encrypted with the GCM key. Enum value that maps to:

0: NONE
1: INDIRECT
2: DIRECT
3: ENTERPRISE

– EXTENSIONS:
Type: Nested M ⇥ 2 CBOR array
Key : 5
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Description: Custom extension data. All values of the array are encrypted
with the GCM key.

∗ EXTENSION ID:
Type: UTF-8 String
Length: Variable, up to 256 Bytes
Description: Unique identifier of the extension

∗ EXTENSION DATA:
Type: Byte String
Length: Variable, up to 212 Bytes
Description: Data corresponding to the extension, which may include any
necessary parameters or configuration settings to support the extension’s
function. The structure and content of this data are specific to each
extension and define how the extension modifies or enhances the base
protocol operation.
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A.6. Registration Response

• MESSAGE TYPE:
Type: Integer
Value: 6
Length: 1 Byte
Description: Specifies the type of message, indicating a Registration Response.

• ATTESTATION OBJECT:
Type: Byte Array
Length: Variable, up to 213 Bytes
Description: A binary representation of the attestation object, which contains
cryptographic proof of the newly created credential. This object is used by the RP
to verify the integrity and origin of the new public key credential. The attestation
object is defined by Webauthn, as shown in Figure 17

• CLIENTDATA JSON:
Type: UTF-8 String
Length: Variable, up to 211 Bytes
Description: A JSON-serialized string containing the client-side data used during
the credential creation process. This includes type, challenge and origin.

Figure 16: Message Type Definition: Registration Response. Graphic created by author.
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Figure 17: FIDO Attestation Object Definition (Source: W3C [30])
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A.7. Pre-Authentication Indication

• MESSAGE TYPE:
Type: Integer
Value: 7
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Authentication Indica-
tion.

Figure 18: Message Type Definition: Pre-Authentication Indication. Graphic created by
author.
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A.8. Pre-Authentication Request

• MESSAGE TYPE:
Type: Integer
Value: 8
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Authentication Request.

• EPHEMERAL USER ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: A ephemeral reference that links this handshake to the following one.

• GCM KEY:
Type: Byte String
Length: 28� 44 Bytes
Description: A key used for symmetric encryption, utilizing the AES algorithm in
conjunction with GCM.

Figure 19: Message Type Definition: Pre-Authentication Request. Graphic created by
author.
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A.9. Pre-Authentication Response

• MESSAGE TYPE:
Type: Integer
Value: 9
Length: 1 Byte
Description: Specifies the type of message, indicating a Pre-Authentication Re-
sponse.

• USER NAME:
Type: UTF-8 String
Length: Variable, up to 255 Bytes
Description: The username associated with the end user’s account.

Figure 20: Message Type Definition: Pre-Authentication Response. Graphic created by
author.
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A.10. Authentication Indication

• MESSAGE TYPE:
Type: Integer
Value: 10
Length: 1 Byte
Description: Specifies the type of message, indicating an Authentication Indication.

• EPHEMERAL USER ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: A ephemeral reference to a previous handshake.

Figure 21: Message Type Definition: Authentication Indication. Graphic created by
author.
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A.11. Authentication Request

• MESSAGE TYPE:
Type: Integer
Value: 11
Length: 1 Byte
Description: Specifies the type of message, indicating an Authentication Request.

• CHALLENGE:
Type: Byte String
Length: 16� 64 Bytes
Description: Random challenge from the RP.

• OPTIONALS:
Type: CBOR map
Description: Contains optional values that can be probed by their keys.

– TIMEOUT:
Type: Integer
Key : 1
Length: 4 Bytes
Description: Maximum time, in milliseconds, that the client should wait for
the user to complete the authentication process.

– RP ID:
Type: UTF-8 String
Key : 2
Length: Variable, up to 256 Bytes
Description: Relying Party identifier.

– USER VERIFICATION:
Type: Integer
Key : 3
Length: 1 Byte
Description: Specifies the level of user verification required for authentication.
Enum value that maps to:
0: REQUIRED
1: PREFERRED
2: DISCOURAGED

– ALLOW CREDENTIALS:
Type: Nested N ⇥ 3 CBOR array
Key : 4
Description: List of credentials permitted for use in the authentication.
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∗ CREDENTIAL TYPE:
Type: Integer
Length: 1 Byte
Description: Specifies the type of credential. Currently, only one type is
supported by Webauthn, but the design is structured to allow for future
expansions. Enum value that maps to:
0: PUBLIC KEY

∗ CREDENTIAL ID:
Type: Byte String
Length: Variable, up to 256 Bytes
Description: Unique identifier for the credential.

∗ TRANSPORTS:
Type: Integer
Length: 1 Byte
Description: Mode of transportation for this credential. Enum value that
maps to:
0: USB
1: NFC
2: BLE
3: INTERNAL

– EXTENSIONS:
Type: Nested M ⇥ 2 CBOR array
Key : 5
Description: Custom extension data. All values of the array are encrypted
with the GCM key.

∗ EXTENSION ID:
Type: UTF-8 String
Length: Variable, up to 256 Bytes
Description: Unique identifier of the extension.

∗ EXTENSION DATA:
Type: Byte String
Length: Variable, up to 212 Bytes
Description: Data corresponding to the extension, which may include any
necessary parameters or configuration settings to support the extension’s
function.
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A.12. Authentication Response

• MESSAGE TYPE:
Type: Integer
Value: 12
Length: 1 Byte
Description: Specifies the type of message, indicating an Authentication Response.

• CLIENTDATA JSON:
Type: UTF-8 String
Length: Variable, up to 211 Bytes
Description: A JSON-serialized string containing the client-side data used during
the authentication process. This includes type, challenge, and origin.

• AUTHENTICATOR DATA:
Type: Byte Array
Length: Variable, up to 512 Bytes
Description: A binary representation of the authenticator data, which contains
data from the authenticator, including flags and counters.

• SIGNATURE:
Type: Byte Array
Length: Variable, up to 256 Bytes
Description: A digital signature over the concatenation of the authenticator data
and the clientDataHash.

• OPTIONALS:
Type: CBOR map
Description: Contains optional values that can be probed by their keys.

– USER HANDLE:
Type: Byte String
Key : 1
Length: Variable, up to 64 Bytes
Description: The user ID, that uniquely identifies the user. If discoverable
credentials were used, this field is mandatory.

– SELECTED CREDENTIAL ID:
Type: Byte String
Key : 2
Length: Variable, up to 256 Bytes
Description: The identifier of the credential that was used in the authentication.

– CLIENT EXTENSION OUTPUT:
Type: Nested N ⇥ 2 CBOR array
Key : 3
Description: Custom extension data returned by the client.
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∗ EXTENSION ID:
Type: UTF-8 String
Length: Variable, up to 256 Bytes
Description: Unique identifier of the extension.

∗ EXTENSION DATA:
Type: Byte String
Length: Variable, up to 212 Bytes
Description: Data corresponding to the extension, which may include any
necessary parameters or configuration settings to support the extension’s
function.

Figure 23: Message Type Definition: Authentication Response. Graphic created by
author.
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B. Test PKI and Certificate Creation Guide

This appendix provides commands necessary to establish a local PKI and generate
certificates using OpenSSL. These resources are intended to assist developers in creating
a controlled testing environment for the proposed client-server application.

B.1. Certificate Authority

# Generate an EC Private Key for the CA
openssl ecparam -genkey -name secp384r1 -out ca.key

# Generate a CA Certificate
openssl req -x509 -new -nodes -key ca.key -sha384 -days 1024 -out ca.pem

B.2. Client

# Generate an EC Private Key for the Client
openssl ecparam -genkey -name secp384r1 -out client.key

# Generate a Certificate Signing Request (CSR) for the Client
openssl req -new -sha384 -key client.key -out client.csr

# Sign the Client CSR with the CA Certificate
openssl x509 -req -in client.csr -CA ca.pem -CAkey ca.key -CAcreateserial -out \

client.pem -days 1024 -sha384

# Verify the Client Certificate
openssl verify -CAfile ca.pem client.pem
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B.3. Server

A configuration file named cert.cnf is initially generated for the server, incorporating
the SAN field of the certificate:

[ req ]
default_bits = 2048
default_keyfile = server.key
distinguished_name = req_distinguished_name
req_extensions = req_ext
x509_extensions = v3_ca
prompt = no

[ req_distinguished_name ]
C = DE
ST = Berlin
L = Berlin
O = Test Company GmbH
OU = Test Division
CN = fido.tls.extension

[ req_ext ]
subjectAltName = @alt_names

[ v3_ca ]
subjectAltName = @alt_names

[ alt_names ]
DNS.1 = fido.tls.extension
DNS.2 = localhost
IP.1 = 127.0.0.1

Next up, this configuration is used to generate the certificate:

# Generate an EC Private Key for the Server
openssl ecparam -genkey -name secp384r1 -out server.key

# Generate a Certificate Signing Request (CSR) for the Server
openssl req -new -sha384 -key server.key -out server.csr -config cert.cnf

# Create and Sign the Server Certificate
openssl x509 -req -in server.csr -CA ca.pem -CAkey ca.key -CAcreateserial \

-out server.pem -days 1024 -sha384 -extfile cert.cnf -extensions v3_ca

# Verify the Server Certificate
openssl verify -CAfile ca.pem server.pem
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C. Configuration Files for EAP-TLS

This appendix provides the actual configuration files used in the implementation of the
FIDO2 TLS 1.3 Extension within an EAP-TLS framework as discussed in the main
body of this thesis. These files are essential for setting up and operating the wireless
network environment that utilizes enhanced FIDO-based authentication. The configura-
tion examples include the eap user file for defining EAP users, the hostapd.conf for
configuring the access point, and the wpa supplicant.conf for setting up the client-side
network parameters.

C.1. eap user file

# EAP User File for hostapd
# Each line defines an EAP user

"Alice" TLS

C.2. hostapd.conf

## Basic network configuration settings:

# Interface used by the access point
interface=wlan0

# SSID of the Wi-Fi network
ssid=DemoNetwork

# Wireless mode, g for 2.4 GHz
hw_mode=g

# Wi-Fi channel to use
channel=6

# Authentication algorithm; 1 for open system
auth_algs=1

# Broadcast SSID; 0 to enable SSID broadcasting
ignore_broadcast_ssid=0

# WPA2 only
wpa=2

# Key management set to WPA-EAP for enterprise networks
wpa_key_mgmt=WPA-EAP

# WPA pairwise encryption method
wpa_pairwise=CCMP
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# WPA2 pairwise encryption method
rsn_pairwise=CCMP

# Enables 802.1X authentication
ieee8021x=1

# Internal EAP server enabled
eap_server=1

# Path to EAP user database file
eap_user_file=/path/to/eap_user_file

# Path to CA certificate file
ca_cert=/path/to/ca.crt

# Path to server's certificate
server_cert=/path/to/server.crt

# Path to server's private key
private_key=/path/to/server.key

# Enables TLS version 1.3
tls_flags=[ENABLE-TLSv1.3]

## FIDO2-specific configurations:

# Relying Party identifier for FIDO
fido_rp_id=demo.fido2.tls.edu

# Descriptive name for the Relying Party
fido_rp_name=Demo_FIDO2_TLS

# User verification policy (required, preferred, discouraged)
fido_user_verification=required

# Policy for device-resident keys (required, preferred, discouraged)
fido_resident_key=required

# Type of authenticator attachment (cross-platform or platform)
fido_auth_attach=cross-platform

# Transport protocol for the FIDO device (usb, nfc, ble, internal)
fido_transport=usb

# Timeout for FIDO operations in milliseconds
fido_timeout=30000

# Debug level for FIDO operations: 1 for errors, 2 for verbose, 3 for very verbose
fido_debug_level=2
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C.3. wpa supplicant.conf

ctrl_interface=/var/run/wpa_supplicant

network={
ssid="DemoNetwork"
scan_ssid=1
key_mgmt=WPA-EAP
eap=TLS
identity="Alice"
ca_cert="/path/to/ca.crt"
client_cert="/path/to/client.crt"
private_key="/path/to/client.key"

}
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D. Scripting Simultaneous Startup and Shutdown of
Client-Server Applications

This appendix provides a bash script that uses the terminal multiplexer tmux to facil-
itate the launching and restarting of client and server instances simultaneously. This
automation is particularly beneficial in development environments where frequent restarts
of client and server software are necessary to incorporate new code changes and test
functionality. Prior to utilizing this script, ensure the following environment variables
are properly set:

# Path to the client application
export TMUX_PATH1="$HOME/MyApplication/Client"

# Path to the server application
export TMUX_PATH2="$HOME/MyApplication/Server"

# Command to launch the client
export TMUX_CMD1='make && ./build/client'

# Command to launch the server
export TMUX_CMD2='make && ./build/server'

With these environment variables configured, the script below can be executed. It
creates a new tmux session with two vertically split panes. The upper pane navigates to
$TMUX PATH1, and the lower pane to $TMUX PATH2. Subsequently, $TMUX CMD1 executes in
the upper pane and $TMUX CMD2 in the lower. These commands can include compiling and
launching the applications, depending on how they are configured. If the script is executed
while the session is already active, it selects the existing tmux window, sends a SIGINT
signal to terminate running instances, and re-executes the specified commands for both
the client and server. Creating a terminal shortcut to execute this script is advised, as it
facilitates the quick launching and restarting of client and server applications, enhancing
the e�ciency of the development cycle.
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#!/usr/bin/env bash

win=split-run

# Create or select window
if tmux list-windows | grep -q "$win"; then

pane_pids=$(tmux list-panes -t "$win" -F '#{pane_pid}' | tr '\n' ' ')
read -r pid1 pid2 <<< "$pane_pids"

if pgrep -P "$pid1" > /dev/null; then
tmux send-keys -t "$win.1" C-c

fi
if pgrep -P "$pid2" > /dev/null; then

tmux send-keys -t "$win.2" C-c
fi
while pgrep -P "$pid1" > /dev/null || pgrep -P "$pid2" > /dev/null; do

sleep 0.1
done
unset pid1 pid2 pane_pids

else
tmux new-window -n "$win" -c "$TMUX_PATH1"
tmux split-window -v -c "$TMUX_PATH2"

fi

# Execute commands
tmux send-keys -t "$win.1" "$TMUX_CMD1" Enter
tmux send-keys -t "$win.2" "$TMUX_CMD2" Enter
tmux select-window -t "$win"

unset win
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E. Maximum Size Analysis of Message A5

MESSAGE TYPE:
Type Field : 1 byte (CBOR small integer)
Length Field : N/A (length is implicit in the type for small integers)
Value: N/A (value is encoded directly in the type field)
Total : 1 byte

CHALLENGE:
Type Field : 1 byte (CBOR byte string type indicator)
Length Field : 1 byte (64 bytes length can be represented in 1 byte)
Value: 64 bytes
Total : 66 bytes

RP ID:
Type Field : 1 byte (CBOR text string type indicator)
Length Field : 1 byte (256 bytes length can be represented in 1 byte)
Value: 256 bytes
Total : 258 bytes

RP NAME:
Type Field : 1 byte (CBOR text string type indicator)
Length Field : 1 byte (255 bytes length can be represented in 1 byte)
Value: 255 bytes
Total : 257 bytes

USER NAME:
Type Field : 1 byte (CBOR text string type indicator)
Length Field : 1 byte (255 bytes length can be represented in 1 byte)
Value: 255 bytes
Total : 257 bytes

USER DISPLAY NAME:
Type Field : 1 byte (CBOR text string type indicator)
Length Field : 1 byte (255 bytes length can be represented in 1 byte)
Value: 255 bytes
Total : 257 bytes

USER ID:
Type Field : 1 byte (CBOR byte string type indicator)
Length Field : 1 byte (64 bytes length can be represented in 1 byte)
Value: 64 bytes
Total : 66 bytes

100



PUBKEY CRED PARAMS:
Type Field : 1 byte (CBOR array type indicator, size included for arrays < 24 elements)
Length Field : N/A (length is implicitly defined within the type for small arrays)
Value: 6 bytes (array of integers, each less than 24, encoded directly in one byte each)
Total : 7 bytes

OPTIONALS:
Type Field : 1 byte (CBOR map type indicator, size included for maps with < 24 pairs)
Length Field: N/A (count is implicit in the type for small maps)
Values : All the following items
Total : 1 byte + all following items

TIMEOUT:
Key Type & Length Field : 1 byte (CBOR small integer)
Value Type Field : 1 byte (indicating 4-byte unsigned integer)
Value Length Field : N/A (not needed since type implicitly denotes the length)
Value: 4 bytes
Total : 6 bytes

AUTHENTICATOR SELECTION:
Key Type & Length Field : 1 byte (CBOR small integer)
Value Type Field : 1 byte (CBOR array type with 3 items, size included)
Value Length Field : N/A (not needed since type implicitly denotes the length)
Value: 3 bytes (each element is a CBOR small integer)
Total : 5 bytes

EXCLUDED CREDENTIALS:
Key Type & Length Field : 1 byte (CBOR small integer)
Value Type Field : 1 byte (CBOR array type)
Value Length Field : 2 bytes (length of array allowing for up to 216 elements)
Value: N ⇥ 261 bytes (each credential has 260 bytes + 1 byte for the array)
Total : 4 bytes + N ⇥ 261 bytes

ATTESTATION:
Key Type & Length Field : 1 byte (CBOR small integer)
Value Type Field : 1 byte (CBOR small integer)
Value Length Field : N/A (not needed since type implicitly denotes the length)
Value: N/A (value is encoded directly in the type field)
Total : 2 bytes

EXTENSIONS:
Key Type & Length Field : 1 byte (CBOR small integer)
Value Type Field : 1 byte (CBOR array type)
Value Length Field : 2 bytes (length of array allowing for up to 216 elements)
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Value: M ⇥ 4358 bytes (258 bytes for EXTENSION ID, 3 + 212 bytes for EXTENSION
DATA, 1 byte for array)
Total : 4 bytes + M ⇥ 4358 bytes

Maximum message size

Given the individual totals for each part, we can sum these to find the total byte size of
the message.

Total bytes = 1 + 66 + 258 + 257 + 257 + 257 + 66 + 7 + 1

+ 6 + 5 + (4 + 261N) + 2 + (4 + 4358M)

= 1191 + 261N + 4358M

where:

• N is the number of excludedCredentials.

• M is the number of extensions.
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