
Lab 6 Beginners REXX Programming

Part 1-Working with the XEDIT Environment:

 In this lab we set you up to be able to write any type of program you might need.
Let’s begin by typing in a program from your z/VM console. To type in a program you
should use the same editor that you would use for other work. Within this course, we will
be using XEDIT, the CMS editor.

1) After you are logged on (first or second level is fine) you can type this
command to begin your XEDIT environment.

 xedit hello exec

2) This puts you into the XEDIT environment, where you can begin creating
REXX execs. You can input lines by entering an “i” for INPUT MODE, to
begin entering REXX commands. When you enter the line shown below, hit
Enter twice to exit the input mode.

 /* HELLO EXEC – A conversation */
 say “Hello! What is your name?”
 pull who
 if who = “” then say “Hello stranger!”
 else say “Hello” who

 To save the file you have just created or updated, type file on the command
line for the changes to be saved. After this, you see the READY prompt in your CMS
environment. Now your first program is ready to run.

 To run your newly created REXX program, type in the file name. Now, type in
hello to run the HELLO EXEC. After you enter hello and press Enter, you are
prompted for your name and can see if your program runs correctly. If any errors occur,
go into the XEDIT environment and fix them. If you have questions or concerns about
this example, please see the REXX Language module or REXX Reference guide for
further information.

 To stop a program at any point in its execution, just enter the CMS immediate
command to Halt Interpretation:
 hi
This stops REXX from running the program and returns control to the CMS environment.

Part 2 – Examples for writing your own REXX programs

 In the next few sections you will be asked to write your own REXX programs
using the control structures mentioned in the module. To complete these examples, you
will need the REXX module you just finished and your active z/VM system.

 Example 1:
 Write a REXX EXEC that accepts as input the scores of three sports
teams and finds their relative standings (first, second, and third place). There are

several different ways to complete this task. Hint: You might need to use an “ELSE
NOP” for each IF-THEN-ELSE, but there are also other ways to accomplish this.

 Example 2:
 Write the program described above, but use a SELECT instruction
instead of IF-THEN-ELSE, since SELECT was designed for multiple choices.

Part 3: Assignment 1:

 This REXX EXEC is a Cartoon Phrase program. When you enter a character’s
name, the program should display the character’s well-known phrase. For example,
Bugs Bunny would say “What’s up, Doc?”. So you need to add new characters and
variable names. Use the template below to begin your program. Data, variables,
statements, comments and commands must be filled in. Try writing out the REXX
program before typing it into the XEDIT environment to aid in error detection. (Fill in the
empty lines with the appropriate fields):

/* __________________________ */
say “what cartoon character is your favorite?”
pull _______
select
when ______ = “BUGS BUNNY” then phrase = “What’s up, Doc?”
__
__
 . . .

end
say ______ “says” phrase

After you feel that you have sketched out enough information and all control structures
and commands are correct, type the program into the XEDIT environment and check to
make sure everything is working correctly. If not go back and fix the errors. If you have
any questions, you can refer back to the REXX module under the SELECT instruction.
(Remember the key steps; write it, run it, and fix it.)

Part 4: Solving Errors and Fixing Them:

 This section was designed to help you locate errors displayed by your z/VM
console. Below is a program with two errors. Enter the program as it is written below
and run it.

/* Arithmetic Example */
say "Enter two numbers (between 1 and 100) and press enter."
pull first second
/* This portion will use arithmetic expressions to manipulate the
numbers /
add = first + second
say “When adding the two numbers you get:” add
 sub = first - second
 say "When subtracting the two numbers you get:" sub
 mult = first * second

 say "When multiplying the two numbers you get:" mult
 div = first/seconds
 say "When you divide first by second you get:" div
 say "This is the end of the example."

When you run this program, you should soon see the errors pop up. Remember that
REXX pinpoints the location and type of any errors that it finds, so just read through the
errors and fix them as you come to them. While you are in the process of fixing the
errors, answer the following questions:

(Before you fix the first error)
3.1) The last two lines of the error show the return value and the type of error; copy them
in the space provided.__
__
__

3.2) What did you do to fix the first error? _____________________________________
__
__

3.3) After running the program again, you discovered another error. Copy it
here:__
__
__

3.4) What did you do to fix this error? __
__
__

Part 5 – Tracing and Understanding Programs:

 This will be the last section in this first REXX lab. This next section shows the
code of two programs and your job is to write out their outputs. There is no need to type
the programs into the system; this section lets you demonstrate your understanding of
REXX syntax and REXX control structures. Just review the REXX programs below and
answer the questions without running the program itself.

4.1) /* The Final Score */
 teama = 21
 teamb =28
 say “Team A just scored a touchdown and made the extra p
 point.”
 teama = teama + 7
 say “Team B just made a field goal.”
 teamb = teamb + 3

say “Team A just scored another touchdown, but missed the
extra point.”

 teama = teama + 6
 select
 when teama = teamb
 then say “It was a tie score!”

 when teama < teamb
 then say “Team B is the winner, by” teamb – teama
“points!!”
 when teama > teamb
 then say “Team A is the winner, by” teama – teamb
“points!!”
 otherwise
 say “Something went wrong!!”
 end
 say “And that’s the game.”

Question: What is the output?

4.2) /* What Day EXEC */
 do until reply = date(weekday)
 say “What day of the week is it?”
 parse pull reply
 if reply \= date(weekday)
 then say “No, wrong day. Try again.
 end
 say “Correct, today is” reply

Let’s say today is Friday and the list of user input is as follows:
 Monday
 Wednesday
 Friday

Question: What is the output?

Part 6 – A Small Calculator

 Example 3:
 This program may be a bit challenging, but remember to look back at your
REXX module and the other examples. This is a small calculator program that retrieves
data through loops and a series of questions. First, your program should loop until the

user wants to quit. Second, you should ask the user for a number to perform arithmetic
on. Then, ask the user to enter “addition”, “subtraction”, “multiplication”, “division” or
“average”. Your program will retrieve the string of data and convert all characters to
uppercase. Use a function to take only the first three letters of the operation. When you
have the first three letters, use one of the control structures discussed (IF-ELSE-THEN
or SELECT) to check for these characters in uppercase and ask for another number to
compute the operation. The AVERAGE and ADDITION operations should be able to
accept many numbers, while all other operations accept only two numbers.

Note: You should make sure you do not divide by 0, or errors will occur!

