
Humboldt University

Computer Science Department
Systems Architecture Group
http://sar.informatik.hu-berlin.de

Peer-to-Peer Systems

SoSe 2011

Introduction and Overview

Systems Architecture Group
http://sar.informatik.hu-berlin.de2

What is P2P?

napster

gnutella
morpheus

kazaa

bearshare seti@home

folding@home

ebay

limewire

icq

fiorana

mojo nation

jxta

united devices
open cola

uddi

process tree

can

chord

ocean store
farsite

pastry

tapestry

?
grove

netmeeting

freenet

popular power

aim

jabber

Systems Architecture Group
http://sar.informatik.hu-berlin.de3

Peer-to-Peer Systems

• Distributed application where nodes are:
– Autonomous
– Very loosely coupled
– Equal in role or functionality
– Share and exchange resources

with each other

Systems Architecture Group
http://sar.informatik.hu-berlin.de4

Peer-to-Peer Systems

• Distributed application where nodes are:
– Autonomous
– Very loosely coupled
– Equal in role or functionality
– Share and exchange resources

• Grid Computing

Systems Architecture Group
http://sar.informatik.hu-berlin.de5

Peer-to-Peer Systems

• Distributed application where nodes are:
– Autonomous
– Very loosely coupled
– Equal in role or functionality
– Share and exchange resources

• Grid Computing

• File-sharing

Systems Architecture Group
http://sar.informatik.hu-berlin.de6

Peer-to-Peer Systems

• Distributed application where nodes are:
– Autonomous
– Very loosely coupled
– Equal in role or functionality
– Share and exchange resources

• Grid Computing

• File-sharing

• Digital Libraries/ Archive

Systems Architecture Group
http://sar.informatik.hu-berlin.de7

Is this new?

• Past Instances:
– IP routing (1970’s)
– Distributed Databases!

• Implicit Assumptions
– Scale: millions (billions?) of peers
– Nature of peers: Weak (PCs, sensors, PDAs)
– Application: lightweight semantics (e.g., file-sharing)

Systems Architecture Group
http://sar.informatik.hu-berlin.de8

Benefits

• Pool together and harness (latent) resources at large scale
– Petabytes of storage
– > 72 TeraFLOPs (Seti@home)

• Consolidating resources across autonomous nodes
• Robust, self-organizing, self-healing

Systems Architecture Group
http://sar.informatik.hu-berlin.de9

P2P key challenges

• What are they?

Illustrate with an example…

Systems Architecture Group
http://sar.informatik.hu-berlin.de10

Example: file sharing

• Every peer stores and shares files
• How do I find File X ?

File X?

?

?

?
?

File X

Systems Architecture Group
http://sar.informatik.hu-berlin.de11

Example: file sharing

• Challenge #1: Performance
– Asking everyone is expensive!
– If I am smart,

I only need to ask one peer
?

?

?
?

File X?

Systems Architecture Group
http://sar.informatik.hu-berlin.de12

Example: file sharing

• Challenge #2: Participation
– What if I do not want to store my share of the files?

– “Free-riding” problem

– How do we prevent
selfish people from cheating?

?

Systems Architecture Group
http://sar.informatik.hu-berlin.de13

Example: file sharing

• Challenge #3: Correctness
– What if I share a corrupted file?

– How do we prevent malicious
people from hurting others?

?

Systems Architecture Group
http://sar.informatik.hu-berlin.de14

Performance

Challenges

Correctness Participation

• Efficiency
• Load-balancing

• Authentic Services
• Prevention of DoS • Incentives

Systems Architecture Group
http://sar.informatik.hu-berlin.de15

Search in P2P

• Overlay Network controls:
– Connections made by users (topology)
– Data placement

• Tight control: “Structured”
– Efficient, comprehensive

• Loose control: “Unstructured”
– Inefficient, not comprehensive, simple, expressive
– Used in real life

Systems Architecture Group
http://sar.informatik.hu-berlin.de16

Unstructured – Query Flooding

= forward
query

= processed
query

= query source

= found
result

= forward
response

Systems Architecture Group
http://sar.informatik.hu-berlin.de17

Problems with unstructured

• Inefficient
– Query messages are flooded
– Even if routing is intelligent, worst case load is still O(n),

where n is # nodes in system

• Not comprehensive
– If I do not get a result for my query, is it because none exists?

• (Of course, many optimizations are possible…)

Structured systems address these problems

Systems Architecture Group
http://sar.informatik.hu-berlin.de

Distributed Hash Table (DHTs)

• Hash Table
– Key/Object pair
– Key is hashed to get an ID
– Operation: lookup(ID) object(s) with corresponding ID

Ex. Object file; Key file name; ID hash of file name

• Nodes are assigned IDs
– An object is stored on the node following the node with

the largest ID smaller than the object ID

• Problem. Find node that stores object(s) for a given ID

18

Systems Architecture Group
http://sar.informatik.hu-berlin.de19

Data Placement

0

1

2

3

4
5

6

7
m = 3 Nodes:

• 0
• 1
• 3

Data:
• 1
• 2
• 6

1

2

2

6

6

logical nodes,
do not actually exist

Systems Architecture Group
http://sar.informatik.hu-berlin.de20

Connections – “Finger” Tables

0

1

2

3

4
5

6

7

“Finger pointers”

Distance
• 20

• 21
….

• 2m-1

Systems Architecture Group
http://sar.informatik.hu-berlin.de21

Query Example

0

1

3

4
5

6

7

2

Node 0: Lookup(7)

@ Node 0: FindPred (7)

Say node 0 wants to find the
object with ID = 7
For simplicity, we will assume
a node exists at every ID in
the space

Systems Architecture Group
http://sar.informatik.hu-berlin.de22

Query Example

0

1

3

4
5

6

7

2

@ Node 4: FindPred(7)

Systems Architecture Group
http://sar.informatik.hu-berlin.de23

Query Example

0

1

3

4
5

6

7

2

@ Node 6: FindPred(7)

Node 6 is predecessor
Return successor node 7

Systems Architecture Group
http://sar.informatik.hu-berlin.de24

Connections – “Finger” Tables

0

1

2

3

4
5

6

7

predecessor successor

Systems Architecture Group
http://sar.informatik.hu-berlin.de25

Query characteristics

• N = total nodes in the network

• With high probability, a query can be answered by
contacting O(log N) nodes
Efficient!

• If an object with the ID exists in the network, it will be found
Comprehensive!

• State is also O(log N) in size

Systems Architecture Group
http://sar.informatik.hu-berlin.de26

Disadvantages?

• Cost of joining and leaving
– O(log2 N) messages
– Moving objects (potentially large files!) around

• Instability
– If one node joins or leaves, no problem
– If many nodes join and leave at the same time, can the finger

pointers really fix themselves?
– Even if they can, how slow are queries in the meantime?

• Availability of Data
– If a node dies suddenly, what happens to the data it was storing?
– MUST replicate data across multiple nodes

Systems Architecture Group
http://sar.informatik.hu-berlin.de27

Problems?

• What exactly is an ID?

– IP address? Very easy to spoof
– If a peer can have many IDs, it would be easy for him to take control

of the “secure” score management
– The “Sybil attack”

• If IDs are easy to generate, no system is secure

– How can we make IDs difficult to generate?
• Centralized authority, crypto puzzles, etc

• How to motivate Participation?
• Reliability
• Correctness / Quality of result (Security)
• Scalability

Systems Architecture Group
http://sar.informatik.hu-berlin.de28

Reputation

• Past History
– Good past experience with peer more

likely to interact again with that peer
– Bad past experience with peer more

likely to avoid that peer

• Implementation
– Each peer i has a “trust vector” ci to

determine how likely they are to interact
with other peers

0
0

0

0
0
0

Peer 4

Peer 6

Systems Architecture Group
http://sar.informatik.hu-berlin.de29

Past History

• Problem?
• Each peer has limited past experience

– I know few peers out of the entire network
– Most of the time, I will not have an opinion

on a peer

• Solution?

0
0

0

0
0
0

Peer 4

Peer 6

?
?
?

?

?
?

Systems Architecture Group
http://sar.informatik.hu-berlin.de30

EigenTrust: Friends of Friends

• Ask for the opinions of the
people you know

• Weight their opinions by
your trust in them

0
0

0

0
?
0

Peer 4

Peer 6

Peer 1

0
0
0
0
0

0

Peer 2

Peer 8

Systems Architecture Group
http://sar.informatik.hu-berlin.de31

The Math

j

jkij ccc
ik

'

Ask your friends j

What they think of
peer k.

And weight each
friend’s opinion by

how much you trust
him.

You are peer i

Systems Architecture Group
http://sar.informatik.hu-berlin.de32

The Math

TC'
ic ic

.1

.5
0
0
0
.2

0 .2 0 .3 0 .5 .1 0 0 0

.1

.3

.2

.3

.1

.1

.2

j

jkij ccc
ik

'

My new trust vector
Is the multiplication of

My old trust vector

And the transpose of the
trust matrix

Systems Architecture Group
http://sar.informatik.hu-berlin.de33

Problem with Friends

• You know a lot of peers
– You have to compute and

store many values.

• You know few peers
– You won’t know many peers,

even after asking your
friends.

0

0

0
0

0
0
0
0
0

0

0
0
0
0
0

0

0
0

0

0
0
0

Systems Architecture Group
http://sar.informatik.hu-berlin.de34

Knowing All Peers

• Ask your friends: t = CTci

• Ask their friends: t = (CT)2ci

• And their friends: t = (CT)3ci

• Keep asking…. …forever?

0
0

0

0
0
0

0
0
0
0
0

0

0
0
0
0
0

0

0
0

0

0
0
0

Systems Architecture Group
http://sar.informatik.hu-berlin.de35

Minimal Computation

• Luckily, the trust vector t, if computed in this manner,
converges to the same thing for every peer!

– I ask my friends…forever…
– You ask your friends…forever…
 After a while, my trust vector stops changing
 When my vector stops changing, and your vector stops changing,

we end up with the same vector

