
Linux Kernel: Adding your own sysctls

Vitalik Nikolyenko - vnik5287@uni.sydney.edu.au

Linux Kernel: Adding your own sysctls

Sysctl entries are represented by an array of struct proc dir entry, which is defined
in <linux/sysctl.h>:

struct ctl_table

{

int ctl_name; /* Binary ID */

const char *procname; /* Text ID for /proc/sys, or zero */

void *data;

int maxlen;

mode_t mode;

struct ctl_table *child;

struct ctl_table *parent; /* Automatically set */

proc_handler *proc_handler; /* Callback for text formatting */

ctl_handler *strategy; /* Callback function for all r/w */

void *extra1;

void *extra2;

};

ctl name is a unique (within the current sysctl level) numeric value used by sysctl utility.

procname specifies the name of the sysctl file under /proc/sys.

data is a pointer to data for use by proc handler.

maxlen is the maximum size in bytes of the data.

mode specifies the file permissions for the /proc/sys file.

child is a pointer to the child sysctl table if this entry is a directory or NULL.

proc handler - the text handler routine.

extra1 and extra2 are extra pointers usable by some proc handler routines.

Each array entry can either be a parent or a child. Parent structs represent directories
within /proc/sys/ and should set their .child member to point to the child table. Child
entries are terminal and represent files; their .child member is set to NULL. Note that
each array must be terminated by a NULL entry.

The following example will create /proc/sys/kernel/sample file that accepts a value in
range [0 : 5] and assigns it to global var:

1



static int global_var;

static int min_val = 0;

static int max_val = 5;

static struct ctl_table sample_child_table[] = {

{

.ctl_name = CTL_UNNUMBERED,

.procname = "sample",

.maxlen = sizeof(int),

.mode = 0644,

.data = &global_var,

.proc_handler = &proc_dointvec_minmax,

.extra1 = &min_val,

.extra2 = &max_val,

},

{}

};

static struct ctl_table sample_parent_table[] = {

{

.ctl_name = CTL_KERN,

.procname = "kernel",

.mode = 0555,

.child = sample_child_table,

},

{}

};

/* register the above sysctl */

if (!register_sysctl_table(sample_parent_table)) {

printk(KERN_ALERT "Error: Failed to register sample_parent_table\n");

return -EFAULT;

}

Note that the ctl name value for the sample parent table[] is CTL KERN which is de-
fined in <linux/sysctl.h>. Since there is no predefined unique value (that can be used
as its ctl name) for the sample child table[], CTL UNNUMBERED must be used instead.
CTL UNNUMBERED allows to register sysctls without a binary number and that’s probably
what you want most of the time.

If you need a binary number assigned to your new sysctl, it must be defined in <linux/sysctl.h>

first:

/* CTL_KERN names: */

enum

{

2



KERN_OSTYPE=1, /* string: system version */

KERN_OSRELEASE=2, /* string: system release */

KERN_OSREV=3, /* int: system revision */

KERN_VERSION=4, /* string: compile time info */

KERN_SECUREMASK=5, /* struct: maximum rights mask */

...

KERN_SAMPLE=SOME_UNUSED_VALUE

};

Now KERN SAMPLE can be used as clt name for the sample child table[]:

static struct ctl_table sample_child_table[] = {

{

.ctl_name = KERN_SAMPLE,

.procname = "sample",

...

Once the above sysctl is registered, it can used by sysctl utility:

> sysctl kernel.sample=3

This will set global var to 3. Attempting to set a value that is < 0 or > 5 will produce
the following error:

> sysctl kernel.sample=10

error: "Invalid argument" setting key "kernel.sample"

3


