

 Humboldt University Berlin
 Computer Science Department
 Systems Architecture Group

 Rudower Chaussee 25
 D-12489 Berlin-Adlershof
 Germany

 Phone: +49 30 2093-3400
 Fax: +40 30 2093-3112
 http://sar.informatik.hu-berlin.de

Self-Replication in J2ME MIDlets.

HU Berlin Public Report
SAR-PR-2006-04

March 2006

Authors:

Henryk Plötz, Martin Stigge, Wolf Müller, Jens-Peter Redlich

Self-Replication in J2me Midlets

Henryk Plötz, Martin Stigge, Wolf Müller, Jens-Peter Redlich
(ploetz|mstigge|wolfm|jpr)@informatik.hu-berlin.de

Systems Architecture Group∗, Computer Science Department,
Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin, Germany

May 15, 2006

Abstract
A j2me midlet is a Java application which runs in a very restricted

environment, typically on a mobile phone. These don't necessarily have
a �le system, and even if they do, midlets usually don't have full access
to it. Also they don't know where their code is stored in the �le system,
or if it's stored there at all. So for all practical purposes midlets can
not directly get a copy of their code. Still, some applications such as
social networking software might bene�t greatly from the possibility of
replicating the software from phone to phone. Because most mobile phones
do not o�er such functionality by themselves �probably for fear of software
piracy� we'll have to implement that in our software and therefore need a
copy of the code that is currently running.

1 Introduction

J2me midlets run in a sandbox which imposes more restrictions than is common
for Java programs. As a result it is normally not possible for a midlet to directly
access its installation jar �le and therefore it can not generate a copy of itself,
for example for sending to other phones.

But under certain cirumstances it would be favourable to have such a func�
tionality. For example we're researching social networking software where wide-
spread propagation of the software is a high priority. Having a way of o�ering
to spread the software directly from mobile phone to mobile phone �without in�
curring any charges� should entice users to share the software with their friends
or even random acquaintances, if it seems useful.

Shortly before the release of this paper another actual example came up:
The new semacode.org (n.d.) j2me standalone reader (version 1.6) prominently
features a �Recruit!� soft-button which leads to a screen that says: �You can
share Semacode with your friends. Use this to send them a text message with
a free download link.�

The Blooover II breeder edition (Herfurt, 2005) was the �rst midlet we saw
which was capable of reproducing a copy of itself over the bluetooth interface.
It does this by including a copy of the non-breeding edition as a resource in the

∗http://sar.informatik.hu-berlin.de

1

2 DETOUR: THE ZIP FILE FORMAT

installation jar �le, which can subsequently be accessed by the code and sent
to another mobile phone. This approach has two major drawbacks:

1. It is only possible to breed exactly one new generation. The newly bred
copies can not generate any further copies.

2. The installation jar �le doubles in size because a full new copy must be
included.

This paper will try to address both issues one after the other: Section 3 solves
the �rst problem in a rather traditional manner and section 4 solves the second
problem through some trickery with the jar �le. We'll then conclude with some
remarks on the problems with signed code in section 5.

An �at least super�cial� understanding of the the jar �le format will be
necessary to follow the course of this paper. For this reason we shall like to
restate the most important facts about the zip �le format �rst, since a jar �le
is little else than a zip �le with a di�erent �le name extension and a special
meta-inf directory inside.

2 Detour: The Zip File Format

The zip �le format (zip spec, 2006) was originally devised by Phil Katz in 1989
for his then new pkzip �le compression utility. Its basic structure consists of
one or more �les concatenated together, each prepended with a local �le header
and possibly compressed, and a central directory of all �les in the archive at
the end. The end of the central directory is marked by a special �end of central
directory� record which includes information about the central directory such as
the number of entries, its length and its o�set from the start of the �le1.

Each local �le header includes information about the �le in question such as
the original �le name, the compressed �le size, the uncompressed �le size, the
�le's crc-32, the compression method that was used, a general purpose �ag bit
�eld, etc. One important point to notice: If bit 3 of the general purpose bit
�eld is set, then the compressed size, uncompressed size and crc-32 in the local
�le header will be set to zero and instead be included in a trailer (called �data
descriptor�) after the actual �le contents. It is therefore not possible to read a
zip �le from the start in the general case, because one might need to jump over
an unknown number of bytes in order to learn how many bytes one needed to
jump over. The correct size and crc-32 values will however be set in the central
directory in any case.

This design choice was presumably made in order to be able to stream a new
zip �le out of stdout, but comes at a cost: To read a zip �le one needs to jump
to the end of it, �nd the �end of central directory� record to locate the beginning
of the central directory and then jump to the central directory and read this in
order to make sense of the rest of the �le.

The records in the central directory are similar to the local �le headers but
there are some additional �elds. The most important of these gives the o�set
to the start of that �le's local header.

1Actually the start of the central directory is indicated as the o�set from the beginning
of the volume that the central directory starts on, but we will neglect the possibility of
multi-volume archives for this article, as we will some other features of the zip �le format such
as digital signatures or the zip64 extension.

2

3 THE RE-INSERTION TECHNIQUE

Figure 1: General overview of the zip �le format

Note that all structures (local �le headers, central directory records and
end of central directory record) start with a magic word to make identifying
them easy (or even possible at all). Table 1 in appendix B lists the magic
words for the most important structures. Appendix A details their layouts. A
general overview of the zip �le format, also depicting which section links to
which section, is shown in �gure 1.

Note that this short overview only included the structures that are relevant
to the subject at hand and left out a lot of details. Anyone who is truly interested
in the zip �le format should read its speci�cation.

3 The Re-Insertion Technique

A j2me midlet can access resources from its installation jar �le using

this.getClass().getResourceAsStream("/foo")

so it is easy for a midlet to produce a copy of something �for example a jar
�le� that is included in its jar:

1. Build the midlet suite, get an installation jar �le a.jar.

2. Copy a.jar into the midlet suite's resource directory and rebuild the suite,
get an installation jar �le b.jar.

3. Distribute b.jar.

4. When run, b.jar can read in a copy of a.jar and for example send this
using obex push to another mobile phone.

3

3 THE RE-INSERTION TECHNIQUE

Figure 2: The zip �le after reinsertion

5. When run, a.jar cannot read in a copy a.jar.

Note: Up to here this is about the same thing that Blooover does.
So what do we do about the problem in step �ve? Well, we do have a

programming language at our disposition and can modify the in-memory copy
of a.jar to our likings, right? So simply re-insert a copy of a.jar into our
existing copy before passing it on.

Figure 2 shows what our zip �le looks like after the reinsertion, emphasizing
those structures that need to be changed or updated. What needs to be done,
in order:

1. Locate the end of central directory record and the beginning of the central
directory.

2. Just before the beginning of the central directory, insert a local �le header
describing our �le a.jar: Give (at least) the �le name, compressed size
and uncompressed size (those two are equal), crc-32 and compression
method (stored, not compressed). Insert an unmodi�ed copy of the �le
a.jar.

3. After that insert a central directory record for this �le with the same
information and additionally give the o�set to the local �le header (this is
the same o�set at which the central directory was previously found).

4. Revisit the end of central directory record and update the information:
Add one to the number of entries, increase the size according to the size

4

4 THE MATRYOSHKA TECHNIQUE

of the new record from step three, adjust the o�set according to the size
of the new �le and local �le header from step two.

That's all there is to it. If this modi�ed �le is transmitted onto another
mobile phone and run, it will be able to execute the same steps again, as will
its o�spring and so on.

This solution is not completely satisfactory though: Because the a.jar �le
needs to be included into b.jar the size of b.jar will be about double the size
of a.jar. This can make the di�erence between a reasonably sized midlet and
an unreasonably sized midlet, especially in situations where the users need to
�or want to� download b.jar using their mobile phone services which often are
billed by volume. The size of the modi�ed a.jar is not so much of an issue,
because sending over obex push is free. (Usually the modi�ed a.jar will be
bigger than b.jar, despite them having about the same contents, because we
do not use any compression when reinserting a.jar into the modi�ed a.jar,
while the program that included a.jar in b.jar will have used compression.)

4 The Matryoshka Technique

So what can we do about the size problem? Looking at the zip specs and at our
modi�cation of a.jar we will notice two things:

1. The �le that we inserted is just the same as the �le we are inserting it
into.

2. The zip data structures give explicit length and o�set for each �le in the
archive and there's nothing that prevents us from creating overlapping
�les.

So, don't you just wonder whether we can create an entry for a �le that overlaps
the whole archive? We can, as it turns out, though the complete solution involves
some �ddling with the crc-32.

4.1 Approach

The steps needed di�er somewhat from the previous technique and most impor�
tantly they are carried out right after building the jar �le, on the developer's
machine, before distribution:

1. Locate the end of central directory record and the beginning of the central
directory.

2. Just before the end of the central directory (the location really is arbi�
trary), insert a central �le header describing a �le that starts at o�set zero
and is [(size of the jar �le before modi�cation) + (size of our new central
directory record)] bytes long, with some �le name foo, no compression.
You can't �ll out the crc-32 �eld yet because it is going to change, so
simply set it to zero. We'll get to this later.

3. At the very beginning insert a local �le header describing the same �le.
Note that now the complete jar �le (minus the local �le header) can be
treated as a �le foo within the jar �le. Pretty cool, eh?

5

4.2 Fixing The Crc-32 4 THE MATRYOSHKA TECHNIQUE

Figure 3: The zip �le after applying the Matryoshka technique

4. Fix all the o�sets that you broke by inserting the local �le header at the
beginning: Add the size of the header to each and every o�set (central
directory records and end of central directory record), except for our new
central directory record.

5. Calculate the crc-32 of the foo �le (e.g. everything after our new local
�le header) and �ll in the crc-32 �eld in the new local �le header. You
cannot �ll in the crc-32 �eld in the central �le header, because that would
change the crc-32.

The end result should look like �gure 3.
In theory the midlet should now be able to read the �le foo, just as it did

a.jar in the previous section and acquire the complete jar minus the local �le
header which it just needs to recreate by applying steps 3 and 5 again. No o�sets
need to be �xed, because the recreated local �le header has the same length as
the original one (of course the midlet needs to use the same �le name again).

In practice that doesn't work, because the crc-32 in the central directory
doesn't match the crc-32 of the �le foo. You can not easily avoid this problem
because updating the crc-32 in the central directory would mean changing the
crc-32 of the �le foo necessitating a new update in the central directory, ad
in�nitum.

4.2 Fixing The Crc-32

So, we need to be able to set the crc-32 before the data that it is computed
over is completely available. Luckily crc-32 is a simple linear operation that can
easily be reversed. We simply think of a value, put this into central directory for

6

5 COPING WITH DIGITAL SIGNATURES

the crc-32 �eld and then modify our data so that it checksums to that chosen
value.

anarchriz (1999) o�ers an approach that modi�es the data's last four bytes
to �x the crc-32. To apply this work to our �le we add a zip �le comment of
�ve bytes to the end of the �le and update the end of central directory record
as well as the local �le header and the central �le to re�ect this change. The
last four of these bytes are overwritten with the crc-32 compensation data and
the �rst byte we leave at zero. This prevents the printing of this comment in
some programs (a zero byte marks the end of a string in C) and doesn't hurt.

Stigge (2006) has an even better approach that enables us to put the four
compensation bytes anywhere in the data, not solely at the end. We haven't yet
used the last mod �le time/date �elds (which together give us four bytes) so we
can put the compensation data there.

5 Coping With Digital Signatures

Digitally signing code is important, especially in this context where the code is
received from some (untrusted) third party and not from the original developer.

5.1 Java 2 Standard Edition

Code signing in the Java 2 Standard Edition follows the �Signed jar File� part
of the Jar File Speci�cation (2003). Signing in this standard consists of:

• Additional entries in the manifest.mf �le listing the hashes of all �les
that are to be signed.

• Additional pairs of �les, one for each signer: A signature �le that lists all
the �les that are to be signed by that signer and their hashes and a digital
signature �le with that signer's signature over the corresponding signature
�le.

It follows naturally that both techniques that have been discussed so far
do not interfere with the j2se signing and veri�cation process. Two points of
advice:

• Sign �rst and then modify the signed jar, especially when using the ma�
tryoshka technique. Otherwise the jarsigner tool will destroy the ma�
tryoshka property when repacking the �le.

• You may want to put the virtual foo �le into the meta-inf directory
inside the jar (e.g. META-INF/foo), because these �les will be ignored
when signing and verifying.

5.2 Java 2 Micro Edition

The Java 2 Micro Edition �following the �Wireless is Di�erent� doctrine� uses a
di�erent veri�cation scheme. A signed midlet is split into two di�erent �les:

• A jar �le with the code, and

7

5.2 Java 2 Micro Edition 5 COPING WITH DIGITAL SIGNATURES

• a jad �le with some meta-information and the signature over the complete
jar �le.

The common way to install a signed midletis to download the jad �le via
(wap or http) over (gsm or gprs or umts), get the jar �le's url from the
jad and then download the jar �le (also over the air interface). That last part
is precisely what we want to avoid when using phone to phone replication.

We're facing two fundamental problems when trying to apply our self-replication
techniques to signed midlets:

1. Any modi�cation of the jar �le will invalidate the signature, so the �le
must be signed after modifying. It is therefore not possible to incorporate
the signing jad �le into the signed jar �le.

2. It is not possible install a signed midlet in a standardized way over a
short-range communications technology (Bluetooth, infrared). Installing
or o�ering to install the unsigned midlet was easy because that just in�
volved sending the bare jar �le using obex push. But in order to send a
signed midlet it is necessary to somehow transmit the jad together with
the jar and then get the target phone to recognize their relationship. For
some phones this is possible by sending both �les with obex push and
then instructing the receiving user to visit his or her inbox and install the
received jad �le. For some phones it is not possible at all, or only through
proprietary protocols2.

We cannot really do anything about the second problem. But we can try to
overcome the �rst problem when we pretend that we solved the second problem.

The one issue that is still left is: How do we come up with a jad �le that
is a proper signature for the jar �le that we want to transmit (which should
preferably be a copy of the jar �le that is currently running)?

Because we can't include the jad in the jar (unless we �nd some way to
break the digital signature in a similar way that we broke the crc-32, which
is neither easy nor what we want), we'll have to store it in the midlet's data
storage area (rms, Record Management System). There several possibilities to
get it there:

• If the program that is to be replicated needs online connectivity anyway,
we could use this connection to get a copy of the jad into the rms.

• If the receiving user is advised to run the midlet immediately after repli�
cation, we could let the old and new midlet instances communicate and
thus transfer the the jad into the new instance's rms.

• For the �rst generation midlet, we could apply a similar technique to
that seen in section 3: We generate a �rst midlet version a.jar, sign
that in order to get a.jad, then include a.jad into the jar �le while
simultaneously applying the Matryoshka technique, resulting in b.jar and
�nally sign that to get b.jad.
The �rst-generation user then downloads b.jar and b.jad from the web�
site and runs it. This midlet can now use the Matryoshka code to retrieve

2The Device Explorer software that comes with the Development Kit for our W800i seems
to be able to install a jar/jar combination.

8

6 DEMONSTRATION

a copy of b.jar, then extract a.jad and undo all modi�cations on its
b.jar copy to generate a copy of a.jar (for which it has the matching
a.jad).

6 Demonstration

We have prepared a proof of concept midlet which is available from our website
at http://sar.informatik.hu-berlin.de/self-replication. This midlet, when down�
loaded and run on a mobile phone, will reconstruct its install jar and then print
this jar's size and crc-32. Use the �Search� button to search for neighbouring
devices that o�er to accept an obex push and then send a copy of the jar to one
of those devices (you may be asked to grant security permissions to the midlet
in order to do that). The received copy should be bit-idententical to the original
�le (e.g. same size and same crc-32). If the receiving device is a mobile phone
it should be possible to install and/or execute the received copy right away.

Note: We have only successfully tested this midlet with a Sony-Ericsson
W800i and similar Sony-Ericsson devices. A lot of other mobile phones (e.g.
the Siemens S65) seem to have an incomplete implementation of jsr-82 (the
Bluetooth api for j2me that we are using to send the obex push) and are
therefore not capable of running our midlet (though they can receive it just
�ne). It may be possible to work around this limitation by writing a custom
obex implementation that uses just the basic jsr-82 features, but this is outside
of our scope.

9

http://sar.informatik.hu-berlin.de/self-replication

A STRUCTURES

A Structures

A.1 Local File Header

O�set Size Meaning

0 4 Local �le header magic word
4 2 Version needed to extract
6 2 General purpose bit �ag
8 2 Compression method
10 2 Last mod �le time
12 2 Last mod �le date
14 4 crc-32
18 4 Compressed size
22 4 Uncompressed size
26 2 File name length
28 2 Extra �eld length
30 variable File name

variable variable Extra �eld

A.2 Central directory record

O�set Size Meaning

0 4 Central �le header magic word
4 2 Version made by
6 2 Version needed to extract
8 2 General purpose bit �ag
10 2 Compression method
12 2 Last mod �le time
14 2 Last mod �le date
16 4 crc-32
20 4 Compressed size
24 4 Uncompressed size
28 2 File name length
30 2 Extra �eld length
32 2 File comment length
34 2 Disk number start
36 2 Internal �le attributes
38 4 External �le attributes
42 4 Relative o�set of local header
46 variable File name

variable variable Extra �eld
variable variable File comment

10

A.3 �End of central directory� record C REFERENCES

A.3 �End of central directory� record

O�set Size Meaning

0 4 End of central directory magic word
4 2 Number of this disk
6 2 Number of the disk with the start of the

central directory
8 2 Total number of entries in the central

directory on this disk
10 2 Total number of entries in the central

directory
12 4 Size of the central directory
16 4 O�set of start of central directory with

respect to the starting disk number
20 2 zip �le comment length
22 variable zip �le comment

B Tables

Structure Magic word (in hex)

Local �le header 50 4b 03 04
Central directory record 50 4b 01 02
End of central directory record 50 4b 05 06

Table 1: Magic words for di�erent structures in the zip �le format

C References

anarchriz. (1999, April). CRC and how to reverse it. (Available from
http://www.woodmann.com/fravia/crctut1.htm)

APPNOTE.TXT � .ZIP �le format speci�cation. (2006). (Version: 6.2.2
(revised: January 6, 2006) available from http://www.pkware.com/
business and developers/developer/popups/appnote.txt)

Herfurt, M. (2005). Blooover - j2me phone auditing tool [Computer program].
(Available from http://tri�nite.org/tri�nite stu� blooover.html)

(n.d.). (http://www.semacode.org)
Stigge, M. (2006, May). Reversing Crc � Theory and Practice.
Jar File Speci�cation. (2003). (Available from http://java.sun.com/j2se/

1.5.0/docs/guide/jar/jar.html)

11

http://www.woodmann.com/fravia/crctut1.htm
http://www.pkware.com/business%5fand%5fdevelopers/developer/popups/appnote.txt
http://www.pkware.com/business%5fand%5fdevelopers/developer/popups/appnote.txt
http://trifinite.org/trifinite%5fstuff%5fblooover.html
http://www.semacode.org
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

Reports published by Humboldt University Berlin, Computer Science Department, Systems Architecture Group.

1. SAR-PR-2005-01: Linux-Hardwaretreiber für die HHI CineCard-Familie. Robert Sperling. 37
Seiten.

2. SAR-PR-2005-02, NLE-PR-2005-59: State-of-the-Art in Self-Organizing Platforms and
Corresponding Security Considerations. Jens-Peter Redlich, Wolf Müller. 10 pages.

3. SAR-PR-2005-03: Hacking the Netgear wgt634u. Jens-Peter Redlich, Anatolij Zubow, Wolf
Müller, Mathias Jeschke, Jens Müller. 16 pages.

4. SAR-PR-2005-04: Sicherheit in selbstorganisierenden drahtlosen Netzen. Ein Überblick über
typische Fragestellungen und Lösungsansätze. Torsten Dänicke. 48 Seiten.

5. SAR-PR-2005-05: Multi Channel Opportunistic Routing in Multi-Hop Wireless Networks
using a Single Transceiver. Jens-Peter Redlich, Anatolij Zubow, Jens Müller. 13 pages.

6. SAR-PR-2005-06, NLE-PR-2005-81: Access Control for off-line Beamer – An Example for
Secure PAN and FMC. Jens-Peter Redlich, Wolf Müller. 18 pages.

7. SAR-PR-2005-07: Software Distribution Platform for Ad-Hoc Wireless Mesh Networks. Jens-
Peter Redlich, Bernhard Wiedemann. 10 pages.

8. SAR-PR-2005-08, NLE-PR-2005-106: Access Control for off-line Beamer Demo Description.
Jens Peter Redlich, Wolf Müller, Henryk Plötz, Martin Stigge. 28 pages.

9. SAR-PR-2006-01: Development of a Software Distribution Platform for the Berlin Roof Net
(Diplomarbeit / Masters Thesis). Bernhard Wiedemann. 73 pages.

10. SAR-PR-2006-02: Multi-Channel Link-level Measurements in 802.11 Mesh Networks.
Mathias Kurth, Anatolij Zubow, Jens Peter Redlich. IWCMC 2006 - International Conference
on Wireless Ad Hoc and Sensor Networks, Vancouver, Canada, July 3-6, 2006.

11. SAR-PR-2006-03, NLE-PR-2006-22: Architecture Proposal for Anonymous Reputation
Management for File Sharing (ARM4FS). Jens-Peter Redlich, Wolf Müller, Henryk Plötz,
Martin Stigge, Torsten Dänicke. 20 pages.

12. SAR-PR-2006-04: Self-Replication in J2me Midlets. Henryk Plötz, Martin Stigge, Wolf
Müller, Jens-Peter Redlich. 13 pages.

	1 Introduction
	2 Detour: The Zip File Format
	3 The Re-Insertion Technique
	4 The Matryoshka Technique
	4.1 Approach
	4.2 Fixing The Crc-32

	5 Coping With Digital Signatures
	5.1 Java 2 Standard Edition
	5.2 Java 2 Micro Edition

	6 Demonstration
	A Structures
	A.1 Local File Header
	A.2 Central directory record
	A.3 ``End of central directory'' record

	B Tables
	C References

