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Abstract
The Cyclic Redundancy Check (CRC) was developed as a checksumalgorithm for the detection of data corruption in the process of data trans-mission or storage. However, in some scenarios there's a CRC given whicha set of data is expected to have, so the data itself has to be modi�ed (atthe end or at some chosen position) in a way that it computes to the givenCRC checksum afterwards. We present methods providing solutions tothis problem. Each algorithm is explained in theory and accompanied byan implementation for the CRC32 in the C programming language.

1 Introduction
The process of data transmission or storage usually contains the risk of un-wanted modi�cation of the data at the most physical level, caused by noisyor damaged transmission or storage media. (This does not include alterationby an intelligent third party like a malicious attacker.) To detect these errors,some error-detecting and even -correcting codes were invented, which calculatea value from the set of data and transmit or store it with the data. Any hashfunction can be used to perform this kind of error detection to a certain degree,and one of them is the \Cyclic Redundancy Check" (CRC). It's not a crypto-graphically secure hash and therefore can not reliably detect malicious changesin the transmitted data, but it can provably detect some common accidentalerrors like single-/two-bit or burst errors and can additionally be implementedvery e�ciently. There are di�erent instances of the CRC which mainly di�erin the polynomial on which they are based on, resulting in di�erent sizes of thecomputed value. The most popular one is the CRC32, which computes a 32-bitvalue.1While most of the time you want to calculate the CRC of a given set of data,there are some situations where the CRC is given and you want to modify yourdata so that it computes to this CRC value afterwards. These scenarios includehard-wired checksums of �rmware or calculating the CRC of a set of data which

�http://sar.informatik.hu-berlin.de1There are di�erent instances of CRC out there with a width of 32 bits. With \CRC32"we always mean the CRC used within IEEE 802 and many other standards, which is di�erentfrom e.g. CRC-32/Castagnoli.

http://sar.informatik.hu-berlin.de


2 HOW CRC(32) WORKS 2
includes the CRC itself. An example of the latter case is the creation of a ZIParchive which includes itself as a �le, see [PSMR06] for details. We develop andanalyse methods to calculate these modi�cations within the next sections.This article is structured in the following way: Section 2 gives an overview onhow the CRC is mathematically de�ned and how it is calculated in practice. Thisis meant as an overview as only those aspects being important to understandour \reversal" of the CRC are explained in detail. Section 3 then deals with thequestion of how to manipulate the end of your data so that you know in advancewhich CRC will be calculated, regardless of your actual data. After that, section4 will explain how to do the same with the ability to not only know the CRC inadvance but even to choose an arbitrary value for the CRC. This is extended insection 5 where we develop a method to do this manipulation anywhere we wantwithin our data, possibly far away from the end. (Its subsection 5.3 describesthe most exible and elegant solution for this, so you can jump directly there ifyou are just looking for the required steps.) We �nally draw some conclusionsin section 6 before our implementations of all algorithms are presented in theappendix A.Within the sections, each algorithm is �rst developed and explained in the-ory. Second, this is summarized by presenting some pseudo-code, which is easyto read and corresponds directly to the other theoretical background. Thispseudo-code will also be independent of the CRC instance used and accompa-nied by an example for better understanding. Third, you'll �nd working andwell-tested C code for each of the algorithms collected in the appendix A. Thesewill be implemented for use with the well-known CRC32 standard.
2 How CRC(32) Works
The CRC itself is essentially one giant polynomial division which can be ef-�ciently implemented in software and hardware (i.e. in O(n) time). Thereare many publications dealing with this topic in a very detailed way (see e.g.[Wil96] or [Tan81]), so we will describe the concept only to a degree needed tounderstand the details of our \reversal" methods.We will look at the CRC in 3 more or less di�erent ways: The \algebraicapproach", the \bit-oriented approach" and the \table-driven approach". Thealgebraic approach is the way the CRC is mathematically de�ned and is notmuch more than the polynomial division mentioned above, but it's often far toomuch maths for those who do the practical work, i.e. write the code. That'swhy we'll also look at the bit-oriented approach which is a polynomial divisionin practice by operating directly on the bits of the input data. Finally, thereis the table-driven approach, which does the same work in a faster and moree�cient way, which is why this is the way real-world programs actually computethe CRC.Before presenting the general ideas of the three approaches, some wordsabout the bit-ordering: The literature about this topic sometimes uses the con-cept of \reection" which is about the ordering of the calculated bits. It doesnot really make any di�erence which ordering you use, as long as you do thisin a consistent way. We will avoid to look at both types of bit-ordering withinthis article: We always start counting the data from bit 0, from \the left to theright" and do the same with the bits of the used CRC register and the CRC
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polynomial. This will avoid confusion and make everything more consistent.The important thing to note is that bytes are usually noted writing the leastsigni�cant bit (with number 0) to the right. To keep consistency, we will retainthe numbering (instead of the \left to right" ordering), for instance leading toa \right shift" (>>) within the C code where we and the �gures make a \leftshift" (meaning: shifting in direction of lower indices) and vice versa.

Figure 1: Illustration of the bit-ordering we use
And now for the details of the three approaches: (Again, please look at theaforementioned publications for more details.)

Algebraic approach: By de�nition, the CRC is more or less one giganticpolynomial division: The data is interpreted as the coe�cients of a giant poly-nomial which is divided by a given CRC polynomial. The remainder of thisdivision is the CRC.What kind of polynomial do we have for our data? All the data-bits are in-terpreted as elements from F2 = f0; 1g where we can de�ne an addition � (whichis essentially XOR) and multiplication � (which is AND). The set of polynomi-als is therefore called F2[x], and a polynomial for data-bits a = a0 : : : al�1 lookslike this: a(x) = a0xl�1 + a1xl�2 + : : :+ al�2x+ al�1
Addition within this set of polynomials is invertible (with every p(x) 2 F2[x]being its own inverse: p(x) = �p(x)), but unfortunately, the multiplication isnot. So the division of two polynomials may give a remainder. Having that inmind, the polynomial division of a polynomial p(x) by another polynomial q(x)can be expressed as �nding s(x) so that there is r(x) (the remainder polynomial)with a degree of less than the degree of q(x) so that:

p(x) = s(x) � q(x) + r(x)
Using this, the set of polynomial congruence classes F2[x]=pCRC(x) can be de-�ned: Each element r(x) within this set is one of the possible remainders andrepresents all polynomials which leave r(x) as the remainder when devided bypCRC(x). The computation of the CRC is a polynomial division which computesthe remainder of our data-polynom (after it's multiplied by xN for technical rea-sons). So �nally, calculating the CRC is de�ned as �nding a polynomial b(x) sothat there is an r(x) with a degree of less than N so that:

a(x) � xN = b(x) � pCRC(x) + r(x)
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Please note that we are not interested in how b(x) looks like.
Bit-oriented Algorithm: A very simple and naive approach to implementthis is to simply see the bit-stream of input data (\augmented" with N 0-bits tohave all coe�cients of a(x) �xN ) and add (=subtract) the coe�cients of pCRC(x)where needed. You do this until the remaining bits \span" a shorter range thanN , so they are the remainder coe�cients and therefore the CRC we looked for.This works because we are not interested in the quotient but only the remainderof the division.Practically, we could use a bit-register with a width of N where the data-bitsare \shifted in" from the right and as soon as a 1 is shifted out of the left side,everything is xored with the coe�cients of the CRC polynomial pCRC(x). Theresult would be the same. The bit-mask which is xored is called the CRCPOLY.This approach is improved a bit: The register (from now on called the CRCregister) will in practice store only the e�ect of the xor operations on the datastream, not the result itself. This means that we start with a register of all zerosand will shift in 0 from the right. We will xor the CRCPOLY when the bit justshifted out is di�erent from the bit we see in the data stream. This has theadded bene�t that the \augmentation" with N 0-bits is not needed anymore,because these bits are never considered in any operation.For technical reasons, the whole process doesn't start with a CRC register ofall 0, but with a pattern which is meant to compensate for errors like erroneouslyadded or left-out leading zeros which would otherwise remain undetected. Wewill call this pattern the INITXOR and its usually all 1. Symmetrically, there isa second pattern we call FINALXOR which is added to the CRC register afterthe computation. We have to keep this in mind, as soon as the result will beused as a CRC value, but it doesn't change the structure of the algorithm itself.To summarize this algorithm, look at the pseudo-code in algorithm 1, whichwill calculate the CRC in the manner above. Its implementation in C looksquite similar and can be found in the appendix A.2.
Algorithm 1 Bit-oriented calculation of the CRC
Input: a (containing the data bits)crcreg  INITXORfor i = 0 to l � 1 doLeftShift(crcreg)if bit just shifted out 6= ai thencrcreg  crcreg � CRCPOLYend ifend forcrcreg  crcreg � FINALXOROutput: crcreg

Table-driven Algorithm: The bit-oriented approach is not very e�cient asit operates at the bit-level resulting in one loop for each bit, regardless of theword-width which your machine supports. To improve this, it's possible toprocess units of multiple bits at once. The idea is to shift not only one bit ata time but M instead. What we get is a pattern of M bits shifted out of the
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register which have to be compared to corresponding M bits of the data stream(which we divide into blocks of M bits). After that, we have to apply a pattern(xor-mask) to the M bits just shifted out and the N bits of the CRC registerso that the �rst M bits match the M bits of the data stream. This xor-mask(of M + N bits) has to be the sum of correctly shifted CRCPOLYs so that itwill make the M bits shifted out equal to the M bits of the data stream. (Inpractice it only has be to applied to the N bits of the CRC register because the�rst M bits will afterwards be equal to the data bits and therefore discarded.)The process of �nding such a sum of CRCPOLYs is equivalent to calculatingthe bit-oriented approach { but it only has to be done once in advance. Forevery pattern of M bits shifted out and xored with the data bits (so that's thepattern we have to xor actually), the corresponding mask of N bits which hasto be applied to the CRC register can be stored in a table. This table is calledthe \CRC table". It has 2M lines with N bits each. The typical size for CRC32(N = 32) is M = 8 so that the units to be processed are bytes and the tablehas 28 = 256 entries (and thus a size of 28 � 32 bits which is 1 kilobyte). WithM = 16 the process of calculating the CRC32 would be twice as fast, but thetable would be 28 times larger (256 kilobytes) having an index of 216.Again, this is only a short introduction to the algorithms. Please look atboth algorithms in pseudo-code in algorithms 2 and 3, which will calculate theCRC table and the CRC in the above manner. Their implementations in C canalso be found in the appendix A.3.
Algorithm 2 Calculating the CRC table
Input: (nothing)for index = 0 to 2M � 1 docrcreg  0 fNote that crcreg is N bits width!gcrcreg0 � � � crcregM�1  index0 � � � indexM�1for k = 1 to M doLeftShift(crcreg)if bit just shifted out = 1 thencrcreg  crcreg � CRCPOLYend ifend forcrctable[index] crcregend forOutput: crctable

2.1 Notation
After having seen how the CRC register works, we will introduce some notationthat is used in the following sections. This deals with the hexadecimal notationof polynomials as well as some (mathematical) functions operating on wordsof bits which we de�ne here for later use (and which are mostly related to thebit-oriented view).
� The representation of polynomials is often given in a hexadecimal nota-tion, where the bits represent the coe�cients of the polynomial. It's really
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Algorithm 3 Crc() { Table-driven calculation of the CRC
Input: a (containing the data bits)crcreg  INITXORfor i = 0 to (l=M)� 1 doLeftShift(crcreg, M)index bits just shifted out� ai � � � ai+M�1crcreg  crcreg � crctable[index]end forcrcreg  crcreg � FINALXOROutput: crcreg

important to note, that they are in a \reverse order", because the polyno-mial \starts" with the coe�cient of index 0 which will be the bit of index 0and therefore the least signi�cant bit. This means that e.g. a polynomialp(x) = x2 + 1 will be represented as 0xA.
� The CRC polynomial itself which we called pCRC(x) is represented inCRCPOLY, but as described in the above subsection this is a special case,because the highest coe�cient is omitted for practical reasons (which isno problem because it's always 1 and its degree is N). This means thate.g. CRCPOLY = 0x94 with N = 8 would be pCRC(x) = x8+x5+x3+1.
� Now for the functions: With crc(a) we denote the function which computesjust the remainder of the polynomial division itself, where a contains thecoe�cients of the polynomial to be divided. Implicitly, the divisor poly-nomial is always pCRC(x) if not stated otherwise.
� We \overload" the function crc with a di�erent signature: crc(r; a) is thefunction which computes the remainder but starts with a CRC registerof r. This will be used when starting a computation somewhere withinthe data where some computation has already been done and the CRCregister has already some value di�erent from the initial value. Thus,crc(a) = crc(0; a).
� Further, we use CRC(a) for the function that applies the INITXOR andFINALXOR to the CRC register before and after the computation. Thisis the real-world function of computing such a checksum. Using crc(:; :),this can be written as: CRC(a) = crc(INITXOR; a)� FINALXOR
� The function CRC32(a) is the special case of CRC(a) where we haveimplicitly the following values:

{ N = 32, and typical implementations use M = 8 (byte-blocks)
{ pCRC(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 +x5 + x4 + x2 + x+ 1
{ This is used as: CRCPOLY = 0xEDB88320
{ INITXOR = FINALXOR = 0xFFFFFFFF
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3 How to get a known CRC
3.1 What to do
In many cases, you don't want to chose an arbitrary CRC value, you just wantto have your data compute to a CRC which you know beforehand. It's veryeasy to change your data to compute to a crc of 0: Just append the old crcdirectly: crc(a0 � � � al�1 crc(a0 � � � al�1)) = 0
If your data has a �xed size, this means that you compute the crc of your datawith the exception of the last N bits and then replace those with the computedvalue.Note that crc denotes the remainder of the polynomial division itself, whichwill not be the same as the �nal CRC value as soon as INITXOR and FINALXORare not 0, so you possibly have to apply FINALXOR to the output of a CRCfunction (INITXOR does not matter in this case), and the result you will get isthe FINALXOR instead of 0:

CRC(a0 � � � al�1(CRC(a0 � � � al�1)� FINALXOR)) = FINALXOR
For CRC32 (where FINALXOR = 0xFFFFFFFF) this means (note that x denotesthe one's complement of x):

CRC32(a0 � � � al�1CRC32(a0 � � � al�1)) = 0xFFFFFFFF
You may also omit (or forget) to apply FINALXOR before appending theCRC to your data, which may result in a crc unequal to 0 (and thus CRC unequalto FINALXOR), but which is surprisingly still independent of your actual data(with regard to the important precondition that INITXOR = FINALXOR):

CRC(a0 � � � al�1CRC(a0 � � � al�1)) = m
We call it m, the \magic sequence", as it's magically the same value you get ifyou calculate the CRC of 0, i.e. m := CRC(0N ). For CRC32 you'll �nd thatm = 0x2144DF1C, so for the case of CRC32 this means:

CRC32(a0 � � � al�1CRC32(a0 � � � al�1)) = 0x2144DF1C
Conclusively, the easiest way to get a known CRC32 is to append the oldCRC32 to your data which will always give you a CRC32 of 0x2144DF1C. Forother instances of CRC where INITXOR 6= FINALXOR (e.g. CRC16) theeasiest way is to apply FINALXOR to the CRC before appending it, which willgive you a CRC equal to FINALXOR. Figure 2 summarizes the process. Wewill not give any pseudo-code for that, because it's too simple. Please look atthe appendix A.4 for a C implementation.
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Figure 2: How to get a known CRC
3.2 Why this always works
First, we'll explain why the remainder is 0 if you append the old remainder toyour data. After that, the mystery about m is revealed.
The case of CRC = FINALXOR
The �rst thing is easy to explain if we remind ourselves of the mathematicsbehind the computation. If your data is the sequence a0 � � � al�1 of coe�cientsfor the polynomial a(x) and pCRC(x) is the divisor polynomial, we get the crcvalue as the sequence of N coe�cients for the polynomial rold(x) which wasde�ned as the remainder of the polynomial division:

a(x) � xN = b(x) � pCRC(x) + rold(x) (1)
So what happens if we append the crc value to our data a to get the new dataa0? The data a is \left-shifted", which is in math terms a multiplication of a(x)with xN followed by an addition of rold(x), so our new polynomial looks likethis: �a(x) � xN + rold(x)�| {z }=:a0(x)

�xN

Remember that the \data-polynomial" is always multiplied by xN before thepolynomial division takes place. Now we transform this expression using (1) toeasily see which remainder this would give after the polynomial division:
a0(x) � xN = �a(x) � xN + rold(x)� � xN(1)= �b(x) � pCRC(x) + rold(x) + rold(x)| {z }=0

� � xN

= b(x) � xN � pCRC(x) + 0
(Note that p(x) + p(x) = 0 for every polynomial p(x) in F2[x], each is its ownadditive inverse.) As you see, the remainder rnew(x) would be 0, and that's whycrc = 0 in this case.This directly leads to CRC = FINALXOR. (Note that INITXOR does notmatter because using INITXOR 6= 0 is equivalent to applying it to the �rst Nbits of your data and instead using INITXOR = 0, this is explained in 2.)If this already was to much math for you, just look at the pseudo-code givenin section 2: For the last N runs, the inner loop will not apply the CRCPOLYbecause the bit shifted out of the CRC register (which is rold(x) just before thelastN runs) will be the same as the data bit (by de�nition, because we appended
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the rold(x), i.e. contents of the CRC register). So the content of crcreg will�nally be completely shifted out, resulting in a value of 0, see �gure 3.

Figure 3: The crcreg is shifted into the 0 state.

The case of CRC = m
Secondly, we explore the property of m which we de�ned as m := CRC(0N ).Remember (or see section 2) the function crc(r0; b) = r which means that ifwe start with a CRC register of r0 and apply the CRC algorithm to the databits of b, we get r as the new content of the CRC register. In these terms,CRC(0N ) = m can be written as:

crc(INITXOR; 0N ) = m� FINALXOR (2)
We also know from above that appending the contents of the CRC register tothe data always leads to crc = 0, and this can be expressed as:

8r 2 f0; 1gN : crc(r; r) = 0 (3)
If you add (2) and (3) you �nally get:

m� FINALXOR =crc(INITXOR; 0N )� crc(r; r)
(�)= crc(INITXOR�r; 0N � r)
= crc(FINALXOR�r; r)

If we skip (�) for a moment and accept the last equation because we requiredINITXOR = FINALXOR, then we �nally get for r := CRC(a):
CRC(aCRC(a)) = crc(CRC(a)� FINALXOR;CRC(a))| {z }=m�FINALXOR

�FINALXOR = m

This proves that appending the CRC of any data to this data, the resultingCRC will (regardless of the data itself) always be the same m which is char-acteristic for the used CRCPOLY, under the precondition that INITXOR =FINALXOR.We skipped (�), which holds because of the following property of crc():
crc(r1; a1)� crc(r2; a2) = crc(r1 � r2; a1 � a2) (4)

This kind of additive homomorphism can be easily explained by looking at thebit-oriented approach, see �gure 4.
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Figure 4: Additive homomorphism of crc(:; :)
Let's assume that we have a situation where the CRC register contains r1�r2and we read a bit from a1� a2. The CRCPOLY is xored if and only if either itwould be xored with r1 in the CRC register while reading from a1 or with r2in the CRC register while reading from a2. Therefore, the new contents of theCRC register is exactly the XOR of the other two instances, as it was before.Inductively, the contents of the CRC register is still the � of both instancesafter processing all of a1 � a2. (We will use this property again in section 5 todevelop an extremely e�cient way for altering a chosen position to get a chosenCRC.)

4 How to get a chosen CRC
4.1 Theory behind it
The �rst thing that came to my mind was to simply reverse the bit-orientedalgorithm, and an implementation of this worked �ne. Practically, this meansto just look for the positions where to xor the CRCPOLY to the CRC registerand to adjust the needed input-bits accordingly. There are other approaches(e.g. at [ana99], [Wes05] or even [Wes03]) which do essentially the same thingfor the table-driven algorithm by �ddling around with the entries in the pre-built CRC table (see section 2). While those approaches basically work, there'sa much clearer and simpler solution if you look at the math from which this isderived, i.e. by reversing the algebraic approach.Let's assume that we have some data a = a0 � � � al�1 which leaves a remainderof rold = r0 � � � rN�1. Using the function crc, this can be denoted as:

crc(a0 � � � al�1) = r0 � � � rN�1
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As we know, this is essentially a polynomial division, which can be written as:

a(x) � xN = b(x) � pCRC(x) + rold(x)
Now let's extend a by ~a = ~a0 � � � ~aN�1 so that the new remainder is a chosenrnew = r00 � � � r0N�1. This is written as:

crc(a0 � � � al�1~a0 � � � ~aN�1) = r00 � � � r0N�1
What happens to the polynomials? Similar to section 3.2 we �nd the following:�a(x) � xN + ~a(x)� � xN = (b(x) � pCRC(x) + rold(x) + ~a(x)) � xN

= b(x) � xN � pCRC(x) + (rold(x) + ~a(x)) � xN
� (rold(x) + ~a(x)) � xN

(Note that we use the symbol � to denote the same remainder when divided bypCRC(x).) We want this to be the new remainder rnew(x):
rnew(x) � (rold(x) + ~a(x)) � xN

We are looking for the coe�cients of ~a(x), and under a certain precondition(given below) we �nd them easily:
~a(x) � rnew(x) � (xN )�1 + rold(x)

(Note that section 3.2 deals with a special case of this, where rnew(x) = 0 sothat ~a(x) = rold(x) which was exactly what we found there. Note further,that the case of rnew = m � FINALXOR is also just a special case where~a = rold � FINALXOR, so all the \magic" of m is hidden in the propertym(x) � �xN + 1� � FINALXOR(x).)The precondition mentioned above is that xN is invertible within the ringof polynomial congruence classes (which means that there is a q(x) so thatxN � q(x) � 1 mod pCRC(x), which makes q(x) the multiplicative inverse of xN ,and hence it's also called (xN )�1). Luckily, in the case of CRC32 the polynomialpCRC(x) is irreducible, so this is even a �eld (it's isomorphic to the F28 widelyused in cryptology) where every polynomial p(x) 6= 0 is invertible. But also inother cases of CRC polynomials, xN has an inverse, as long as the coe�cient ofx0 within pCRC(x) is 1 (and for structural reasons, all used CRC polynomialshave this property), because the only prime divisor x of xN doesn't divide theCRC polynomial in these cases, making pCRC(x) and xN coprime so that (xN )�1exists.Conclusively, to �nd the coe�cients of ~a(x) which are the bits to be ap-pended, we just have to multiply the wanted remainder with the inverse of xNand �nally add the old remainder. The coe�cients of (xN )�1 can be precalcu-lated (using the extended Euclidean algorithm or simply your favourite algebraprogram which implements it) as they only depend on pCRC(x). For CRC32,the inverse of xN is the following:
(x32)�1 � x31 + x30 + x27 + x25 + x24 + x23 + x22 + x21 + x20 + x16

+ x15 + x13 + x11 + x10 + x7 + x6 + x4 + x3 + x1
In this case, (xN )�1 can be expressed as CRCINV = 0x5B358FD3 which we'll usewithin our code. The multiplication (within the ring of polynomial congruenceclasses) can be implemented very e�ciently as well as the �nal addition.
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4.2 Pseudo-code
This pseudo-code summarizes our algebraic-motivated approach. Note that themultiplication itself is not \implemented" in detail here. This can be doneby iterating over all bits of one operand and add the other operand to theresult accordingly, while shifting it each time and reducing (i.e. subtracting themodulus) if necessary. Refer to our C implementation in the appendix A.5 fora working version of this.
Algorithm 4 AdjustData() { Data adjustment at the end by multiplicationof rnew with �xN��1 and adding rold
Input: a (containing the data bits), tcrcreg (the wanted CRC)tcrcreg  tcrcreg � FINALXORcrcreg  Crc(a0 � � � al�N�1)� FINALXOR
al�N � � � al�1  �tcrcreg � �xN��1 � crcreg� mod pCRC(x)

Output: a (bits at the end are adjusted)
Note: This all can be done again a bit more simply if you can a�ord thespace for another table, the \reverse CRC table". The way to build it and useit for the purpose of what we did here with the inverse polynomial is describedin the following section, especially in its \improved" version.

5 Getting a chosen CRC by altering a chosen
position

5.1 Theory behind it
We know from the last sections how the lastN bits of our data can be modi�ed tohave any value we want in the CRC register after the CRC computation. Now,suppose we want to modify the N bits somewhere else, let's say at positionk 6 l �N (where k = l �N would be the position for altering the last N bitsof data):

crc(a0 � � � ak�1 ~a0 � � � ~aN�1| {z }modi�ed
ak+N � � � al�1) = r0 � � � rN�1

If we could determine which value r0 in the CRC register is needed right beforeprocessing ak+N � � � al�1 to have a �nal CRC value of r:
crc(r0; ak+N � � � al�1) = r

. . . then this is solved by using the method from the previous section, appliedto a0 � � � ak�1 and r0, because we presented a method to calculate ~a for givena0 � � � ak�1 and r0 so that:
crc(a0 � � � ak�1~a0 � � � ~aN�1) = r0

What we need is an algorithm to calculate the value of r0 for given values ofr and b which solves the equation crc(r0; b) = r. In section 4 we calculated b for
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Figure 5: Backwards calculating the CRC

given r0 and r. The CRC algorithm itself calculates r for given r0 and b, so wejust have to apply the CRC algorithm \backwards" (see �g. 5).To achieve this, remember how the table-driven approach to calculate theCRC worked: (The following is illustrated in �gure 6.) In each step, the CRCregister (let's call it c0 � � � cM�1 here) was �rst left-shifted by M bits. The bitsjust shifted out were xored with the M bits of the data word, and the resultwas used as an index to the CRC table. The N bits found in the CRC tablewere �nally xored to the CRC register. Actually, all the M + N bits (indexplus mask from table entry) were xored (call this bit-mask x0 � � �xM+N�1 here,with x0 � � �xM�1 being the index and xM � � �xN+M�1 the table entry) to thebits just shifted out and the CRC register itself, but those leading M bits werediscarded afterwards, because they were equal to those of the data stream (see2 for the details).

Figure 6: One step of the table-driven CRC calculation
These steps are to be reversed. First, we have to reconstruct the M +N bitsthat were xored (x0 � � �xM+N�1). Note that the CRC algorithm shifted M bitsleft just before the xor, soM 0-bits were shifted in to the right, meaning that theM rightmost bits after the xor (c0N�M � � � c0N�1) are equal to the pattern whichwas xored to them (xN � � �xN+M�1). But what pattern was it as a whole?The pattern was created by xoring the CRCPOLY at certain positions. Wecan recreate it step-by-step by looking at the rightmost M bits of the CRCregister, and building a M + N pattern by xoring the CRCPOLY (plus itsoriginally omitted leading 1) at the corresponding positions, beginning with therightmost.The resulting pattern is the one that was e�ectively xored to the shifted-outbits and the CRC register. To speed this process up, all possible patterns can
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be stored in a table which we call the \reverse CRC table" and which is indexedover the M rightmost bits xN � � �xN+M�1 of the xor pattern x0 � � �xM+N�1(instead of the leftmost bits as in the CRC table). Therefore, the resultingtable is of the same size as the CRC table itself.Having the correct pattern of M +N bits, we can xor it, but we keep onlythe leftmost N bits of the result in the new, \restored" CRC register (becausethe M rightmost bits are by de�nition 0 after that). This also reversed the left-shifting. Finally, the M data bits have to be xored to the leftmost M bits of theCRC register, so that the CRC register is restored as it was right before a CRCcalculating step. Just \read" �gure 6 bottom-up for a better understanding ofthis process.
5.2 Pseudo-code
Building the \reverse CRC table" and using it to alter the chosen data bits isdescribed in the following pseudo-code. Its structure is somewhat similar tothose of the table-driven approach to calculate the CRC itself. (Note that weuse CRCPOLY�1 to denote the omitted leading coe�cient of pCRC(x) whichis always 1. Note further that we use a function AdjustData(r0; r) whichrepresents the part from section 4 which calculated the needed data bits b sothat crc(r0; b) = r.)
Algorithm 5 Calculating the reverse CRC table
Input: (nothing)for index = 0 to 2M � 1 docrcreg  0 fNote that crcreg is N bits width!gcrcregN�M � � � crcregN�1  index0 � � � indexM�1for k = 1 to M doRightShift(crcreg)if bit just shifted out = 1 thencrcreg  crcreg � CRCPOLY�1 � � �CRCPOLYN�2end ifend forrevcrctable[index] crcregend forOutput: revcrctable

Algorithm 6 bwCrc() { Table-driven \backwards" calculation of the CRC
Input: a (containing the data bits), tcrcreg (wanted CRC)tcrcreg  tcrcreg � FINALXORfor i = (l=M)� 1 downto 0 doRightShift(trcreg, M)index bits just shifted outtcrcreg  tcrcreg � revcrctable[index]tcrcreg0 � � � tcrcregM�1  tcrcreg0 � � � tcrcregM�1 � ai � � � ai+M�1end forOutput: tcrcreg
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Algorithm 7 Data adjustmend at a chosen position
Input: a (containing the data bits), tcrcreg (wanted CRC), k (chosen position)
crcreg  Crc(a0 � � � ak�1)� FINALXORtcrcreg  bwCrc(ak+N � � � al�1; tcrcreg)ak � � � ak+N�1  AdjustData(crcreg; tcrcreg)Output: a (bits at position k are adjusted)

Note that this last algorithm is replaced by a more elegant version (withoutthe need of AdjustData()) in the following subsection.
5.3 Improving this approach
In short we did the following (see also �g. 7):

Figure 7: Old approach to adjust the data at a chosen position
1. Calculate the crc from the beginning up to position k, call it r0. (This isdone by the standard CRC algorithm.)
2. Calculate the crc backwards from the end up to position k +N , call it r.(This was done above in section 5.1.)
3. Calculate new bits ~a with crc(r0; ~a) = r and inject them into your data atposition k. (See section 4 for calculating that.)

As we will see, the last step can also be done within step 2, resulting in a verysimple algorithm. First remember section 5.1, which can calculate r0 for givenvalues of r and b, so that: crc(r0; b) = r
Second, remember what we did in section 4, we looked for ~a while r and r0where given, so that: crc(r0; ~a) = r (5)
Looks quite similar, but the variables we look for are di�erent for both cases(r0 in the �rst, ~a in the latter). Let's see if we can do something about that.
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Remember further (from section 3.2), that for all x with a width of N we have:

8x : crc(x; x) = 0 (6)
And �nally remember the property of crc(:; :) which we discovered in 3.2 whileanalysing the \magic sequence" m:

crc(r1; a1)� crc(r2; a2) = crc(r1 � r2; a1 � a2) (7)
What we do now is to use r0 � ~a for x in equation (6) and add this instance of(6) to (5) while using the homomorphical property of crc described by (7):

r = crc(r0; ~a)� crc(r0 � ~a; r0 � ~a)
(7)= crc(r0 � r0 � ~a; ~a� r0 � ~a)
= crc(~a; r0)

Wow! We see that crc(r0; ~a) = crc(~a; r0). So how does this help? Well, look atstep 3, were r and r0 are given and ~a is computed. As we know now, we canequivalently write:
crc(r0; ~a) = r () crc(~a; r0) = r

So if we are looking for ~a when r0 and r are given, we can interpret the unknown~a as the initial CRC register, the given r0 as the data to be computed, and (asbefore) the also given r as the �nal CRC register. Because we are looking for ~a,this can easily be done by step 2, our \backwards" CRC algorithm! This meansthat we don't need step 3 anymore (so the method from section 4 is not reallyneeded, if you have the pre-computed \reverse CRC table" available) and caninstead do the following (see also �g. 8):

Figure 8: Improved approach to adjust the data at a chosen position
1. Calculate the crc from the beginning up to position k using the standardCRC algorithm, and call it r0. Then overwrite the N data bits at positionk with this r0.
2. Calculate backwards the crc from the end up to position k (!) using our\backwards CRC" algorithm from section 5.1, and call it r. Overwrite theN data bits at position k again, but this time use r for this.
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5.4 Pseudo-code
Finally, this are the two lines of pseudo-code, summarizing all we did up to thissection. Note that the goal of section 4 can be considered as a special case ofthis, where k = l �N . This renders AdjustData() obsolete.
Algorithm 8 Data adjustmend at a chosen position, improved version
Input: a (containing the data bits), tcrcreg (wanted CRC), k (chosen position)
ak � � � ak+N�1  Crc(a0 � � � ak�1)� FINALXORak � � � ak+N�1  bwCrc(ak � � � al�1; tcrcreg)Output: a (bits at position k are adjusted)

6 Conclusion
The presented methods o�er a very easy and e�cient way to modify your dataso that it will compute to a CRC you want or at least know in advance. Thisis not a very di�cult task, as CRC is not a cryptographical hash algorithm {it was never meant to be one. So you should never consider the CRC as somekind of message authentication code (like some of the copy-protection guys do){ it can easily be forged.The fact that the CRC can be forged really easily makes one think of otherapplications of our algorithms. It could be used as some sort of \covert channel"for the undetected transmission or storage of data. You could hide data in theCRC of other data which itself could look unsuspicious. An interesting researchtopic could be how to extend our methods so that the modi�ed bits don't haveto be in one block but could be spread over the whole data stream. Our intuitionsuggests that this could be a possible (but non-trivial) task. Feel free to do someresearch in this area, it could be fun!
A Appendix
This appendix contains the source code of the implementation of our algorithmsfor the CRC32 in the C programming language. Refer to the according sectionsto get a detailed description and reasoning. This code will compile with everymodern C compiler (and will work correctly as long as you adjust the de�nitionof uint32 so that it's an unsigned integer with 32 bits). All functions arerelatively small in size, as one of our goals was to provide fast and simplesolutions.
A.1 De�nitions
We use some pre-de�ned values within our C code. We collect them altogetherhere at the beginning, so that every piece of code will directly compile if youprepend these de�nitions. Don't forget to adjust uint32 which is meant to bean unsigned integer with 32 bits. This could be expressed di�erently on yoursystem, so please consult the documentation of your C compiler if necessary.
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1 #define CRCPOLY 0xEDB88320
2 #define CRCINV 0x5B358FD3 // inverse poly of (x^N) mod CRCPOLY

#define INITXOR 0xFFFFFFFF
#define FINALXOR 0xFFFFFFFF

5 typedef unsigned int uint32;

Listing 1: De�nitions

A.2 Bit-oriented implementation of CRC32
Our �rst implementation is the bit-oriented approach of CRC32. This is of lessinterest for real-world applications, at it is outperformed by the table-drivenimplementation by at least a factor of 8, but could be interesting for a deeperunderstanding of how the CRC works. It may also come handy if there's nopre-built CRC table (e.g. no room for it), but these are probably rare cases . . .

1 /**
* Computes the CRC32 of the buffer of the given length using the
* (slow) bit -oriented approach
*/

5 int crc32_bitoriented(unsigned char *buffer , int length) {
int i, j;
uint32 crcreg = INITXOR;

for (j = 0; j < length; ++j) {
10 unsigned char b = buffer[j];

for (i = 0; i < 8; ++i) {
if (( crcreg ^ b) & 1) {

crcreg = (crcreg >> 1) ^ CRCPOLY;
} else {

15 crcreg >>= 1;
}
b >>= 1;

}
}

20
return crcreg ^ FINALXOR;

}

Listing 2: Bit-oriented implementation of CRC32

A.3 Table-driven implementation of CRC32
This implementation of CRC32 is similar to the one used everywhere. First,the CRC32 table is built and then it can be used to call the actual CRC32calculating function as often as needed.

1 /**
* Creates the CRC table with 256 32-bit entries. CAUTION: Assumes that
* enough space for the resulting table has already been allocated.
*/

5 void make_crc_table(uint32 *table) {
uint32 c;
int n, k;

for (n = 0; n < 256; n++) {
10 c = n;

for (k = 0; k < 8; k++) {
if ((c & 1) != 0) {

c = CRCPOLY ^ (c >> 1);
} else {

15 c = c >> 1;
}
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}

18 table[n] = c;
}

20 }

Listing 3: (Pre-)Building the CRC32 table
1 /**

* Computes the CRC32 of the buffer of the given length
* using the supplied crc_table
*/

5 int crc32_tabledriven(unsigned char *buffer ,
int length ,
uint32 *crc_table)

{
int i;

10 uint32 crcreg = INITXOR;

for (i = 0; i < length; ++i) {
crcreg = (crcreg >> 8) ^ crc_table [(( crcreg ^ buffer[i]) & 0xFF )];

}
15

return crcreg ^ FINALXOR;
}

Listing 4: Table-driven implementation of CRC32

A.4 Data adjustment at the end for a known CRC
Now for the �rst data adjustment: As the title suggests, the bu�er will computeto a known CRC afterwards (see section 3 for details), which will be the \magicsequence" 0x2144DF1C for CRC32. This is done by just appending the CRC32of all bytes except the last four.

1 /**
* Changes the last 4 bytes of the given buffer so that it afterwards will
* compute to the "magic sequence" (usually 0x2144DF1C for CRC32)
*/

5 void fix_crc_magic(unsigned char *buffer , int length , uint32 *crc_table)
{

int i;

// calculate CRC32 except for the last 4 bytes
10 uint32 crcreg = crc32_tabledriven(buffer , length -4, crc_table );

// inject crcreg as content - nothing easier than that!
for (i = 0; i < 4; ++i)

buffer[length - 4 + i] = (crcreg >> i*8) & 0xFF;
15 }

Listing 5: Implementation of data adjustment at the end for a known CRC

A.5 Data adjustment at the end for a chosen CRC
Second, the implementation of adjusting the last four bytes so that the bu�ercalculates to the chosen CRC afterwards. This is achieved by calculating theCRC32 of all bytes except the last four (which is done by the table-drivenimplementation of CRC32 for which you have to supply a pointer to the pre-calculated CRC table). After that, some multiplication and addition within thering of polynomial congruence classes modulo pCRC(x) is done, which soundsmore complicated than it actually is. See section 4 for details.
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1 /**
* Changes the last 4 bytes of the given buffer so that it afterwards will
* compute to the given tcrcreg using the given crc_table
*

5 * This function uses the method of the multiplication with (x^N)^-1.
*/

void fix_crc_end(unsigned char *buffer ,
int length ,
uint32 tcrcreg ,

10 uint32 *crc_table)
{

int i;
tcrcreg ^= FINALXOR;

15 // calculate crc except for the last 4 bytes; this is essentially crc32 ()
uint32 crcreg = INITXOR;
for (i = 0; i < length - 4; ++i) {

crcreg = (crcreg >> 8) ^ crc_table [(( crcreg ^ buffer[i]) & 0xFF )];
}

20
// calculate new content bits
// new_content = tcrcreg * CRCINV mod CRCPOLY
uint32 new_content = 0;
for (i = 0; i < 32; ++i) {

25 // reduce modulo CRCPOLY
if (new_content & 1) {

new_content = (new_content >> 1) ^ CRCPOLY;
} else {

new_content >>= 1;
30 }

// add CRCINV if corresponding bit of operand is set
if (tcrcreg & 1) {

new_content ^= CRCINV;
}

35 tcrcreg >>= 1;
}
// finally add old crc
new_content ^= crcreg;

40 // inject new content
for (i = 0; i < 4; ++i)

buffer[length - 4 + i] = (new_content >> i*8) & 0xFF;
}

Listing 6: Implementation of data adjustment at the end for a chosen CRC

A.6 Data adjustment at chosen position for a chosen CRC
Finally, this is the implementation of our method to adjust four bytes at somechosen position within the bu�er so that the bu�er calculates to the chosen CRCafterwards. All that is needed for this is some forward-calculating of the CRC(using the CRC table) and then some backwards-calculating (using a reverseCRC table). Please consult section 5 for details. We also provide the functionto pre-calculate the reverse CRC table, which is also described in section 5.Note that the parameter fix pos, which marks the position of the bytes to beadjusted, can also be negative, which is then counted from the end of your bu�er(so that a value of -4 will result in adjusting the last 4 bytes). Have fun!

1 /**
* Creates the reverse CRC table with 256 32-bit entries. CAUTION: Assumes
* that enough space for the resulting table has already been allocated.
*/

5 void make_crc_revtable(uint32 *table) {
uint32 c;
int n, k;
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for (n = 0; n < 256; n++) {

10 c = n << 3*8;
for (k = 0; k < 8; k++) {

if ((c & 0x80000000) != 0) {
c = ((c ^ CRCPOLY) << 1) | 1;

} else {
15 c <<= 1;

}
}
table[n] = c;

}
20 }

Listing 7: (Pre-)Building the reverse CRC32 table
1 /**

* Changes the 4 bytes of the given buffer at position fix_pos so that
* it afterwards will compute to the given tcrcreg using the given crc_table.
* A reversed crc table (crc_revtable) must be provided.

5 */
void fix_crc_pos(unsigned char *buffer ,

int length ,
uint32 tcrcreg ,
int fix_pos ,

10 uint32 *crc_table ,
uint32 *crc_revtable)

{
int i;
// make sure fix_pos is within 0..( length -1)

15 fix_pos = (( fix_pos%length )+ length )% length;

// calculate crc register at position fix_pos; this is essentially crc32()
uint32 crcreg = INITXOR;
for (i = 0; i < fix_pos; ++i) {

20 crcreg = (crcreg >> 8) ^ crc_table [(( crcreg ^ buffer[i]) & 0xFF )];
}

// inject crcreg as content
for (i = 0; i < 4; ++i)

25 buffer[fix_pos + i] = (crcreg >> i*8) & 0xFF;

// calculate crc backwards to fix_pos , beginning at the end
tcrcreg ^= FINALXOR;
for (i = length - 1; i >= fix_pos; --i) {

30 tcrcreg = (tcrcreg << 8) ^ crc_revtable[tcrcreg >> 3*8] ^ buffer[i];
}

// inject new content
for (i = 0; i < 4; ++i)

35 buffer[fix_pos + i] = (tcrcreg >> i*8) & 0xFF;

}

Listing 8: Implementation of data adjustment at chosen position for a chosenCRC
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