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Abstract

The Cyclic Redundancy Check (CRC) was developed as a checksum
algorithm for the detection of data corruption in the process of data trans-
mission or storage. However, in some scenarios there’s a CRC given which
a set of data is expected to have, so the data itself has to be modified (at
the end or at some chosen position) in a way that it computes to the given
CRC checksum afterwards. We present methods providing solutions to
this problem. Each algorithm is explained in theory and accompanied by
an implementation for the CRC32 in the C programming language.

1 Introduction

The process of data transmission or storage usually contains the risk of un-
wanted modification of the data at the most physical level, caused by noisy
or damaged transmission or storage media. (This does not include alteration
by an intelligent third party like a malicious attacker.) To detect these errors,
some error-detecting and even -correcting codes were invented, which calculate
a value from the set of data and transmit or store it with the data. Any hash
function can be used to perform this kind of error detection to a certain degree,
and one of them is the “Cyclic Redundancy Check” (CRC). It’s not a crypto-
graphically secure hash and therefore can not reliably detect malicious changes
in the transmitted data, but it can provably detect some common accidental
errors like single-/two-bit or burst errors and can additionally be implemented
very efficiently. There are different instances of the CRC which mainly differ
in the polynomial on which they are based on, resulting in different sizes of the
computed value. The most popular one is the CRC32, which computes a 32-bit
value.!

While most of the time you want to calculate the CRC of a given set of data,
there are some situations where the CRC is given and you want to modify your
data so that it computes to this CRC value afterwards. These scenarios include
hard-wired checksums of firmware or calculating the CRC of a set of data which

*http://sar.informatik.hu-berlin.de

IThere are different instances of CRC out there with a width of 32 bits. With “CRC32”
we always mean the CRC used within IEEE 802 and many other standards, which is different
from e.g. CRC-32/Castagnoli.
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includes the CRC itself. An example of the latter case is the creation of a ZIP
archive which includes itself as a file, see [PSMRO06] for details. We develop and
analyse methods to calculate these modifications within the next sections.

This article is structured in the following way: Section 2 gives an overview on
how the CRC is mathematically defined and how it is calculated in practice. This
is meant as an overview as only those aspects being important to understand
our “reversal” of the CRC are explained in detail. Section 3 then deals with the
question of how to manipulate the end of your data so that you know in advance
which CRC will be calculated, regardless of your actual data. After that, section
4 will explain how to do the same with the ability to not only know the CRC in
advance but even to choose an arbitrary value for the CRC. This is extended in
section 5 where we develop a method to do this manipulation anywhere we want
within our data, possibly far away from the end. (Its subsection 5.3 describes
the most flexible and elegant solution for this, so you can jump directly there if
you are just looking for the required steps.) We finally draw some conclusions
in section 6 before our implementations of all algorithms are presented in the
appendix A.

Within the sections, each algorithm is first developed and explained in the-
ory. Second, this is summarized by presenting some pseudo-code, which is easy
to read and corresponds directly to the other theoretical background. This
pseudo-code will also be independent of the CRC instance used and accompa-
nied by an example for better understanding. Third, you’ll find working and
well-tested C code for each of the algorithms collected in the appendix A. These
will be implemented for use with the well-known CRC32 standard.

2 How CRC(32) Works

The CRC itself is essentially one giant polynomial division which can be ef-
ficiently implemented in software and hardware (i.e. in O(n) time). There
are many publications dealing with this topic in a very detailed way (see e.g.
[Wil96] or [Tan81]), so we will describe the concept only to a degree needed to
understand the details of our “reversal” methods.

We will look at the CRC in 3 more or less different ways: The “algebraic
approach”, the “bit-oriented approach” and the “table-driven approach”. The
algebraic approach is the way the CRC is mathematically defined and is not
much more than the polynomial division mentioned above, but it’s often far too
much maths for those who do the practical work, i.e. write the code. That’s
why we’ll also look at the bit-oriented approach which is a polynomial division
in practice by operating directly on the bits of the input data. Finally, there
is the table-driven approach, which does the same work in a faster and more
efficient way, which is why this is the way real-world programs actually compute
the CRC.

Before presenting the general ideas of the three approaches, some words
about the bit-ordering: The literature about this topic sometimes uses the con-
cept of “reflection” which is about the ordering of the calculated bits. It does
not really make any difference which ordering you use, as long as you do this
in a consistent way. We will avoid to look at both types of bit-ordering within
this article: We always start counting the data from bit 0, from “the left to the
right” and do the same with the bits of the used CRC register and the CRC
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polynomial. This will avoid confusion and make everything more consistent.
The important thing to note is that bytes are usually noted writing the least
significant bit (with number 0) to the right. To keep consistency, we will retain
the numbering (instead of the “left to right” ordering), for instance leading to
a “right shift” (>>) within the C code where we and the figures make a “left
shift” (meaning: shifting in direction of lower indices) and vice versa.

First byte: 0xDA (!)

—
Databits: [0]1]of1][1]ofz]z o 1]o]1]o]1] ... ]
0 8

CRCregister: [1]1]0[1[1]1[0]1]
012 3 456 7

B R C Code: ccreg >>= 1;

CRCregister [1]0]1[1][1]0]1]0]
shifted “left™ 0 1 2 3 4 5 6 7

Figure 1: Illustration of the bit-ordering we use

And now for the details of the three approaches: (Again, please look at the
aforementioned publications for more details.)

Algebraic approach: By definition, the CRC is more or less one gigantic
polynomial division: The data is interpreted as the coefficients of a giant poly-
nomial which is divided by a given CRC polynomial. The remainder of this
division is the CRC.

What kind of polynomial do we have for our data? All the data-bits are in-
terpreted as elements from Fy = {0, 1} where we can define an addition & (which
is essentially XOR) and multiplication ® (which is AND). The set of polynomi-
als is therefore called Fs[z], and a polynomial for data-bits a = ag ...a;—; looks
like this:

a(x) =apr! P +ar! P+ e s +aiy

Addition within this set of polynomials is invertible (with every p(z) € Fa[z]
being its own inverse: p(xz) = —p(x)), but unfortunately, the multiplication is
not. So the division of two polynomials may give a remainder. Having that in
mind, the polynomial division of a polynomial p(z) by another polynomial ¢(x)
can be expressed as finding s(z) so that there is (z) (the remainder polynomial)
with a degree of less than the degree of ¢(x) so that:

p(z) = s(x) - q(z) +r(x)

Using this, the set of polynomial congruence classes Fo[z]/pcre(z) can be de-
fined: Each element r(x) within this set is one of the possible remainders and
represents all polynomials which leave r(x) as the remainder when devided by
pcre (). The computation of the CRC is a polynomial division which computes
the remainder of our data-polynom (after it’s multiplied by ¥ for technical rea-
sons). So finally, calculating the CRC is defined as finding a polynomial b(z) so
that there is an r(z) with a degree of less than N so that:

a(z) -z =b(z) - pcre(z) + r(x)
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Please note that we are not interested in how b(z) looks like.

Bit-oriented Algorithm: A very simple and naive approach to implement
this is to simply see the bit-stream of input data (“augmented” with N 0-bits to
have all coefficients of a(x)-z”) and add (=subtract) the coefficients of pcrc ()
where needed. You do this until the remaining bits “span” a shorter range than
N, so they are the remainder coefficients and therefore the CRC we looked for.
This works because we are not interested in the quotient but only the remainder
of the division.

Practically, we could use a bit-register with a width of N where the data-bits
are “shifted in” from the right and as soon as a 1 is shifted out of the left side,
everything is xored with the coefficients of the CRC polynomial pcrc(z). The
result would be the same. The bit-mask which is xored is called the CRCPOLY.
This approach is improved a bit: The register (from now on called the CRC
register) will in practice store only the effect of the xor operations on the data
stream, not the result itself. This means that we start with a register of all zeros
and will shift in 0 from the right. We will xor the CRCPOLY when the bit just
shifted out is different from the bit we see in the data stream. This has the
added benefit that the “augmentation” with N 0-bits is not needed anymore,
because these bits are never considered in any operation.

For technical reasons, the whole process doesn’t start with a CRC register of
all 0, but with a pattern which is meant to compensate for errors like erroneously
added or left-out leading zeros which would otherwise remain undetected. We
will call this pattern the INITXOR and its usually all 1. Symmetrically, there is
a second pattern we call FINALXOR which is added to the CRC register after
the computation. We have to keep this in mind, as soon as the result will be
used as a CRC value, but it doesn’t change the structure of the algorithm itself.

To summarize this algorithm, look at the pseudo-code in algorithm 1, which
will calculate the CRC in the manner above. Its implementation in C looks
quite similar and can be found in the appendix A.2.

Algorithm 1 Bit-oriented calculation of the CRC
Input: a (containing the data bits)
crereg <+ INITXOR
fori:=0tol—1do
LEFTSHIFT(crereg)
if bit_just_shifted_out # a; then
crereg < crereg @ CRCPOLY
end if
end for
crereg + crereg @ FINALXOR
Output: crcreg

Table-driven Algorithm: The bit-oriented approach is not very efficient as
it operates at the bit-level resulting in one loop for each bit, regardless of the
word-width which your machine supports. To improve this, it’s possible to
process units of multiple bits at once. The idea is to shift not only one bit at
a time but M instead. What we get is a pattern of M bits shifted out of the
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register which have to be compared to corresponding M bits of the data stream
(which we divide into blocks of M bits). After that, we have to apply a pattern
(xor-mask) to the M bits just shifted out and the N bits of the CRC register
so that the first M bits match the M bits of the data stream. This xor-mask
(of M + N bits) has to be the sum of correctly shifted CRCPOLYSs so that it
will make the M bits shifted out equal to the M bits of the data stream. (In
practice it only has be to applied to the N bits of the CRC register because the
first M bits will afterwards be equal to the data bits and therefore discarded.)

The process of finding such a sum of CRCPOLYS is equivalent to calculating
the bit-oriented approach — but it only has to be done once in advance. For
every pattern of M bits shifted out and xored with the data bits (so that’s the
pattern we have to xor actually), the corresponding mask of N bits which has
to be applied to the CRC register can be stored in a table. This table is called
the “CRC table”. It has 2™ lines with N bits each. The typical size for CRC32
(N = 32) is M = 8 so that the units to be processed are bytes and the table
has 2% = 256 entries (and thus a size of 2% - 32 bits which is 1 kilobyte). With
M = 16 the process of calculating the CRC32 would be twice as fast, but the
table would be 28 times larger (256 kilobytes) having an index of 2%6.

Again, this is only a short introduction to the algorithms. Please look at
both algorithms in pseudo-code in algorithms 2 and 3, which will calculate the
CRC table and the CRC in the above manner. Their implementations in C can
also be found in the appendix A.3.

Algorithm 2 Calculating the CRC table
Input: (nothing)
for index = 0 to 2™ — 1 do
crereg < 0 {Note that crereg is N bits width!}
creregg - - -creregy—1 < indexg - - -index g
for k=1to M do
LEFTSHIFT(crereg)
if bit_just_shifted_out =1 then
crereg <+ crereg @ CRCPOLY
end if
end for
crctable[index] + crereg
end for
Output: crctable

2.1 Notation

After having seen how the CRC register works, we will introduce some notation
that is used in the following sections. This deals with the hexadecimal notation
of polynomials as well as some (mathematical) functions operating on words
of bits which we define here for later use (and which are mostly related to the
bit-oriented view).

e The representation of polynomials is often given in a hexadecimal nota-
tion, where the bits represent the coefficients of the polynomial. It’s really
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Algorithm 3 Crc() — Table-driven calculation of the CRC

Input: a (containing the data bits)
crereg + INITXOR
for i =0to (I/M)—1do
LEFTSHIFT(crereg, M)
index < bits_just_shifted_out ® a; - - - Gy pr—1
crereg < crereg @ crctable[inder)
end for
crereg < crereg @ FINALXOR
Output: crereg

important to note, that they are in a “reverse order”, because the polyno-
mial “starts” with the coefficient of index 0 which will be the bit of index 0
and therefore the least significant bit. This means that e.g. a polynomial
p(x) = 2% + 1 will be represented as 0xA.

e The CRC polynomial itself which we called pcrc(x) is represented in
CRCPOLY, but as described in the above subsection this is a special case,
because the highest coefficient is omitted for practical reasons (which is
no problem because it’s always 1 and its degree is N). This means that
e.g. CRCPOLY = 0x94 with N = 8 would be pcrc(z) = 28 +2° + 23 + 1.

e Now for the functions: With crc(a) we denote the function which computes
just the remainder of the polynomial division itself, where a contains the
coefficients of the polynomial to be divided. Implicitly, the divisor poly-
nomial is always porc () if not stated otherwise.

e We “overload” the function crc with a different signature: crc(r,a) is the
function which computes the remainder but starts with a CRC register
of r. This will be used when starting a computation somewhere within
the data where some computation has already been done and the CRC
register has already some value different from the initial value. Thus,
cre(a) = cre(0, a).

e Further, we use CRC(a) for the function that applies the INITXOR, and
FINALXOR to the CRC register before and after the computation. This
is the real-world function of computing such a checksum. Using crc(.,.),
this can be written as: CRC(a) = crc(INITXOR, a) @ FINALXOR

e The function CRC32(a) is the special case of CRC(a) where we have
implicitly the following values:
— N = 32, and typical implementations use M = 8 (byte-blocks)
— pore(z) =22 + 226 + 2B + 22 + 20 + 22 4 M + 20+ 2% 27 +
Pzt +r+1
This is used as: CRCPOLY = 0xEDB88320
INITXOR = FINALXOR = OxFFFFFFFF
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3 How to get a known CRC
3.1 What to do

In many cases, you don’t want to chose an arbitrary CRC value, you just want
to have your data compute to a CRC which you know beforehand. It’s very
easy to change your data to compute to a crc of 0: Just append the old crc
directly:

cre(ag - --aj—q cre(ag - --a;—1)) =0

If your data has a fixed size, this means that you compute the crc of your data
with the exception of the last NV bits and then replace those with the computed
value.

Note that crc denotes the remainder of the polynomial division itself, which
will not be the same as the final CRC value as soon as INITXOR and FINALXOR
are not 0, so you possibly have to apply FINALXOR to the output of a CRC
function (INITXOR does not matter in this case), and the result you will get is
the FINALXOR instead of 0:

CRC(ag - --a_1 (CRC(ao - - - ai_1) ® FINALXOR)) = FINALXOR

For CRC 32 (where FINALXOR = OxFFFFFFFF) this means (note that = denotes
the one’s complement of z):

CRC32(ag - - - a;_1CRC 32(ag - - -a;_1)) = OxFFFFFFFF

You may also omit (or forget) to apply FINALXOR before appending the
CRC to your data, which may result in a crc unequal to 0 (and thus CRC unequal
to FINALXOR), but which is surprisingly still independent of your actual data
(with regard to the important precondition that INITXOR = FINALXOR):

CRC(ag - --a;—1 CRC(aqg -+ a;—1)) =m

We call it m, the “magic sequence”, as it’s magically the same value you get if

you calculate the CRC of 0, i.e. m := CRC(0"). For CRC 32 you’ll find that
m = 0x2144DF1C, so for the case of CRC 32 this means:

CRC 32(@0 RN ¢ 7 | CRC 32(@0 te (Llfl)) = 0x2144DF1C

Conclusively, the easiest way to get a known CRC 32 is to append the old
CRC 32 to your data which will always give you a CRC 32 of 0x2144DF1C. For
other instances of CRC where INITXOR # FINALXOR (e.g. CRC 16) the
easiest way is to apply FINALXOR to the CRC before appending it, which will
give you a CRC equal to FINALXOR. Figure 2 summarizes the process. We
will not give any pseudo-code for that, because it’s too simple. Please look at
the appendix A.4 for a C implementation.
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1011...10010 1011...10010
F—» >
CRC32 calculation CI?C CRC32 calculation CRC

CRC32 calculation CRC32 calculation

Figure 2: How to get a known CRC

3.2 Why this always works

First, we’ll explain why the remainder is 0 if you append the old remainder to
your data. After that, the mystery about m is revealed.

The case of CRC = FINALXOR

The first thing is easy to explain if we remind ourselves of the mathematics
behind the computation. If your data is the sequence ag ---a;_; of coefficients
for the polynomial a(x) and pcre(x) is the divisor polynomial, we get the crc
value as the sequence of N coefficients for the polynomial r4q(z) which was
defined as the remainder of the polynomial division:

a(z) - 2™ = b(x) - perc () + rola () (1)
So what happens if we append the crc value to our data a to get the new data
a'? The data a is “left-shifted”, which is in math terms a multiplication of a(z)
with 2V followed by an addition of ryq(z), so our new polynomial looks like
this:

Remember that the “data-polynomial” is always multiplied by 2V before the
polynomial division takes place. Now we transform this expression using (1) to
easily see which remainder this would give after the polynomial division:

d(z) 2V = (a(z) - 2V + roua(2)) - 2

= (b(z) - pcre () + rowa(®) + rora () ) - N
—_————

—0
= b(z) - 2" - pere(z) + 0

(Note that p(z) + p(z) = 0 for every polynomial p(z) in Fy[z], each is its own
additive inverse.) As you see, the remainder rye () would be 0, and that’s why
crc = 0 in this case.

This directly leads to CRC = FINALXOR. (Note that INITXOR does not
matter because using INITXOR # 0 is equivalent to applying it to the first NV
bits of your data and instead using INITXOR = 0, this is explained in 2.)

If this already was to much math for you, just look at the pseudo-code given
in section 2: For the last N runs, the inner loop will not apply the CRCPOLY
because the bit shifted out of the CRC register (which is roa(z) just before the
last NV runs) will be the same as the data bit (by definition, because we appended
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the roa(z), i.e. contents of the CRC register). So the content of crereg will
finally be completely shifted out, resulting in a value of 0, see figure 3.

“uarrr IR

1 0 1" 2 N-1 170 12 N-1
— e
ToT1 s "N Tol'y Ty Ty 0
QT Ty Ty Ty
A
r,r, ry, 00 v, 00 00

Figure 3: The crcreg is shifted into the O state.

The case of CRC = m

Secondly, we explore the property of m which we defined as m := CRC(0V).
Remember (or see section 2) the function cre(r’,b) = r which means that if
we start with a CRC register of ' and apply the CRC algorithm to the data
bits of b, we get r as the new content of the CRC register. In these terms,
CRC(0Y) = m can be written as:

cre(INITXOR, 0V) = m @ FINALXOR (2)

We also know from above that appending the contents of the CRC register to
the data always leads to crc = 0, and this can be expressed as:

vr € {0,1}" : cre(r,r) =0 (3)
If you add (2) and (3) you finally get:
m ® FINALXOR = crc(INITXOR, 0V) @ cre(r, r)

") ere(INITXOR @7, 0N @ )

= crc(FINALXOR @r, r)

—

If we skip (%) for a moment and accept the last equation because we required
INITXOR = FINALXOR, then we finally get for r := CRC(a):

CRC(a CRC(a)) = crc(CRC(a) @ FINALXOR, CRC(a)) ® FINALXOR =m

=m@FINALXOR

This proves that appending the CRC of any data to this data, the resulting
CRC will (regardless of the data itself) always be the same m which is char-
acteristic for the used CRCPOLY, under the precondition that INITXOR =
FINALXOR.

We skipped (x), which holds because of the following property of crc():

cre(ry,ar) @ cre(ra, as) = cre(ry ® o, a1 ® az) (4)

This kind of additive homomorphism can be easily explained by looking at the
bit-oriented approach, see figure 4.
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Data a’ Data a?
| AIT | | AZT |
R o R mo ]
bit just ® with CRCPOLY bit just / ® with CRCPOLY
shifted out = A #R, shifted out =4, * R,
Data a'®a®
| A . |
R rer, |
bit just / ® with CRCPOLY
shifted out ©A#R
o Ae®R=1

<A ®©A ®R oR, =1
3 (A]e;A2=1)ea(R1€BR2=1)
= (@A #A)e R, #R)

Figure 4: Additive homomorphism of crc(.,.)

Let’s assume that we have a situation where the CRC register contains ry @ry
and we read a bit from a; ® as. The CRCPOLY is xored if and only if either it
would be xored with 71 in the CRC register while reading from a; or with ro
in the CRC register while reading from as. Therefore, the new contents of the
CRC register is exactly the XOR of the other two instances, as it was before.
Inductively, the contents of the CRC register is still the & of both instances
after processing all of a; @ ay. (We will use this property again in section 5 to
develop an extremely efficient way for altering a chosen position to get a chosen
CRC))

4 How to get a chosen CRC
4.1 Theory behind it

The first thing that came to my mind was to simply reverse the bit-oriented
algorithm, and an implementation of this worked fine. Practically, this means
to just look for the positions where to xor the CRCPOLY to the CRC register
and to adjust the needed input-bits accordingly. There are other approaches
(e.g. at [ana99], [Wes05] or even [Wes03]) which do essentially the same thing
for the table-driven algorithm by fiddling around with the entries in the pre-
built CRC table (see section 2). While those approaches basically work, there’s
a much clearer and simpler solution if you look at the math from which this is
derived, i.e. by reversing the algebraic approach.

Let’s assume that we have some data a = ag - - - a;—; which leaves a remainder
of ro1g = 19 -+ -Tn_1- Using the function crc, this can be denoted as:

cre(ag---aj—1) =To- - TN_1
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As we know, this is essentially a polynomial division, which can be written as:
a(z) - 2™ = b(z) - pore (z) + Tola(z)

Now let’s extend a by a = ag---any_1 so that the new remainder is a chosen
Tnew = 1 -+ Th_q. This is written as:

crc(ao ceea@_q1Gg - le71) — r6 .. '7“3\171
What happens to the polynomials? Similar to section 3.2 we find the following;:
(a(z) - 2™ +a(2)) -2V = (b(2) - pore () + ro(@) + alz)) -
=b(z) - 2™ pore (@) + (roua(x) + a(e)) -«
= (roua(z) + a(x)) - 2™

N

(Note that we use the symbol = to denote the same remainder when divided by
pere(z).) We want this to be the new remainder rpey ():

Tnew(m) = (Told(l‘) + EL(I)) -
We are looking for the coefficients of a(x), and under a certain precondition
(given below) we find them easily:

a(zr) = rnew(z) - (a:N)*1 + 7o1a()

(Note that section 3.2 deals with a special case of this, where rew(z) = 0 so
that a(z) = rgq(xz) which was exactly what we found there. Note further,
that the case of rhew = m @ FINALXOR is also just a special case where
a = roqa ® FINALXOR, so all the “magic” of m is hidden in the property
m(z) = (zV + 1) - FINALXOR(z).)

The precondition mentioned above is that z'V is invertible within the ring
of polynomial congruence classes (which means that there is a ¢(z) so that
2™V q(r) =1 mod pcre(z), which makes g(z) the multiplicative inverse of 'V,
and hence it’s also called (zV)~!). Luckily, in the case of CRC32 the polynomial
pcre () is irreducible, so this is even a field (it’s isomorphic to the Fys widely
used in cryptology) where every polynomial p(z) # 0 is invertible. But also in
other cases of CRC polynomials, ¥ has an inverse, as long as the coefficient of
2% within porc(z) is 1 (and for structural reasons, all used CRC polynomials
have this property), because the only prime divisor  of 2% doesn’t divide the
CRC polynomial in these cases, making pcrc () and 2V coprime so that (z™V)~!
exists.

Conclusively, to find the coefficients of a(x) which are the bits to be ap-
pended, we just have to multiply the wanted remainder with the inverse of 2™
and finally add the old remainder. The coefficients of (#?¥)~! can be precalcu-
lated (using the extended Euclidean algorithm or simply your favourite algebra
program which implements it) as they only depend on pcrc(z). For CRC32,
the inverse of =V is the following:

(@)1 = 2% £ 250 4 22T e 4 e 4 e e e e 4 g0
PR LR E S SR SR S S g
In this case, (z™V) ! can be expressed as CRCINV = 0x5B358FD3 which we’ll use

within our code. The multiplication (within the ring of polynomial congruence
classes) can be implemented very efficiently as well as the final addition.
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4.2 Pseudo-code

This pseudo-code summarizes our algebraic-motivated approach. Note that the
multiplication itself is not “implemented” in detail here. This can be done
by iterating over all bits of one operand and add the other operand to the
result accordingly, while shifting it each time and reducing (i.e. subtracting the
modulus) if necessary. Refer to our C implementation in the appendix A.5 for
a working version of this.

Algorithm 4 ApjustDATA() — Data adjustment at the end by multiplication
Of Ppew With (zV) ™" and adding rouq

Input: a (containing the data bits), terereg (the wanted CRC)
tercreg < tercreg @ FINALXOR
crereg < CRC(ag - --aj—n—1) @ FINALXOR
AN " Qj—1 (tcrcreg ® (xN) o crcreg) mod pcre ()
Output: a (bits at the end are adjusted)

Note: This all can be done again a bit more simply if you can afford the
space for another table, the “reverse CRC table”. The way to build it and use
it for the purpose of what we did here with the inverse polynomial is described
in the following section, especially in its “improved” version.

5 Getting a chosen CRC by altering a chosen
position

5.1 Theory behind it

We know from the last sections how the last N bits of our data can be modified to
have any value we want in the CRC register after the CRC computation. Now,
suppose we want to modify the N bits somewhere else, let’s say at position
k <l — N (where k =1 — N would be the position for altering the last N bits
of data):

cre(ag - ap—1@o " AN—1 Qg4 N " - G—1) =To " TN—_1
~————

modified

If we could determine which value ' in the CRC register is needed right before
processing ap+n - - - a;—1 to have a final CRC value of r:

cre(r’,apyn - rai_q) =1

...then this is solved by using the method from the previous section, applied
to ag - agp_1 and ', because we presented a method to calculate a for given
ao---ap—1 and r' so that:

cre(ag - --ag_1ap---an_1) =1’

What we need is an algorithm to calculate the value of 7' for given values of
r and b which solves the equation cre(r’,b) = r. In section 4 we calculated b for
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Figure 5: Backwards calculating the CRC

given ' and r. The CRC algorithm itself calculates r for given ' and b, so we
just have to apply the CRC algorithm “backwards” (see fig. 5).

To achieve this, remember how the table-driven approach to calculate the
CRC worked: (The following is illustrated in figure 6.) In each step, the CRC
register (let’s call it ¢q - - car—1 here) was first left-shifted by M bits. The bits
just shifted out were xored with the M bits of the data word, and the result
was used as an index to the CRC table. The N bits found in the CRC table
were finally xored to the CRC register. Actually, all the M + N bits (index
plus mask from table entry) were xored (call this bit-mask zq - - - a7 ny_1 here,
with xg«--zar—1 being the index and zas - - znyar—1 the table entry) to the
bits just shifted out and the CRC register itself, but those leading M bits were
discarded afterwards, because they were equal to those of the data stream (see
2 for the details).

(=7
Q
-~
1}
—
@ xﬂ xMI xM xN—l xN xNMI
v Gy 0 Ayyi€y Oyl
~—
M

Figure 6: One step of the table-driven CRC calculation

These steps are to be reversed. First, we have to reconstruct the M + N bits
that were xored (zo---zap4+n—1). Note that the CRC algorithm shifted M bits
left just before the xor, so M 0-bits were shifted in to the right, meaning that the
M rightmost bits after the xor (ciy_,, - cj_,) are equal to the pattern which
was xored to them (zy---Zny+a—1). But what pattern was it as a whole?
The pattern was created by xoring the CRCPOLY at certain positions. We
can recreate it step-by-step by looking at the rightmost M bits of the CRC
register, and building a M + N pattern by xoring the CRCPOLY (plus its
originally omitted leading 1) at the corresponding positions, beginning with the
rightmost.

The resulting pattern is the one that was effectively xored to the shifted-out
bits and the CRC register. To speed this process up, all possible patterns can



5 GETTING A CHOSEN CRC BY ALTERING A CHOSEN POSITION 14

be stored in a table which we call the “reverse CRC table” and which is indexed
over the M rightmost bits zy -+ x4 a1 Of the xor pattern zg---Tpryn—1
(instead of the leftmost bits as in the CRC table). Therefore, the resulting
table is of the same size as the CRC table itself.

Having the correct pattern of M + N bits, we can xor it, but we keep only
the leftmost N bits of the result in the new, “restored” CRC register (because
the M rightmost bits are by definition 0 after that). This also reversed the left-
shifting. Finally, the M data bits have to be xored to the leftmost M bits of the
CRC register, so that the CRC register is restored as it was right before a CRC
calculating step. Just “read” figure 6 bottom-up for a better understanding of
this process.

5.2 Pseudo-code

Building the “reverse CRC table” and using it to alter the chosen data bits is
described in the following pseudo-code. Its structure is somewhat similar to
those of the table-driven approach to calculate the CRC itself. (Note that we
use CRCPOLY _; to denote the omitted leading coefficient of porc(x) which
is always 1. Note further that we use a function ADJUSTDATA(r',r) which
represents the part from section 4 which calculated the needed data bits b so
that cre(r',b) =r.)

Algorithm 5 Calculating the reverse CRC table
Input: (nothing)
for index = 0 to 2™ — 1 do
crereg < 0 {Note that crereg is N bits width!}
creregy - - - creregny 1 < indexg - - - index
for k =1to M do
RIGHTSHIFT(crereg)
if bit_just_shifted_out = 1 then
crereg < crereg ® CRCPOLY _q --- CRCPOLY y_2
end if
end for
reverctable[index] < crereg
end for
Output: reverctable

Algorithm 6 BWCRC() — Table-driven “backwards” calculation of the CRC

Input: a (containing the data bits), tcrereg (wanted CRC)
tercreg + tercreg @ FINALXOR
for i = (I/M) — 1 downto 0 do
RIGHTSHIFT(trereg, M)
index < bits_just_shi fted_out
terereg < terereg @ reverctablelindex]
tereregg - - - tereregar—1 < tererego - - -tereregyr—1 D Qg Qi pr—1
end for
Output: tcrereg
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Algorithm 7 Data adjustmend at a chosen position

Input: a (containing the data bits), tcrereg (wanted CRC), k (chosen position)

crereg < CRC(ag - - - ap—1) & FINALXOR

terereg < BWCRC(ag4n - - - aj—1, terereg)

ag -+ apyN_1 < ADJUSTDATA(crereg, terereg)
Output: o (bits at position k are adjusted)

Note that this last algorithm is replaced by a more elegant version (without
the need of ApJusTDATA()) in the following subsection.

5.3 Improving this approach
In short we did the following (see also fig. 7):

0 k k+N l-1
| % 2 |
CRC calculation ’ backwards
’ r r CRC calculation
ApgustData(r', r) =r - (M) + 1’
0 Ey kN I-1
| % 2 |

Figure 7: Old approach to adjust the data at a chosen position

1. Calculate the crc from the beginning up to position k, call it »'. (This is
done by the standard CRC algorithm.)

2. Calculate the crc backwards from the end up to position k + N, call it r.
(This was done above in section 5.1.)

3. Calculate new bits a with crc(r’,a) = r and inject them into your data at
position k. (See section 4 for calculating that.)

As we will see, the last step can also be done within step 2, resulting in a very
simple algorithm. First remember section 5.1, which can calculate r' for given
values of r and b, so that:

cre(r',b) =7

Second, remember what we did in section 4, we looked for a while r and r’
where given, so that:
cre(r',a) =7 (5)

Looks quite similar, but the variables we look for are different for both cases
(r' in the first, @ in the latter). Let’s see if we can do something about that.
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Remember further (from section 3.2), that for all z with a width of N we have:

Vz : cre(z,z) =0 (6)

And finally remember the property of crc(.,.) which we discovered in 3.2 while
analysing the “magic sequence” m:

cre(ry,ar) @ cre(re, as) = cre(ry ® o, a1 ® az) (7

What we do now is to use r’ @ a for z in equation (6) and add this instance of
(6) to (5) while using the homomorphical property of crc described by (7):

r =crc(r’,a) ® cre(r’ ® a,r' @ a)

@ cre(r ®@r' ®a,adr' ®a)
= crc(a,r’)

Wow! We see that crc(r’,a) = cre(a,r’). So how does this help? Well, look at
step 3, were r and 7’ are given and @ is computed. As we know now, we can
equivalently write:

cre(r',;a)=r <= crce(a,r’) =r

So if we are looking for @ when ' and r are given, we can interpret the unknown
a as the initial CRC register, the given r' as the data to be computed, and (as
before) the also given r as the final CRC register. Because we are looking for a,
this can easily be done by step 2, our “backwards” CRC algorithm! This means
that we don’t need step 3 anymore (so the method from section 4 is not really
needed, if you have the pre-computed “reverse CRC table” available) and can
instead do the following (see also fig. 8):

0 k k+N l-1
| % 2 |
CRC calculation .,
0 k y k+N I-1
| 727722 |
r backwards CRC calculation
0 Ey k+N I-1
| 727722 |

Figure 8: Improved approach to adjust the data at a chosen position

1. Calculate the crc from the beginning up to position k using the standard
CRC algorithm, and call it . Then overwrite the N data bits at position
k with this r'.

2. Calculate backwards the crc from the end up to position k (!) using our
“backwards CRC” algorithm from section 5.1, and call it r. Overwrite the
N data bits at position k again, but this time use r for this.
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5.4 Pseudo-code

Finally, this are the two lines of pseudo-code, summarizing all we did up to this
section. Note that the goal of section 4 can be considered as a special case of
this, where k =1 — N. This renders ADJUSTDATA() obsolete.

Algorithm 8 Data adjustmend at a chosen position, improved version

Input: a (containing the data bits), tcrereg (wanted CRC), k (chosen position)

Ap - - A N—1 < CRC(ao s ak,l) @ FINALXOR
ag - -agyn_1 < BWCRC(ay - - a;_1, terereg)
Output: «a (bits at position k are adjusted)

6 Conclusion

The presented methods offer a very easy and efficient way to modify your data
so that it will compute to a CRC you want or at least know in advance. This
is not a very difficult task, as CRC is not a cryptographical hash algorithm —
it was never meant to be one. So you should never consider the CRC as some
kind of message authentication code (like some of the copy-protection guys do)
— it can easily be forged.

The fact that the CRC can be forged really easily makes one think of other
applications of our algorithms. It could be used as some sort of “covert channel”
for the undetected transmission or storage of data. You could hide data in the
CRC of other data which itself could look unsuspicious. An interesting research
topic could be how to extend our methods so that the modified bits don’t have
to be in one block but could be spread over the whole data stream. Our intuition
suggests that this could be a possible (but non-trivial) task. Feel free to do some
research in this area, it could be fun!

A Appendix

This appendix contains the source code of the implementation of our algorithms
for the CRC32 in the C programming language. Refer to the according sections
to get a detailed description and reasoning. This code will compile with every
modern C compiler (and will work correctly as long as you adjust the definition
of uint32 so that it’s an unsigned integer with 32 bits). All functions are
relatively small in size, as one of our goals was to provide fast and simple
solutions.

A.1 Definitions

We use some pre-defined values within our C code. We collect them altogether
here at the beginning, so that every piece of code will directly compile if you
prepend these definitions. Don’t forget to adjust uint32 which is meant to be
an unsigned integer with 32 bits. This could be expressed differently on your
system, so please consult the documentation of your C compiler if necessary.
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#define CRCPOLY OxEDB88320

#define CRCINV Ox5B358FD3 // inverse poly of (x"N) mod CRCPOLY
#define INITXOR OxFFFFFFFF

#define FINALXOR OxFFFFFFFF

typedef unsigned int uint32;

Listing 1: Definitions

A.2 Bit-oriented implementation of CRC32

Our first implementation is the bit-oriented approach of CRC32. This is of less
interest for real-world applications, at it is outperformed by the table-driven
implementation by at least a factor of 8, but could be interesting for a deeper
understanding of how the CRC works. It may also come handy if there’s no
pre-built CRC table (e.g. no room for it), but these are probably rare cases ...

/%%
* Computes the CRC32 of the buffer of the given length using the
* (slow) bit-oriented approach
*/
int crc32_bitoriented(unsigned char *buffer, int length) {
int i, j;
uint32 crcreg = INITXOR;

for (j = 0; j < length; ++j) {
unsigned char b = buffer[jl;
for (i = 0; i < 8; ++i) {
if ((crcreg ~ b) & 1) {
crcreg = (crcreg >> 1) ~ CRCPOLY;
} else {
crcreg >>= 1;

}

return crcreg -~ FINALXOR;

Listing 2: Bit-oriented implementation of CRC32

A.3 Table-driven implementation of CRC32

This implementation of CRC32 is similar to the one used everywhere. First,
the CRC32 table is built and then it can be used to call the actual CRC32
calculating function as often as needed.

/%
* Creates the CRC table with 256 32-bit entries. CAUTION: Assumes that
* enough space for the resulting table has already been allocated.
*/
void make_crc_table(uint32 #*table) {
uint32 c;
int n, k;

for (n = 0; n < 256; n++) {

c = n;
for (k = 0; k < 8; k++) {
if ((c & 1) !'= 0) {
¢ = CRCPOLY "~ (c >> 1);
} else {
c = c > 1;

}
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3
table[n] = c;

Listing 3: (Pre-)Building the CRC32 table

/*x*%
* Computes the CRC32 of the buffer of the given length
* using the supplied crc_table
*/
int crc32_tabledriven(unsigned char *buffer,
int length,
uint32 *crc_table)

{
int ij;
uint32 crcreg = INITXOR;
for (i = 0; i < length; ++i) {
crcreg = (crcreg >> 8) ~ crc_table[((crcreg -~ buffer[i]) & OxFF)];
H
return crcreg -~ FINALXOR;
}

Listing 4: Table-driven implementation of CRC32

A.4 Data adjustment at the end for a known CRC

Now for the first data adjustment: As the title suggests, the buffer will compute
to a known CRC afterwards (see section 3 for details), which will be the “magic
sequence” 0x2144DF1C for CRC32. This is done by just appending the CRC32
of all bytes except the last four.

[ H %
* Changes the last 4 bytes of the given buffer so that it afterwards will
* compute to the "magic sequence" (usually 0x2144DF1C for CRC32)
*/
void fix_crc_magic(unsigned char *buffer, int length, uint32 ¥crc_table)
{
int i;
// calculate CRC32 except for the last 4 bytes

uint32 crcreg = crc32_tabledriven (buffer, length-4, crc_table);

// inject crcreg as content - nothing easier than that!
for (i = 0; i < 4; ++i)
buffer[length - 4 + i] = (crcreg >> i*8) & OxFF;

Listing 5: Implementation of data adjustment at the end for a known CRC

A.5 Data adjustment at the end for a chosen CRC

Second, the implementation of adjusting the last four bytes so that the buffer
calculates to the chosen CRC afterwards. This is achieved by calculating the
CR(C32 of all bytes except the last four (which is done by the table-driven
implementation of CRC32 for which you have to supply a pointer to the pre-
calculated CRC table). After that, some multiplication and addition within the
ring of polynomial congruence classes modulo pore(z) is done, which sounds
more complicated than it actually is. See section 4 for details.
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/x %
* Changes the last 4 bytes of the given buffer so that it afterwards will
* compute to the given tcrcreg using the given crc_table
*
* This function uses the method of the multiplication with (x"N)~-1.
*/
void fix_crc_end(unsigned char #*buffer,
int length,
uint32 tcrcreg,
uint32 #*crc_table)

{
int ij;
tcrcreg “= FINALXOR;
// calculate crc except for the last 4 bytes; this is essentially crc32()
uint32 crcreg = INITXOR;
for (i = 0; i < length - 4; ++i) {
crcreg = (crcreg >> 8) ~ crc_table[((crcreg -~ buffer[i]) & OxFF)]1;
3
// calculate new content bits
// mnew_content = tcrcreg * CRCINV mod CRCPOLY
uint32 new_content = 0;
for (i = 0; i < 32; ++i) {
// reduce modulo CRCPOLY
if (new_content & 1) {
new_content = (new_content >> 1) ~ CRCPOLY;
} else {
new_content >>= 1;
¥
// add CRCINV if corresponding bit of operand is set
if (tcrcreg & 1) {
new_content ~“= CRCINV;
3
tcrcreg >>= 1;
H
// finally add old crc
new_content "= crcreg;
// inject new content
for (i = 0; i < 4; ++i)
buffer[length - 4 + i] = (new_content >> i*8) & OxFF;
}

Listing 6: Implementation of data adjustment at the end for a chosen CRC

A.6 Data adjustment at chosen position for a chosen CRC

Finally, this is the implementation of our method to adjust four bytes at some
chosen position within the buffer so that the buffer calculates to the chosen CRC
afterwards. All that is needed for this is some forward-calculating of the CRC
(using the CRC table) and then some backwards-calculating (using a reverse
CRC table). Please consult section 5 for details. We also provide the function
to pre-calculate the reverse CRC table, which is also described in section 5.
Note that the parameter fix_pos, which marks the position of the bytes to be
adjusted, can also be negative, which is then counted from the end of your buffer
(so that a value of -4 will result in adjusting the last 4 bytes). Have fun!

/%%
* Creates the reverse CRC table with 256 32-bit entries. CAUTION: Assumes
* that enough space for the resulting table has already been allocated.
*/
void make_crc_revtable (uint32 *table) {
uint32 c;
int n, k;
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for (n = 0; n < 256; n++) {
c = n << 3x8;
for (k = 0; k < 8; k++) {

if ((c & 0x80000000) !'= 0) {
¢ = ((c =~ CRCPOLY) << 1) | 1;
} else {
c <<= 1;
H
H
table[n] = c;
}
}
Listing 7: (Pre-)Building the reverse CRC32 table
[ ok

* Changes the 4 bytes of the given buffer at position fix_pos so that

21

* it afterwards will compute to the given tcrcreg using the given crc_table.

* A reversed crc table (crc_revtable) must be provided.
*/

void fix_crc_pos(unsigned char #*buffer,
int length,
uint32 tcrcreg,
int fix_pos,
uint32 *crc_table,
uint32 *crc_revtable)

{
int i;
// make sure fix_pos is within 0..(length-1)
fix_pos = ((fix_pos)length)+length)length;
// calculate crc register at position fix_pos; this is essentially crc32()
uint32 crcreg = INITXOR;
for (i = 0; i < fix_pos; ++i) {
crcreg = (crcreg >> 8) ~ crc_table[((crcreg ~ buffer[i]) & OxFF)];
¥
// inject crcreg as content
for (i = 0; i < 4; ++i)
buffer [fix_pos + i] = (crcreg >> i*8) & OxFF;
// calculate crc backwards to fix_pos, beginning at the end
tcrcreg “= FINALXOR;
for (i = length - 1; i >= fix_pos; --i) {
tcrcreg = (tcrcreg << 8) ~ crc_revtable[tcrcreg >> 3*8] ~ buffer[i];
¥
// inject new content
for (i = 0; i < 4; ++i)
buffer [fix_pos + i] = (tcrcreg >> i*8) & OxFF;
}

Listing 8: Implementation of data adjustment at chosen position for a chosen

CRC
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