
Student Research Project

Layer 2 network interface for Mono

Christian Otto

April 8, 2008

1

Abstract

The design and functionality of a layer 2 network interface that
originated within the scope of the "Extended Hot Spot" project of
Deutsche Telekom Laboratories is described an explained in this doc-
ument. This interface is especially designed for the use in connection
with the .NET framework Mono on router platforms. The implemen-
tation developed supports TI-AR7WRD compatible Routers running
with the Texas Instruments Network Support Package (NSP), v.3.7.2,
and the network driver shipped with the Texas Instruments Access
Point Development Kit (APDK), v.7.5.29. For this project Castlenet,
AVS800W+ boxes were used for testing.

A use case for that network interface could be a mesh network
consisting of a great variety of router architectures that o�ers several
services to users of the network. Under the conditions of the use case
observed services are o�ered by the network, i.e. not by particular de-
vices. Thus it must be guaranteed that the same software is installed
on all routers. The conventional solution if this problem would be to
port the software to each architecture that might appear in the mesh
network. This would require a great e�ort without having the guaran-
tee that the software behaves similarly on each platform. Therefore, a
new abstraction layer was introduced. This provides a unique view on
a network device for the programmer.

In the implementation described below the abstraction layer was
realized by porting Mono to the MIPSel architecture. Due to the
requirement of having direct access to 802.11 packets, it was necessary
to create a layer 2 network interface to the AP driver. The description
of that interface is of the main themes of this document. The possibility
to implement network protocols hardware architecture independently
in user space is now given by the existence of such an interface.

2

Contents

1 Connection between driver and interface 4
1.1 Interface modules . 4
1.2 Usage of the proc �le interface 4

2 Kernel side internals 6
2.1 AP driver changes . 6
2.2 New functionality . 6

3 User space internals 8
3.1 Functionality of the C library: 8
3.2 Functionality of the C# library 9

3.2.1 public class proc�le . 9
3.2.2 public class distributor 11

3.3 802.11 over llnetif: . 13
3.4 .Net Interoperability Details 13

3.4.1 Marshaling arguments in C# 14
3.4.2 Using a custom marshaler 16

4 Conclusion 17

3

1 Connection between driver and interface

To provide general interoperability with the TI AP driver an interface to
the hardware abstraction layer (HAL) of the driver was created. So one is
able to handle network protocol problems in a hardware independent and
abstract way without the need to switch into kernel space, e.g. when routing
packets. This way, implementing solutions for routing problems is possible
in C or C# without the need of touching the kernel. A �rst test was already
carried out implementing an Ad-Hoc mode driver in C#.

1.1 Interface modules

The interface is composed of two small Kernel modules, a C library and
a C# wrapper library. The kernel part of the software contains a module
implementing a packet queue for received packets and a module providing a
communication interface for the user space world. This interface is realized
as a system of proc �les (see Figure 3). A packet �lter that is able to accept
or drop packets speci�ed by a bit mask was implemented for performance
reasons.

1.2 Usage of the proc �le interface

A packet can be sent by writing the raw packet plus some meta information
(e.g. the wireless bssid, transmission power) to the network interface proc
�le '/proc/net/llnetif'. Meta information is created by setting appropriate
annotations that pre�x the actual packet. The packet format required by
the proc �le interface is shown in Figure 1.

char* wireless bss id <0..3> annotations (6 bytes TX power) raw packet (with valid CRC)

Figure 1: Packet format

The AVS800W+ has four registers that store virtual bssids. The �rst byte
of the packet that written to /proc/net/llnetif speci�es which of these bssid
should be used for sending a packet. The transmission power annotation
can be used for the regulation of the transmission power depending on the
current data rate and the 802.11 standard used (a or b/g). If this annotation
should be used, the next byte after the wireless bssid annotation should be
set to

• WLAN_80211a (0x01): apply the following setting to packets that are
sent out using the 802.11a standard

• WLAN_80211g (0x02): apply the following setting to packets that are
sent out using the 802.11b or 802.11g standard

4

• WLAN_80211ag (0x03): apply the following setting to packets that
are sent out not depending on the 802.11 standard that is used

Otherwise, this byte should be set to 0x00. In the case that the trans-
mission power settings should be changed for a packet to be send out and
WLAN_80211a, WLAN_80211g or WLAN_80211ag is set, the following
�ve bytes adjust the transmission power for �ve prede�ned data rates where
0 is the lowest available transmission power an 31 the highest available one.

For performance reasons it might be useful to �lter out certain packets
and to only enqueue those packets that are accepted by the �lter. This
behaviour can be con�gured by writing a rule containing a policy, a bit
mask and some meta information to the proc �le '/proc/net/llnet�lter'. The
format of that rule is shown in Figure 2.

n = new filter
a = add to filter
d = delete filter

A = match all (mask must be identical to the packet head)

S = match set bits (bits that are set in the mask must also be set in the packet)

U = match unset bits (bits that are not set in the mask also must not be set in the packet)

A = accept packet

D = drop packet
data byte offset

to apply filter

char* < n | a | d > < A | S | U > mask< A | D >offset (4 byte)

Figure 2: Filter rule

A packet is given to the user space by reading from the proc �le. It
contains the packet length and the raw packet itself. A poll routine for the
network interface proc �le was implemented to provide select requests on the
proc �le and thus to avoid busy wait situations. Whenever a new packet is
read the �le pointer of the proc �le has to be reset to zero. So it is made
sure that a packet is always read from its beginning. On the one hand this
enables reading a packet incompletely if desired, and on the other hand it is
impossible to loose borders between two packets if, for example, a packet is
unintentionally read incompletely.

This functionality is comfortably accessable through the C and C# li-
brary described in section 3.

5

2 Kernel side internals

2.1 AP driver changes

Two small changes on the core driver were performed to facilitate sending
and receiving packets via the proc �le interface. Therefore the kernel symbol
for the transmit function of the driver was exported to allow sending 802.11
packets from a third party module. Second a call to the enqueue function of
the llnetif packet bu�er was placed in the receive function of the core driver
to get all the packets the driver receives. The enqueue function called as a
part of an interrupt handler function has is given by the following signature:

int enqueue_packet(char data, unsigned int length);

where data is the recently received packet and length is the length of the
packet. The function returns immediately when available �lter rules were
applied on the packet. If the packet is accepted it is put into the packet
queue otherwise it is dropped.

Thus, the functionality of the driver nearly remains untouched while the
new functionality works clearly separated from driver internals.

As the sources for the TI AP driver are not open source, the topic ker-
nel and driver programming will not be treated in detail here. For further
information on kernel programming for 2.4er kernels see ref. [1].

2.2 New functionality

Packets received and sent to the packet bu�er are ready to be fetched by
a user space process. The packet bu�er has a �xed length. Thus, packets
not fetched are dropped in favour of newer packets. If a user space process
requests a packet by reading on the proc �le '/proc/net/llnetif', information
on the size of the oldest packet followed by the packet itself is given to the
user space process. To read the next packet, �rst the user process has to
reset the �le pointer ('seek' the �le pointer) to zero (see section 1.2).

A packet written to the proc �le from user space is directly given to the
transmit function of the AP driver. An own sending queue is unnecessary
because the packet to be sent will be enqueued in the drivers transmission
queue anyway. As one can see in Figure 3, the llnetif driver extension consists
of three parts:

• the packet �lter,

• the packet bu�er,

• and the proc �le interface itself.

6

 (tiap.o)

(llnetif.o)

(/proc/net/llnetif)

Layer−3−interface

Layer−3 interface

Network driverwlan0

Network

(/proc/net/llnetfilter)

Buffer

Packet

Packet Buffer

(llnetbuf.o)

device

Filter interface

Outgoing packet

Filter rule(s)

Outgoing packet

Incoming packet

filter

Figure 3: kernel space design

7

3 User space internals

The user space part of the interface (see �gure 4) consists of a C library and
a C# wrapper. The C library reads and writes to the proc �les mentioned in
section 1.2; the C# wrapper wraps the whole functionality of the C library.

/proc/net/llnetif

/proc/net/llnetfilter

C−library

Mono wrapper DLL

Mono Application

Figure 4: user space design

3.1 Functionality of the C library:

The C library provides an API for sending and receiving packets as well as
setting certain values as �lter rules or virtual BSS IDs. Once the library is
initialized, a thread is started that performs a blocking select on the network
interface proc �le and calls a handler routine in case a packet is available.
This handler routine has to be registered �rst by the user space application
using this library. By this mechanism, polling is avoided for available packets.
The C library has an own packet �lter that works independently from the
kernel space packet �lter. This �lter allows to register a constant number of
di�erent �lter masks (128 seems to be a reasonable value for this constant). If
a packet is sent to the handler routine, a 128 bit mask is given to the handler
routine. It informs an application which of the 128 (possibly registered)
�lters match the packet and which do not. It is, for example, very easy to
implement a packet distributor software in C# where programs can subscribe
to a certain kind of packets speci�ed by a particular set of �lter masks.

The handler routine is registered by setting the appropriate function
pointer of the type

const void(*f)(char*,char*).

8

This pointer can be a C function or a C# function if the function registration
is performed via the C# wrapper library. The C# library contains an object
that marshals the arguments for the handler function from the unmanaged
to the managed .NET context. Thus, it is possible to have direct access to
received wireless frames in very few lines of code and in a very comfortable
way.

3.2 Functionality of the C# library

The library llnetif.dll mainly wraps the C library described in section 3.1 .
The namespace llnetif mainly consists of two important classes:

• public class proc�le, and

• public class distributor

3.2.1 public class proc�le

The class proc�le encapsulates very basic routines for directly accessing the
proc �le interface. This class contains the methods:

• public static void init():

� The method proc�le.init() opens the /proc/net/llnetif if it is not
already open. In case the �le is already open or an error occured
the value -1 is returned. In case of no error the value 0 is returned.

• public static int recv(ref byte[] buf):

� The method proc�le.recv(. . .) reads a packet from /proc/net/ll-
netif. If an error occurred the value -1 is returned. If no packet
is available the value 0 is returned else the reference buf contains
the new packet and the return value contains the length of the
packet.

• public static int send(byte[] buf, byte wlan_bss_dev):

� The method proc�le.send(. . .) writes buf to /proc/net/llnetif. In
case this is a valid packet it will be sent out by the virtual bss
device speci�ed by the argumentwlan_bss_dev. In case a write
error occurs, the return value will be -1 otherwise the number of
written bytes will be returned.

9

• public static void add_�lter_rule(byte mode, byte match_mode,
byte policy, byte[] mask, int o�set):

� The method proc�le.add_�lter_rule(. . .) adds a rule to the kernel
�lter writing the necessary �lter information to /proc/net/llnet-
�lter.

� Arguments:

∗ mode:

· llnetif.FILTER_DEFS.MODE.ADD_TO_MASK: append
a new rule to an existing set of �lter rules

· llnetif.FILTER_DEFS.MODE.NEW_MASK: delete ex-
isting rules and create new set of rules where its �rst rule
is the one speci�ed by the next four arguments

· llnetif.FILTER_DEFS.MODE.DELETE_MASK: delete
existing rules

∗ match_mode: the �lter does a bitwise matching of �lter
masks and packets - if a packet matches a mask than a packet
is either accepted or dropped (see policy)

· llnetif.FILTER_DEFS.MATCH_MODE.MATCH_ALL:
all speci�ed bits in the mask have to be matched by the
packet

· llnetif.FILTER_DEFS.MATCH_MODE.MATCH_BIT_SET:
only bits that are set to 1 have to be matched by the
packet

· llnetif.FILTER_DEFS.MATCH_MODE.MATCH_BIT_UNSET:
only bits that are set to 0 have to be matched by the
packet

∗ policy:

· llnetif.FILTER_DEFS.POLICY.ACCEPT_PACKET: ac-
cept a packet if the packet matches the mask

· llnetif.FILTER_DEFS.POLICY.DROP_PACKET: drop
a packet if the packet matches the mask

∗ mask: bitmask that speci�es class of packets that should be
�ltered

∗ o�set: packet o�set that is added to a packets byte index
when comparing packets with masks

• public static void close()

� The method proc�le.close() closes /proc/net/llnetif.

10

3.2.2 public class distributor

The class distributor contains the methods:

• public static int init()

� The method distributor.init() opens /proc/net/llnetif and initial-
izes some mutexes. In case of an error the value -1 otherwise the
value 0 is returned.

• public static void �nish()

� The method distributor.�nish() closes /proc/net/llnetif and �n-
ishes the packet distribution thread that was started via distrib-
utor.start_distribute().

• public static void set_deliver_cb(CallBack cb)

� The method distributor.set_deliver_cb(. . .) sets the function pointer
of the method that should be called when a packet arrives. The
signature of the callback function must be

void CallBack(byte[] packet, byte[] match_mask);

where packet is the packet that has been received andmatch_mask
is a 128 bit mask that speci�es which of the 128 potentially regis-
tered �lters (distributor.add_�lter_rule(. . .)) match the packet.

• public static int start_distribute()

� The method distributor.start_distribute() starts the packet dis-
tribution thread that calls the callback function that has been
set by distributor.set_deliver_cb(. . .)every time a packet is read
from /proc/net/llnetif.

• public static void delete_�lters()

� The method distributor.delete_�lters() deletes all packet �lters
that have been registered.

• public static void delete_�lter(int �lter_index)

� The method distributor.delete_�lter(. . .) deletes the �lter identi-
�ed by index.

• public static int add_�lter_rule(int �lter_index,byte mode,
byte match_mode, byte policy,byte[] mask, int o�set)

� The method distributor.add_�lter_rule(. . .) adds a �lter rule to
the userspace packet �lter. It works similarly to the kernel packet

11

�lter (see section 1.2). The only di�erence is the argument �l-
ter_index that speci�es one out of 128 packet �lters that should
be changed. The kernel �lter has one �lter only.

An example for a minimal program that would be able to receive and poten-
tially send packets is given with Listing 1 below:

1 using System;

2 using System.Runtime.InteropServices;

3 using llnetif;

4

5 public class receive_packets {

6 public static void handle_packet(byte[] packet ,

byte[] match_mask) {

7 System.Console.WriteLine("got packet");

8 }

9

10 public static int Main(string [] args) {

11 byte[] filter_mask = new byte [1];

12 filter_mask [0] = 0;

13 if (distributor.init() < 0) {

14 Console.WriteLine("init failed!");

15 return 0;

16 }

17

18 distributor.set_deliver_cb(handle_packet);

19 distributor.add_filter_rule (0,

20 FILTER_DEFS.MODE.NEW_MASK ,

21 FILTER_DEFS.MATCH_MODE.MATCH_BIT_SET ,

22 FILTER_DEFS.POLICY.ACCEPT_PACKET ,

23 filter_mask ,0);

24 distributor.start_distribute ();

25 System.Console.WriteLine("press enter to stop

distribution");

26 System.Console.ReadLine ();

27 distributor.finish ();

28 return 0;

29 }

30 }

Listing 1: minimal llnetif program

12

3.3 802.11 over llnetif:

To make C# programming the the llnetif interface more comfortable the
class p80211 provides an API for building 802.11 packets. This API provides
both set and get methods for all �elds of an 802.11 packet and functions to
convert a p80211 class into a byte array and back. Even though there exist
set methods for the packet time stamp and the CRC32 checksum at the end
of the packet these �elds are ignored by the driver and overwritten by the
�rmware sending out a packet (see p80211.cs).

The conversion methods byte-array-to-packet80211 and packet80211-to-
byte-array will be described more extensively now:

public byte[] ToByteArrayNetwork()

• The method ToByteArrayNetwork() converts a packet80211 class into
a byte array. All address �elds and the CRC32 checksum are converted
to network byte order.

public byte[] ToByteArrayHost()

• The method ToByteArrayHost() converts a packet80211 class into a
byte array. The byte order of all address �elds and the CRC32 check-
sum stays untouched.

public int ReadFromByteArrayNetwork(byte[] bpacket)

• The method ReadFromByteArrayNetwork(. . .) converts a byte array
into a packet80211 class. All address �elds and the CRC32 checksum
are converted to host byte order.

public int ReadFromByteArrayHost(byte[] bpacket)

• The method ReadFromByteArrayHost(. . .) converts a byte array into a
packet80211 class. The byte order of all address �elds and the CRC32
checksum stays untouched.

3.4 .Net Interoperability Details

As C# has been designed as a very high level language some of the func-
tionality needed to execute functions that normally run in kernel space is
missing. That means that this functionality has to be added by writing
new C# classes. Those classes often wrap C libraries that implement the
functionality needed. Therefore a mechanism is required that connects the
unmanaged (native) context with the managed context. That mechanism is
called marshaling.

13

3.4.1 Marshaling arguments in C#

Arguments that are sent from the unmanaged to the managed context have
to be marshaled. In C# attributes are used to append meta information to
source code. This information is put into square brackets. There is a great
variety of possibilities to marshal arguments (see [2]).

Custom marshaling: The llnetif.dll library uses custom marshalling to
copy function arguments or results between managed and unmanaged con-
text. Therefore one has to extend ICustomMarshaler Object and implement
the functions:

public static ICustomMarshaler GetInstance (string s)
public void CleanUpManagedData(object o)
public void CleanUpNativeData(IntPtr pNativeData)
public int GetNativeDataSize (IntPtr ptr)
public int GetNativeDataSize ()
public IntPtr MarshalManagedToNative (object obj)
public object MarshalNativeToManaged (IntPtr pNativeData)

The functions that are important for the actual marshaling are Marshal-
ManagedToNative and MarshalNativeToManaged. At the example beyond
byte arrays are marshaled between native and managed context. In native
context the array length is always saved in the �rst four bytes of the array.
Without that information it would be impossible to marshal from unman-
aged to managed context because type safeness could not be guaranteed (the
other direction of course would work).

1 public class ByteArrayMarshaler : ICustomMarshaler {

2 private static ByteArrayMarshaler Instance = new

ByteArrayMarshaler ();

3 public static ICustomMarshaler GetInstance (string

s) {

4 return Instance;

5 }

6 public void CleanUpManagedData(object o){ }

7 public void CleanUpNativeData(IntPtr pNativeData){

8 UnixMarshal.FreeHeap(pNativeData);

9 }

10 public int GetNativeDataSize (IntPtr ptr) {

11 return Marshal.ReadInt32(ptr);

12 }

13 public int GetNativeDataSize () {

14

14 return Marshal.SizeOf(typeof(byte));

15 }

16

17 public IntPtr MarshalManagedToNative (object obj) {

18 if (obj == null) return IntPtr.Zero;

19 if (obj.GetType () != typeof(byte []))

20 throw new ArgumentException("Argument must be

byte[]");

21 byte[] array = obj as byte [];

22 IntPtr ptr = Marshal.AllocHGlobal(

23 array.Length + Marshal.SizeOf(typeof(int)));

24 Marshal.WriteInt32(ptr ,array.Length);

25 ptr = (IntPtr)((int)ptr + Marshal.SizeOf(typeof(

int)));

26 Marshal.Copy(array ,0,ptr ,array.Length);

27 return ptr;

28 }

29

30 public object MarshalNativeToManaged (IntPtr

pNativeData) {

31 if(pNativeData == IntPtr.Zero) return null;

32 int size = GetNativeDataSize(pNativeData);

33 byte[] array = new byte[size];

34 IntPtr data_ptr = (IntPtr)((int)pNativeData +

Marshal.SizeOf(typeof(int)));

35 Marshal.Copy(data_ptr ,array ,0,size);

36 return array;

37 }

38 }

Listing 2: ByteArrayMarshaler

15

3.4.2 Using a custom marshaler

To use a certain marshaler the appropriate attribute for each parameter of a
function has to be set. The following example shows how to marshal a byte
array that is returned by a C library function with the ByteArrayMarshaler:

1 [DllImport("libllaccess.so")]

2 [return : MarshalAs(UnmanagedType.CustomMarshaler ,

MarshalTypeRef=typeof(ByteArrayMarshaler))]

3 public static extern byte[] some_function ();

If arguments of a function have to be marshaled, i.e. if a Mono function
is called from a C library (callback) one would have to set a marshaler for
each argument:

1 private static void _cb([MarshalAs(UnmanagedType.

CustomMarshaler ,

2 MarshalTypeRef=typeof(ByteArrayMarshaler))] byte[]

packet ,

3 [MarshalAs(UnmanagedType.CustomMarshaler ,

4 MarshalTypeRef=typeof(ByteArrayMarshaler))] byte[]

match_mask) {

5 //...

6 }

16

4 Conclusion

Originally the intention of that project was to create an interface not only
to directly send and receive 802.11 frames via a proc �le interface but to to
send arbitrary packets.

The �rst part of these plans has been put into practice. It is now possible
to create and send valid packets in userspace and to send them out using
the C# library, the C library and the proc �le interface that are described
above. As a proof of concept the annotation for the transmission power reg-
ulation that is also described in section 1.2 was added. In case there will
be a requirement for more annotations they can be added easily in a similar
way. When introducing new annotations one has to bear in mind that the
TI AP driver mostly needs to be restarted when changing driver settings
e.g. the maximum data rate. Thus, at least when using the TI AP driver,
changing these parameters within a session would be ine�cient because the
router would become unusable.

One of the intended goals was to facilitate the possibility to send com-
pletely arbitrary packets. This could not be reached. The most important
reason was that the �rmware sources of the TI AP driver were inaccessi-
ble. Important validity checks when sending packets are executed at this
level. Thus it was not possible do deactivate those checks to make sending
of arbitrary packets possible.

References

[1] Jonathan Corbet Alessandro Rubini. Linux Device Drivers. O'Reilly,
2nd edition, jun 2001.

[2] Hisham Mardam Bey. Mono documentation - interop with na-
tive libraries. http://www.mono-project.com/Interop_with_Native_

Libraries.

17

