ClickWatch — An Experimentation Framework for
Communication Network Test-beds

Markus Scheidgen Anatolij Zubow Robert Sombrutzki
Humboldt University Humboldt University Humboldt University
Rudower Chaussee 25 Rudower Chaussee 25 Rudower Chaussee 25

Berlin, Germany Berlin, Germany Berlin, Germany

Email: scheidge@informatik.hu-berlin.demail: zubow@informatik.hu-berlin.d&mail: sombrutz@informatik.hu-berlin.de

Abstract—It is hard to experiment with test-beds for communi- allows to analyze and control communication network test-
cation networks: data produced in the n_etwork has to be retrievd peds programmed with the Click Modular Router API. The
and analyzed, networks must be reconfigured before and betwee ick API is a C++ based component model specially designed

experiments, data is often little structured (log-files) and analysis _ X . .
methods and tools are generic. Even though many problems of for describing router configurations. ClickWatch accurtega

experimentation are the same for all experiments, re-use is spaes data from multiple network nodes. The status of the network

and even simple experiments require large efforts. as well as the generation of derived data, e.g. reports and
We present a framework that attempts to solve these problems: network statistics, can be easily accomplished using a mode

‘t"’etdlfﬁ(;]e a Seé of rgbquitrﬁments _folr expe(;ir_nenting WkiFh net\;vork driven transformation approach. With the help of a graghica

est-beds, we describe the principles and inner workings of our . .

framework, demonstrate it with two typical example experiments, interface, ClickWatch accelerates the software develmm?

and present measurement results that illustrate the feasibility and Process. The status of the network can be analyzed at runtime

scalability of our approach. Some qualitative and quantitative SO that the user is able to adapt his experiment to the chgngin

aspects of ClickWatch are compared to the commonly used log- network test-bed environment.

file based approach to experimentation.

Keywords-Communication networks, Test-bed, Click Modular Il. PROBLEM STATEMENT

Router, Experimentation framework Experimentation withreal-world networks (test-beds) is
hard. A network test-bed is a distributed system. To analyze
I. INTRODUCTION its functional and non-functional characteristics folgktanust

Wireless and wired communication networks are an inpe performed. First, data has to be produced on the different
portant research topic in industry and academia. SignificdtetWork nodes (measurement). Secondly, this distribued d
efforts in the academic world are made to provide redi€eds to be collected and merged into a single, centralized,
world prototypes and test-beds based on open source seftuf#n€rent representation. Thirdly, the centralized datedse
and off-the-shelf technologies mostly based on standakes |to be analyzed. This means that the different pieces of data,
IEEE 802. In the academic world the Click Modular Routgproduced on different nodes and at distinct moments in time
API [1] has established itself as a pseudo-standard fodingjl Nave to be aggregated, put into a more abstract represerstai

software for communication networks (e.g. wireless medf-9- statistics), and interpreted. Fourthly, to set up riggt
networks). experiment, you need to reconfigure network nodes.

One of the main research tasks in this area is the develop:rhese four tasks contain elements that are specific to distin

ment of new or improved network protocols. This requireSXPeriments, e.g. syntax and semantics of the data that is
an experimentation platform or framework. Clickwatch igroduced, but the tasks also contain elements that are equal
an experimentation framework for network test-bédsthe for all experiments, e.g. how data is centralized. '

central aim of ClickWatch is to mask the complexity of a e propose a framework that reduces experimentation effort
dynamic distributed network system such as a communicatish€xPeriment specific elements and provides all re-oaogiri
network consisting of hundreds of nodes. For a user suctflgments of experimentation in the domain of computer com-
network of nodes appears as a simple centralized softwdgnication networks.

system. This allows to accomplish the challenging task of lIl. REQUIREMENTS

setting up experiments in large testbeds and allows to aealy o)
them in a simple way. We distinguish between functionalwlaf) and non-

From the technical point of view ClickWatch is based offinctional how) requirements. Before we can list require-

Eclipse and the Eclipse Modeling FramewdriClickWatch ments, we have a closer look at the process of experimentatio
This will refine the problem statement (ref. Il) and give us

Lhitp://hwi.hu-berlin.de/ more substance to derive requirements from. Based on this
2http://eclipse.org/modeling process description, we will derive functional requiremtsen

Firstly, experimentation: In the computer communication
network domain, experiments with actual networking compo-
i nents (i.e. everything that is not a simulation) consist sétp
l of network hardware and software. Based on this setup the
l : = — network is put into action by running of some sort of sample
l = network traffic. Secondly, observation: This usually metres
‘ Measure : collection of network statistics on all protocol layers.irfity,
p analysis: Usually consists of aggregating network stasisnto
collecting data transforming data into information statistics on a higher level of abstraction. Comparing Iteeu
some sort of benchmark, e.g. the results of other experanent
Fourthly, adaptation: Based on the results of an experiment
one wants to adapt software and/or hardware configurations,

Fig. 1. Experimentation process.

and those non-functional requirements that determine tRgtwork traffic, etc.

user’s (experimenter’s) experience. Furthermore, wenlst-) i

functional requirements that stem from the technical it B- Functional Requirements

tions in the domain of computer communication networks. Of course, the four tasks listed in the problem statement are
reflected within the experimentation process and the experi

A. Experimentation as a Process _
mentation framework needs to support those tasks: (1) mketwo

We envisiqn experimentation as a process'similar to agﬁ%des must be able to produce data, (2) the data must be
software engineering. We want to produce first results fasfjiected from those nodes into a centralized representati

and with little preparation. These results are later refied ¢ 1o network, (3) the collected and centralized data must
continuous cycles of experimenting, observation, ansjysid be analyzed, and (4) it must be possible to reconfigure the

adaption. The whole cycle is driven by the same frameworkqy ok hased on interpretation of prior analysis results.
Promising threads of experiments can be conducted fast

d dead end be di d d without outii To support the agile experimentation envisioned in the pro-
and dead ends can be discovered soon and without putiing. description, the framework should allow to start aisly
unnecessary efforts into them.

Fia. 1 sh th tural f ducti . during the running experiment. The framework should suppor
'g. 1 shows the natural way of conducling expenments, qictance of collected data and analysis results to erlihn
as a cycle. Suppose you start your research with a sim é

id fosted | frst hvpothesis that dt roducibility of experiments. The framework should allo
\dea, manitested in a first hypothesis that you need 1o Proye, jiomate the experimentation process as much as possible
or disprove by an experiment. The natural thing to do is

to conceive a procedure, which When'rwxmerimentatio)j C. Qualitative Requirements (Users Perspective)
leads to anobservationthat when revised through careful
analysis either supports or neglects the hypothesis. This resultTo develop experiments quickly and in an evolving manner
of you experiment leads to a revised hypothesis that y#uis paramount that the data produced and analyzed can
need to prove with a new experiment which is an adaptati®§ €asily understood and its meaning is clear at all times.
of the last experiment. Research becomes a cyclic executigterefore the first and central requirement is that the teahdl
of experiments, where each cycle consists of four task&ata is structuredand that this structure is visible whenever the
experimentationobservation analysis and adaptation user is confronted with this data. Furthermore, theisectures
In agile software engineering the major assumption is thaxust be extensibleith little effort in order to evolve from one
it is impossible to tell all requirements for a software befo experiment to the next.
the software is build and used. Applied to experimentation, When the user accesses data (e.g. during analysis) this
this assumption is that it is impossible to conceive a majaghould only be possible according to the structure, i.e. in a
probably game changing hypothesis, before having conductgpe-safemanner. This lowers human error and safes valuable
an experiment (or a series of experiments) that lead towatifse and resources. This can also be taken as common sense
it. An experimentation framework needs to support the idea from experience in software engineering.
start with simple experiments, where the (often unexpécted Experiment specific artifact created by users should be
results inspire the hypothesis for the next experiments Thieusable Methods used, especially to produce and analyze
requires a framework that makes experimentation, observatdata, should support a compositional paradigm (e.g. object
and analysis extremely effortlessly. As a result, it is nlikely ~ orientation).
to conceive and run multiple simple experiments, where theExperimentation, especially putting several experimarits
results of one experiment lead to the next one, than to thiaksingle workflow, also means that the network nodes can
of "the one” big experiment. be modified between experiments. Modifications on network
What does experimentation mean in the domain for comedes (i.e. adjusting protocol parameters) should be done
puter communication networks? We need to look what tfaong the structures used in producing data. It should be pos
four elements of experiments (experimentation, obseamati sible to automate modification of network nodes. Furtheanor
analysis, and adaptation) are in this particular domain. the whole experimentation process needs tab@matable

D. Quantitative Requirements (Technical Perspective) As an example consider tHenkStatelement shipped with

We are experimenting with network nodes that are limiteg!!%- |t purpose is to track broadcast loss rates to neighb
in networking and computing capabilities and furthermorl§9 nodes which can be obtained by calling a handler called
these capabilities are part of the characteristics we want3caststats In the original version of Click the output of this
measure during experimentation. Therefore, it is necgdsar hand_ler IS pla_ln text (I__|st|ng 1). _The_ OUtPUt 9f _the modified
an experimentation framework to put as little load on theggMLized version of this handler is given in Listing 2.
capabilities. This means production of data on a node sho@d Meta-Data for Handler Values

cost as litleCPU load as possible. The data produced and o jer values that are represented as XML have an inher-

transported should havefeotprint small as possible ent predefined structure. Even if this structure is not eipli
Networks consisting of many nodes can quickly produGgsfined (e.g. through an XML Schema definiti#yn values of
large amounts of data. The data collected shouldstoeed 0 same handler, always have the same structure.
tightly. To make the experimentation framework scalable, analyzing such values means to programmatically dissect
|t_ is necessary that collection and storage of data is itsglf| es into the contained pieces of data. This programming
distributable _ o _ effort can be reduced, when explicit meta-data, e.g. an XML
It must be possible to analyze data in a timely fashion. Daighema definition, is present. In ClickWatch, we use such
needs to bendexedaccording to its structure to alloquick eta-data to generate Java-APls for each handler thatsallow
access to distinct piecesf data. navigation through the structure of such values, based on
concrete XML element names. Within an IDE (e.g. eclipse)
programming with handler values becomes faster and safer
The experimentation framework ClickWatch is based o#ue to code completion and static analysis of code based on
network nodes that run on MIT’s Click Modular Router APIthe specific XML structure for specific handlers.
In this section, we briefly introduc€lick and the specifics of The meta-data can be provided in two ways: explicitly

IV. PREREQUISITES

how we use it. (manually) and inferred (automatically). Explicit defioit of
) meta-data means each element has a specific handler that
A. Click Modular Router returns a XML Schema definition of all the other handlers

The main prerequisites to use ClickWatch are that the usetithis element. This handler has to be programmed. Using
network components are programmed with the MIT Clicke inferred meta-data approach, ClickWatch assumes that
API [1] and run in a corresponding runtime environmenthe internal structure of values of the same handler does
A Click router is built by sticking together several packefot change, and it automaticalpuesseshe meta-data based
processing modules, called elements, forming a directed fl®n the reoccurring structural elements it witnesses inaictu
graph. Each element is responsible for a specific task suchhagdler values. This means no additional programmingtsffor
packet .classifi(.:ation, scheduling, or intgrfacjng withwek- Compound Handler
ing devices. Click comes with an extensive library of eletaen .
supporting various types of packet processing. Such arjibra Cl|ckWatch reads handlgr values remotely to collect data.
allows to easily write new router configurations by simlehere are different strategies to retrieve handler valves f
choosing the elements to be used and the connections ameﬂges' Per default, Click supports to read handlers regotel

them. Finally, a router configuration can easily be extend@i€ handier at a timeBgseling. Since Click configurations
by writing new elements. can easily consist of hundreds of handlers, this strategy

guires several hundred distinct requests to downloadyg-sn

Click elements provide handlers, allowing to read and Wri{(% t of th q t state. This limits th ibl t
properties remotely. Handlers are the concept to produtae g 1ot of the nodes current state. This imits the possible ra

on the nodes (read handler) and to modify a nodes behaviSFsWhiCh C.IickWatch can retrieve data..EspeciaIIy in large
(write handler) networks with a slow backbone communication network (e.g.

IEEE 802.11) the sample rate would be very low.
B. XMLized Handlers We build a Click element, calledompound handlgmwhich

Originally Click handl | . of allows us to reduce the amount of generated requests. The
originaly Llick handler vajues are strings. coursg, mpound handler provides a readable handler that can pro-
strings can be used to encode complex structured data. W

the shipped Click el st facilitate thi itk r\1/ii(‘j’e all values of all handlers of the network node. Thiswatio
€ shipped Llick elements 1o hot faclitate Inis, We EXM& - ojioivatch to read all handler values with a single request.

use XML as handler values. The mherent_structure of XM he compound handler composes all handler values into one
serves two purposes: (1) values and their structure can Ece of XML

visualized in ClickWatch as a tree, differences betweenllgan The compound handler has three different operating modes
values can be broken down to single XML elements; (2) Wheﬁrst, the compound handler collects all values from all the

analyzing data (i.e. handler values), we can use the inherﬁgndler at the moment it is readr(CH). Secondly, the com-

sfcructure to provide an AP that allows t_he type-safe acc_’éssgound handler collects and records values at a specific sampl
single XML elements, rather than starting to parse plair te

strings manually. 3http:/Avww.w3.org/XML/Schema

Listing 1. Output of handler bcagtats
06—1B-B1—-05-3B—8E fwd tau=100000 nunrx=81 period=1000 ...— rev tau=100000 nunrx=90 period=1000 ...
many more lines

Listing 2. Modified output of handler bcastats
<bcast stats name="bcaststats” canRead="true?
<entry from="06-1B-B1-05-3B—9F” time="1308921370.334630590" seq="821" period="100Qau="100000"
<link to="06—1B-B1-05-3B—8E” seq="822" period="1000" tau="100000" lastrx="0.288041590%
<link_info size="300" rate="2" fwd="81" rev="90"/
<link_info size="300" rate="12" fwd="71" rev="82"5

</link>

<!— many more link elements—
<lentry>
<!— many more entry elements—>

</bcast stats>

rate internally. When read, it returns the values collectades ’_l_—(J‘
it was last read @H). Thirdly, the compound handler also Network < etwork
collects and records values internally, but only provides t nodes
handler values that have changesdQH). Nodo
Another strategic aspect of pulling handler values is the adress: Sing Element
) . rt: Strin, - Stri childElements
chosen update rates. You might want to have different handle R name: Sting _ | chldElement
values are higher or lower update intervals. Therefore, the Ihaﬂdle,
compound handler allows to select different internal updat Handler
intervals for different handlers for théH and ACH modes. g
canWrite: boolean
V. CLICKWATCH vaive. b
Figure 2 shows the overall architecture of the ClickWatch Fig. 3. The ClickWatch type model (meta-model).

framework. It consists of the network nodes (1), that run

on Click and preferable contain a compound handler (2);

ClickControl [1], a Java API that allows to read hander valughe network. This can be done manually via ClickWatch’s GUI

remotely (3); a database that records handler values (4, &f programmatically through the handler specific Java APIs.

to V-D); the ClickWatch GUI used to represent the current

network state, or a moment in time recorded in the databd3e ClickWatch Model

(5, ref. to V-E); Eclipse based tooling for XSL used to analyz cClick collects data from nodes and creates a centralized

data in XML form (6); and Eclipse based tooling for Java (angpresentation from this data calleetwork modelThis model

other model transformation languages) used to analyzeimlatgs typed, i.e. each element in this model has a type. Network

EMF form (7, ref. to V-F). models are based on a type model (so called meta-model) that

defines the types and their relationships. A network model

comprises of networks that can contain nodes, nodes that can
The basic idea of ClickWatch is to observe network nodesntain elements, elements that can contain other eleroents

in real time by reading their handler values. ClickWatchigpulhandlers, and handlers that can contain values. When meta-

handler values: it uses ClickControl to initiate requestgards data for handler values is given (ref. to IV-C), the type mode

network nodes. ClickWatch does so continuously and creaieganonically extended with the types in this meta-datguifé

a centralized close to real-time representation of theeatirr 3 shows the meta-model for ClickWatch’s network models.

network state. We call this centralized network represemta Based on the type models nature, a network model is always

anetwork modelnd a network model that represents a nodestree. Using model transformation techniques during aigly

or network’s state at a specific moment in timsr@pshat allows you to create models of other type models (e.g. a
Handler values can also be recorded over time: the dynamineta-model for topologies). Node identities used in handle

of the network are covered as a series of snapshots. Seguenafues (such as IP- or MAC-addresses) can be used to resolve

of snapshots are stored in a database and form a dynameierences between different handlers of different nodibs.

network model. network model becomes a graph and one can navigate the
ClickWatch uses transformation techniques (such as X®letwork model easily.

transformations) or handler specific Java APIs to analyzeTechnically, network models are EMF models. EMF, the

single snapshots or recorded dynamic network models. eclipse modeling framework, provides different facikti¢o
ClickWatch also allows to change write handler values armleate, edit, and program with models. Among those are tree-

to deploy new Click elements and therefore allows to adapased editors, which we use for ClickWatch's GUI (ref. to

A. ClickWatch’'s General Mode of Operation

H Click API software
e———
Element _?—.

z
S
C d
Element Handler

_(

XSL
refer to Listing 4 —pcirl AN

1

Network Intes

HBase “Big-Table” Data Base

Handler Specific API

Click Control

—

[node] [handler] [timestamy Pl v
1921683117 beast stats 170305918 <

Element

17 b

1921683.1
1921683
1921683,

Fig. 2. Overall ClickWatch Architecture.

meta-model

values into the existing network model, ClickWatch can also

store each collected value into a database. The contertigsof t
et database can be used in two ways. First, you can watch the
- a recorded network through the same GUI that is used to watch a

zr yisvalisation network live. You can jump in time, i.e. set the network model

reality ~ collect / adapt transform

ffects manipates (2 10 @ specific snapshot, playback the network, and compare
@ N EiS - A two network shapshots. Secondly, you can programmatically
model ~ access the data for analysis, in the same way that you can
o access non dynamic models. You can access specific points
Fig. 4. ClickWatch creates a (close to) real-time model of teevork, N time, or create iterators that deliver all, or selecteddber
visualizes it and allows to manipulate it. values in the order they were recorded. All handler values
are timestamped on the network nodes. If clocks on network

V-E d facilities t e J API's f . nodes are reasonably synchronized, these timestamp can be
“E), and facilities to generate Java s for programmmgsed during analysis to align data from different nodes.

with models, which we use to program during analysis (ref. Clickwatch uses Apache HBase as datahaséBase

1t‘grr§n/_a|:t)'wilijcrah\?vreml?srg'toxgglﬁl)l/sxg\l_ﬂi;nzgélfm;issgillﬁzmgrg an open-source implementation of the Google big-table

modelé (ref. to V-F) atabase [2]. In difference to the more commonly known rela-
' ' tional databases, HBase is focused on storing large amofints

C. Updating the ClickWatch Model data of the same kind ibig tablesrather than storing different

ClickWatch updates the network model continuously witfyP€s of data and their relationships. The resulting acges
fresh data from the nodes. Element and handler informatigH€ fast insertion of data, databases can be distributetl, an
i.e. what elements and handler exist in a node, are collec@g¢fomated indexing and retrieval of data values. The first
once and afterwards new handler values are pulled congtarfi/0 advantages are key in recording a network. A common
Depending on compound handler usage (ref. to IV-D, updatggck conflguratlon for a wireless mesh network used in our
are pulled at constant sampling rateBakeline and onCH lab, consist of 200 handlers. When collected each 200 ms
modes), or update intervals can be configured for each handl@des produce roughly 3MB handler values per second. Even
individually (CH and ACH modes). moderate netv_vprk sizes c.ould exceeq the networking and hard

New handler values are merged into the existing netwoflisk 10 capabilities of a single recording computer (alsere
model. During this merge, differences can be tracked atRy V1)
shown (even down into the structure of handler values). To index data, HBase puts the rows of a table into the order

The network model also listens for user changes. This medHstheir keys. Secondary indexes (tables containing keys of
that user modification of handler values are detected; @thn@ther tables as values) or possible. Values can be scanned
handler values are automatically written back to the adctefficiently by going through the index from smaller keys
network node. Therefore, allowing users to watch and chanigvards bigger keys. Since each key, is a byte array of arjitr
the network. This approach to watch and modify a netwofRngth, multiple properties can be coded into a key. Clictdva
through a (close to) real-time model is illustrated in figgre Uses node IDs, handler names and timestamps to compose

) . , keys. We hold different indexes with keys that use node
D. Recording with ClickWatch IDs, handler names and timestamps in different order. Keys

In order to analyze network dynamics, ClickWatch records

handler values over time. Instead of merging new handlerhttp:/hbase.apache.org/

v TP Testbed I1.1 network

¥ tal seismo171 testbed 7777 (connected) accessing an element’s attributes and possible child elesne
S i node Listing 5 demonstrates such an generated API. Compare to the
R~ XML representation of a network model in Listing 3 and you
child element —VESILE N can find getter-methods for corresponding XML elements.
& e | With an integrated XSL editor, XSL transformation scripts
o 2 can be created and executed on ClickWatch models.
handler v < beast_stats There are several specific transformation languages origi-
XML-value -+ nally created for model transformations in software engiine
" ing that can be used on EMF-models and therefore can be used
= on network models. Some of these languages are specifically

1= fwd=78

changes since tailored for creating structures, e.g. network topolod)ifs,

last update [4]; some or made for constraint evaluation [5]; other tech-
niques are tailored for code generafio® combination of
such languages allows us to quickly filter, aggregate, and

» 4 link_info

'=to=06-18-B1-05
'S period=1000
1= tau=100000

P 4 link

- Chas further elaborate raw data from handler values and code-
o generate this data into scripts for further analysis (eng. i
> 4 ik MATLAB).
b 4 link
F 4 link
2 from=06-18-81-05-3-9¢ VI. EXAMPLE EXPERIMENTS
i3 e B With the following two example experiments, we want to
o illustrate ClickWatch’s potential for research. Both exdes
> packetpoo! . . .
G debug are drawn from the area of wireless communication.

< handlers

A. WiFi Link-level Measurements

In the following, we show how easily ClickWatch can be
used to analyze a complex relationship between multiple var
composed in the order [node ID][handler name][timestam@ples. We know from the theory of wireless communication
for example allow to scan through the values of a specififat there is a strong correlation between Signal-to-NBisto
handler of a specific node in the order they were recordd®NR) and Packet Delivery Rate (PDR) value of a wireless
The order [node ID][timestamp][handler name] on the othdfk. However, for IEEE 802.11 systems lots of researchers
hand, can be used to scan through the entire snapshots aferved only a weak correlation. From the literature wenkno
handler) of a specific node. that interference from WiFi and/or non-Wifi sources can fee th
cause for the observation of lots of links having a good SNR
E. The Clickwatch GUI but only intermediate PDRs [6]. To confirm or disprove this

ClickWatch presents itself to users with a graphical uséypothesis we set-up an experiment where we measured the
interface. In its center is the so called ClickWatch editdrich PDR and SNR of each link. In addition we also measured
shows a tree-based representation of the network model. The channel utilization at the receiver end. Since high obbn
editor allows to create networks with nodes and their respadilization indicates high interference, we should obsetivat
tive network addresses and Click runtime port. Figure 5 shothe SNR-PDR correlation is weaker in cases of high channel
the different elements of a network model as represented intdization.

ClickWatch editor. Listing 3 shows a fragment a our network model in
ClickWatch's XML representation. We can identify two Click
elementsiink_stat andcst The first one has a handler called

Technically ClickWatch models are both eclipse EMF modhcast stats which stores PDR information on each incom-
els and XML documents. That leaves us with a variety @fig link. The second one has a handler calkdts which
technical possibilities to analyze. The most obvious meshoreturns information on the channel utilization at the node
to describe an analysis are programming with general perpgghy/@hwbusy as well as theSNRof each incoming link
languages (e.g. Java), using XSL-transforma&tiotilizing the (nb/@sn).

XML-nature of ClickWatch models, or using specific transfor | isting 4 and Listing 5 show two possible ways to analyze
mation languages on the EMF nature of ClickWatch modelghe network model in Listing 3 using XSLT and Java. Both

Through EMF and handler meta-data (ref. to IV-C), Clickexamples create a 3-column matrix that represents the SNR,
Watch can generate a statically type-safe API for accessippR and channel utilization of each link. Afterwards, the
and analyzing handler values, specific to the XML structuggenerated data can be imported in MATLAB and visualized

of concrete handler values. Such APIs basically map XMa a scatter plot (Listing 6). The scatter plot shows the
elements into interfaces that provide getter/setter-otsttor

Fig. 5. Typical network model as represented in the Click\Waditor.

F. Analyzing Data

Shttp://eclipse.org/m2m/
Shitp://www.w3.0rg/Style/XSL/ hitp://eclipse.org/modeling/m2t/

<?xml version="1.0" encoding="UTF8"?>
<Network>
<node iNetAddress="seismol71.testbed”
<link_stat name="link stat”>

<bcast stats name="bcaststats” canRead="true?¥

<entry from="06-1B-B1—-05-3B—9F" ...>
<link to="06—1B-B1-05-3B—8E" ...>

B. Global Path Selection

The following describes a more complex experiment, where
we not only retrieve data from nodes, but also modify handler
values on the nodes.

<link_info size="300" rate="2" fwd="81" rev="90"f/~ Conventional network routing protocols use a shortest path

<!— many more linkinfo —
</l link>
<!— many more link—>
<lentry>
</ bcast stats>
</link_stat>
<cst name="cst®
<stats name="stats” canRead="true”
<channelstats node="061B-B1—05-3B—9F">
<phy hwbusy="12" ...b
<neighbourstats

<nb addr="06-11-88—27—DE—20" snr="5" ...

<!— many more nb—>
</neighbourstats
</channelstats
<l stats>
<lcst>
<!— other elements—>
</node>
<!— many more nodes—>
</ Network>

Listing 3. XML Network model.

RSSI/SNR Relationship
100 @

e
o o0 ®
90 °
° M
80 L .
g 0.‘5 ®
-~
708 4 ?.'0
Py]
60 .'. ®
°
S 504 J
a 1 ®
40Tg @9
M
30[..°
]
°
2
e
10,2
Yo
0".% i i L L i
0 10 20 30 40 50

SNR

Fig. 6. Result of the LLM experiment, generated with Clicke¥at

algorithm (e.g. Dijkstra) to find a path from source to des-
tination with respect to some path metric. The majority of
known path metrics tries to minimize the cost of end-to-end
packet delivery by either reducing the number of required
hops, packet transmissions, or delay. The basic idea igfthat
each node minimizes the costs of its own packet flow the entire
network will benefit. The disadvantage of such methods is tha
they respond inadequately to the specifics of the used \sgele
technology. For example, the efficiency of a protocol like
IEEE 802.11n strongly depends on packet size. Small packets
like VolP packets cannot benefit from PHY improvements
introduced in 802.11n because the PHY header as well as
control packets (ACK/RTS/CTS) are always send on a robust
PHY rate (6 Mbps). Only the payload can be send on a
maximum data rate of up to 600 Mbps. The efficiency can be
easily improved when multiple small packets are aggregated
with each other and send as a single frame. This advantage is
especially high for small packets like VoIP where it is pbtesi

to pack multiple VoIP packets in a single frame.

Existing literature provides only few approaches where
nodes coordinate their path selections with each otherdaror
to gain from packet aggregation. The reason lays in the algo-
rithmic complexity of a distributed solution for coopexati
path selection: each node needs to know the ongoing packet
flows in the network and the nodes need to agree on the paths
to be used. A distributed solution causes lots of commuicicat
overhead between nodes, resulting in additional netwaaH.lo
Cooperative path selection based on global knowledge, ®n th
other hand, is easy.

Therefore, we suggest to measure the possible gain of
cooperative path selection with simple algorithms based on
global knowledge, before investing into a distributed solu
Only when the expected gain is higher than the estimated
costs of a distributed solution, one should actually immam

relationship between SNR and PDR while the color of @ distributed version of cooperative path selection.

marker represents the channel utilization: a blue and a redn the following ClickWatch is used to quantify the gain of
color mean a low and a high value respectively. From tiBe proposed cooperative path selection by realizing aagjlob
generated result (Fig 6) we can see that there is a significRath selection: a computer running ClickWatch obtains gllob
impact from channel utilization and therefore interferernm knowledge and calculates the path for each flow. Fig. 7 shows

the SNR/PDR relationship.

% import data from file

load data. txt

% plot

colormap(jet (100));

scatter(data(:,1), data(:,2), 50, data(:,3),
caxis([1 100]);

colorbar;

title ('SNR_vs ._.PDR.vs._.ChannelLLoad.");

xlabel ('SNR");

ylabel ('"PDR");

Listing 6. MatLab script for LLM.

"filled ');

the distinct steps in this experiment.

ClickWatch periodically collects the local network topol-
ogy from each node. From this local data a global network
topology is calculated. In addition, ClickWatch schedules
packet flows according to some network traffic flow model.
With the help of the global network topology as well as
the information about all flows (source, destination, agera
packet size) ClickWatch is able to compute the best path for
each packet flow with respect to the characteristics of the
PHY layer (e.g. packet aggregation). The calculated paths a
injected back into the routing tables of the nodes usingewrit

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheetversion="1.0" xmlns:xsl="http: //www.w3.0rg/1999/XSL/ Transfaon">
<xsl:output method="text”version="4.0" encoding="is0—8859-1" indent="yes"/>
<xsl:template match="text()” *

<xsl:template match="link/linkinfo">

<xsl:variable name="toAddr” select="../@to" >
<xsl:variable name="fromAddr” select="../../ @from”>/
<xsl:variable name="pdr” select="@rev">

<!l— SNR at receiver node—>

<xsl:variable name="revsnr” select="//channelstats[@es$toAddr]/ neighbourstats/nb[@addr=$fromAddr]/ @sni>
<!— Channel load at receiver—>
<xsl:variable name="chLoadRecv” select="//channelstf@node=$toAddr]/phy/@hwbusy” >

<xsl:value—of select="$revsnr” % <xsl:value—of select="$pdr” & <xsl:value—of select="$chLoadRecv” ¥;

</xsl:template-
</ xsl:stylesheet

public class LinkLevelMeassurementimplements IClickWatchMain {

@Inject NetworkUtil networkUtil;

@Override

public void main(IClickWatchContext ctx){
Network network = ctx.getAdapter(IClickWatchModelPralgr.class). getNetwork ();
for (Node node: network.getNodes ()]
Bcast stats bcastStats = networkUtil.getSpecificHandler(npdBcast stats .class);

String fromAddr =

for (Link_info

linklnfo:

bcastStats.getEntry (). getFrom ();
for (Link link: bcastStats.getEntry (). getLink ()X
link.getLink_info ()) {

Listing 4. XSLT script for LLM.

Node to = networkUtil.navigateMacAddr (network, link.ded());
int pdr = linklnfo.getRev();
Stats stats networkUtil . getSpecificHandler (to, Statdass);

int chLoadRecv

stats.getChannelstats (). getPhy (). getHwlfy;

for (Nb nb: stats.getChannelstats (). getNeighbourstats €N ()) {

if (nb.getAddr (). equals(fromAddr))X
double snr
System.out. println(snr +

Frrrrord

nb.getSnr ();

>

3.1 generate flows
acc. to trafic model

3.2: calculate
optimal path per
flowwith algorithm X

7: calculate perfor-
mance metrics
(throughput, perfor-
mance)

ClickWatch

1: deploy click config.

Network

<

let network settle down

\ 4

" 2: get local topology info.

4: inject paths

5: start flows

8: alternate paths,
algorithms, other
parameter

Fig. 7. Sequence chart for the global path selection expetime

6: record stats
(throghput, ...)

+ pdr + ",_." + chLoadRecv);

Java for LLM.

VIl. EVALUATION

In this section we present the results of measurements that
we performed to show that ClickWatch yields the quantitativ
requirements from section IlI-D. First, we compare Click’s
handler with the compound handlers, we introduced to erdhanc
collection of large amounts of data at high sampling rates.
Secondly, we show ClickWatch’s ability to record efficigntl
and to access recorded data quickly. Here, we compare Click-
Watch with a typicallog file approached favorited by many
researchers.

A. Compound Handler

In the following we evaluate the performance of the pro-
posed compound handlers (Section IV-D) in terms of fetch
time, network load and CPU usage (Fig. 8). Compared to the
Baseline i.e. retrieving the value of each handler separately,
the proposed compound handler that collects samples yocall
and only transmits modified handler valugsGH) is able to

handlers. Finally, the packet flows are started simultasigoureduce the fetch time, i.e. the time it takes to retrieve tha d
by ClickWatch. At the end of the experiment ClickWatchHrom all handlers, by a factor of 25-33 depending on the total
collects statistics like the achieved per flow throughpuwt. Bhumber of handlers. Moreover, the amount of network load is
analyzing these data ClickWatch is able to quantify the gagmmparable withBaseline Interestingly, the CPU utilization
of the proposed solution over a conventional path selectiahthe network load is lower compared Baselinewhich can

scheme.

be explained by the reduced number of network requests.

IN)
=]

T
I Bascline
|| 23 onCcH
[CJcH
I ACH

50 I I
0 _J =i e | |

50 100 150 200
Number of Handlers

—4A— Log-file A
—v— Java/HBase /A,,A/A
L A 4

i

o

3
\

Fetch time (ms)

Log-file/database size [GByte]
< 15
k
by
e

9
N

®
=]

I Bascline
r| (222 onCH
[CJcH
| I ACH

f i i i i i i i i i
20 40 60 80 100 120 140 160 180 200 220
Experiment duration [min]

@
=]

N
o
T
=
o

Transfered kBytes
S
o

50 100 150 200
Number of Handlers

T 1 T 3 T T T T r . .
—&— Log-file
A AAAR
—yv— Java/HBase| - AT A BB
s
: Clee :

Duration of evaluation [sec]

CPU usage at node
i
o

5l I I I]

0 1071: i i i i i i i i i i i

50 100 150 200 20 40 60 80 100 120 140 160 180 200 220
Number of Handlers Experiment duration [min]

Fig. 8. Performance comparison of different compound handiptémenta- Fig. 9. Comparison by storage size and analysis time for n&tdata stored
tions when using mesh nodes with fast CPU (Pentium 4, 3 GH&).sBmple in log-files and in databasebl{asé.
rate was 200 ms.

to perform the example analysis.
The following observations can be made. The comparison
To illustrate the capabilities of ClickWatch to record andf required storage sizes shows that in our case the HBase
analyze networks with an HBase database, we compare Clidatabases where roughly half the size of the log-files. The
Watch with the traditional log-file approach. A common wayeason is that log-files contain lots of redundant data. ¢a lo
to analyze network data is to let each node dump log-filefiles data is structured into lines and each line must bear a
These log-files are centralized through specific log-sefvemeaning on its own. Even when two lines only differ in a
shared NFS-volumes, or simply copied together. Later leg-fi single number, the lines must contain much more than this
can be analyzed with regular expressions; log-file analgsisnumber in order to make sense. This is different in XML. Data
commonly written in perl, awk, sed, grep, etc. is structured into trees. Two leaves can only contain a eingl
For a comparison, we performed the following experimentumber (differ in this number) and still provide meaningful
We let 10 Click nodes (wireless router that constitute i@formation through the common data of their ancestor nodes
wireless mesh network) operate for different time durationSee also the example log file and XML snippets in Listings 1
First, these nodes produce log-files. The log-files contdin and 2.
the data of all handler values obtained every 200 ms. EachThe comparison of analysis durations shows that an analysis
entry (line) in log-file line represents a leave in the XML obased on HBase runs magnitudes faster than the log-file
handler values. Each log-file line consist of a timestamp,amalysis. The data-base index allows to access the onegnand|
node id, a qualified handler name and all the attributes antlinterest and neglect all others, where a log-file anallgas
texts in a path from the handlers XML root to the leave th® scan through the whole record. It is safe to assume thet thi
log-file line represents. Moreover, lines do not contain armglationship will remain also for more complex analysisttha
XML element names or other redundant strings. Secondigquires multiple passes of log-file analysis.
we recorded the network state of the 10 Click nodes usingQualitative the Java programmed analysis based on HBase is
ClickWatch and an HBase database using the same recorditegically type-safe and through object oriented programgm
time and sampling. easily re-usable. The log-file approach on the other hand,
Afterwards, we performed an example analysis of thasually means custom scripts that are often hard to unahersta
logged/recorded data. The aim of the analysis is to plotiwblanand impossible to re-use.
utilization of each network node. The log-files were solely
analyzed with a script using Unix tools like grep, awk and VIIl. RELATED WORK
sed. The HBase data was analyzed with a small Java program
based on an API generated for the used Click configuration. Related work falls into three categories: Inspecting Click
The results are presented in Figure 9. Two aspects werteruntime, model-based approaches for monitoring or 4intro
analyzed. First, the required storage size for log-files amsgection of distributed systems, and approaches in auitognat
database respectively. Secondly, we measured the timlee taexperimentation and scientific workflows in general.

B. Log-File vs. Database

A. Clicky workflow management systems allow to execute workflows

The Clicky GUP comes with Click. Clicky can show and Fherefore automate the experimentation process.
configurations of single Click router as text (with syntax ClickWatch can potentlally _be integrated into SC|ent|_f|c
highlighting) or diagrams, and can read and write handlers \orkflow systems. Slnc_e it provides aframework for collegti
live configurations. Output router diagrams can be exported'd analyzing data, ClickWatch can provide tasks execied a

Furthermore the router configuration can be changed and reB@rt of @ scientific workflow.
ployed. Clicky is suitable for training and teaching purms EMF based approaches to scientific workflow management

e.g. overflowing queues are visualized in the flow graph. TKg9- Expl [18]) use EMF-models (the same technical kind of
biggest disadvantage of Clicky compared to ClickWatch [godels ClickWatch uses) to describe data in workflows. Since
that network node data obtained from handlers cannot Bgth. ClickWatch and the workflow management system, use
further processed; they are only shown in the GUL. In contral’® Same technology, seamless integration is apparent.
ClickWatch enables further processing of the data via model IX. CONCLUSIONS

transformations. Furthermore, Clicky focuses on obsgran
single node and has no capabilities for experimentatioh wi}n
whole networks.

We have presented ClickWatch, a framework for com-
unication network test-beds. After deriving requirensent

for experimenting with communication network test-beds,
B. Monitoring of Distributed Systems we explained how ClickWatch fulfills these requirements.

o . L ClickWatch allows to create structured data on distributed
Monitoring physical systems, tracking its parameters an

diagnosing failures with according (potentially autondte network nodes, allows to collect this data into a centrdlize
9 9 9 P y rgpresentation of the network, data can be analyzed, and

reactions are a basic task in maintaining a system in gener . "

. : : ; etwork nodes can be reconfigured by writing data back to
Performing this task with a computer has been done since th : X

network nodes (functional requirements, ref. to 1lI-B).

early 80s. The challenge is to relate monitoring data with th Data in ClickWatch is structured (XML and EMF), data

expected op_eratlon of a system. . structures can be extended, handling data is type-safaghro
The growing popularity of software modeling, created a__ .. :) :
L . specifically generated Java-APls, and object-orientedgdes
need for model-based monitoring[7]. It uses models similg : : X .
. allows re-use of ClickWatch artifacts (non-functional atjta-
to those used to model the behavior and structure of the mgn-

. o ive requirements, ref. to llI-C). We illustrated th
itored systems and therefore allows to relate monitorirtg tta € requirements, Tet. 1o) Wve s ated these reta
teristics with two example experiments.

the expected operation of a system. Monitoring and analyzin Furthermore, we presented measurements to proof that

running software systems with techniques de_riv_ed. from rh Od('E\IickWatch is feasible and scalable (non functional, qitant
based software engineering has become a discipline in its oW o requirements, ref. to I1I-D). Compared to working with

right with its own conferences and scientific community [8]'Iog-files, ClickWatch can collect data from network nodes

For distributed software systems (e.g. Click running Oith reasonable network and CPU load. We could improve

netvvprk_ nodes) the same .SChe”?e. IS appllgd. MOdEL.ba%ﬁ retrieval of Click’s handler in terms of network load,
monitoring follows a paradigm similar to ClickWatch just PU load, and retrieval time. Contrary to dumping log-files

towards a different end. In monitoring the goal is to dete lickwatch allows fine grained configuration and runtime

?1n0(:} (gllj:ot?;t;?:g‘)srz?:tt:‘z ?Q;rg'sn?ggitgtr?ri; 32?aﬂ2%§a£%(%aptation of the collected data. ClickWatch only costs CPU
on each monitored part of the distributed system (1): tliend network capacity, when data is actually retrieved;fieg-

.) . ump log-entries regardless of its usage. Through utitinat
dﬁta; |Zs gofllerc]:[eitlj :nto a;] C(i:er:rérilzﬁd mgdelg(z)”[ltﬂ’ [rlezs]g'?nof structured data, ClickWatch allows to store data more
analyzed for faiiures and anomalies (3). Ideally the efficiently than log-files. Analysis with ClickWatch runsstar
this analysis are used to adapt the system (4). These fdw tgs .
directly correspond to the four task supported by Click\Watc y orders of magnitudes.

. y Spo u upp y By structuring the experimentation process, ClickWatch
Modern monitoring systems use type models (meta—moderlsﬁP

to describe monitoring data, some (like ClickWatch) evea usg, ows to experiment faster and safer. Results are better
U i ocumented, experiments are easier to reproduce. Efedweat
EMF-models [13], [12] or use similar meta-data inferenes. (r P b

© IV-C) 114 to conduct one experiment can be used to conduct similar
) [14]. experiments. An experimentation process that resembiés ag
C. Scientific Workflows engineering becomes possible. Experimentation itsetfisst

Scientific workflow management systems [15] (e.qg., Taven];%rmed from tinkering art into actual science,

[16] or Kepler [17]), define the process of experimentatien a REFERENCES
specifically structured scientific workflows. Such systemes a 1) g konler, R. Morris, B. Chen, J. Jannotti, and M. F. Kagek, “The
dataflow-oriented; they allow to design experiments antkser Click modular router,ACM Transactions on Computer Systenw. 18,
of experiments as workflows consisting of data producin?2 no. 3, pp. 263-297, Aug. 2000. .

. . .] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WallachBit-
(measurement) and data consuming (analysis) tasks. Bicient rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: Atriisited

storage system for structured datACM Trans. Comput. Systol. 26,
8http://www.read.cs.ucla.edu/click/clicky no. 2, 2008.

(3]

(4]
(5]

(6]
(7]
(8]
El

(20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

[18]

F. Jouault, F. Allilaire, J. Bzivin, I. Kurtev, and P. \diriez, “Atl: a
gvt-like transformation language.” iI@OPSLA CompanignP. L. Tarr
and W. R. Cook, Eds. ACM, 2006, pp. 719-720.

S. Nolte, QVT - Relations Language Springer, 2009.

J. Bzivin, T. Baar, T. Gardner, M. Gogolla, R. Hthnle, Huiann,
O. Patrascoiu, P. H. Schmitt, and J. Warmer, “Ocl and model ulrive
engineering.” iNUML Satellite Activitiesser. Lecture Notes in Computer
Science, N. J. Nunes, B. Selic, A. R. da Silva, and J. A. TezaEds.,
vol. 3297. Springer, 2004, pp. 67-75.

D. Gokhale, E. Sen, K. Chebrolu, and B. Raman, “On the fslisi of
the link abstraction in (rural) mesh network$ZEE INFOCOM 2008.

D. Dvorak and B. Kuipers, “Model-based monitoring of dyma
systems.” inlJCAI, 1989, pp. 1238-1243.

G. S. Blair, N. Bencomo, and R. B. France, “Models@ run.{inlEEE
Computey vol. 42, no. 10, pp. 22—-27, 2009.

S. Sicard, F. Boyer, and N. D. Palma, “Using components
for architecture-based management: the self-repair caselCSE
W. Schtfer, M. B. Dwyer, and V. Gruhn, Eds. ACM, 2008, pp. 101-
110.

M. Vallee, M. Merdan, and T. Moser, “Using models at rami for
monitoring and adaptation of networked physical devicesarixe
of a flexible manufacturing systemBth International Workshop on
Modelsruntime pp. 84-95, 2010.

T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B.kBec"In-
cremental Model Synchronization for Efficient Run-Time Moniitg,”

in Models in Software Engineeringer. Lecture Notes in Computer
Science, S. Ghosh, Ed. Berlin, Heidelberg: Springer BéitHeridelberg,
2010, vol. 6002, ch. 13, pp. 124-139.

H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and H. Mei,
“Generating synchronization engines between runningsystand their
model-based views.” inMoDELS Workshopsser. Lecture Notes in
Computer Science, S. Ghosh, Ed., vol. 6002. Springer, 2009140—
154.

T. Vogel, A. Seibel, and H. Giese, “The role of models andjareodels

at runtime.” in MODELS Workshopsser. Lecture Notes in Computer
Science, J. Dingel and A. Solberg, Eds., vol. 6627. Sprir@@t0, pp.
224-238.

H. Song, G. Huang, Y. Xiong, F. Chauvel, Y. Sun, and H. Miiferring
meta-models for runtime system data from the clients of managemen
apis.” in MoDELS (2) ser. Lecture Notes in Computer Science, D. C.
Petriu, N. Rouguette, and ystein Haugen, Eds., vol. 6395.rin&sr,
2010, pp. 168-182.

B. Ludascher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow,
E. Deelman, D. D. Roure, J. Freire, C. Goble, M. Jones, S. klask
T. McPhillips, N. Podhorszki, C. Silva, |. Taylor, and M. Mau“Sci-
entific process automation and workflow management,Seientific
Data Managementser. Computational Science Series, A. Shoshani and
D. Rotem, Eds. Chapman & Hall, 2009, ch. 13.

T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R.o&bck,
and A. Wipat, “Taverna: A tool for the composition and enacttman
bioinformatics workflows,’Bioinformatics vol. 20, p. 2004, 2004.

B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, Mnek

E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management an
the kepler system: Research articlé8@dncurr. Comput. : Pract. Exper.
vol. 18, pp. 1039-1065, August 2006.

F. Kiihnlenz, “A Language-centered Approach for TransparemmieEx
mentation Workflows,” inProceedings of the CSSim 2011 - Conference
on Computer Modelling and Simulatipg011.

