
ClickWatch – An Experimentation Framework for
Communication Network Test-beds

Markus Scheidgen
Humboldt University
Rudower Chaussee 25

Berlin, Germany
Email: scheidge@informatik.hu-berlin.de

Anatolij Zubow
Humboldt University
Rudower Chaussee 25

Berlin, Germany
Email: zubow@informatik.hu-berlin.de

Robert Sombrutzki
Humboldt University
Rudower Chaussee 25

Berlin, Germany
Email: sombrutz@informatik.hu-berlin.de

Abstract—It is hard to experiment with test-beds for communi-
cation networks: data produced in the network has to be retrieved
and analyzed, networks must be reconfigured before and between
experiments, data is often little structured (log-files) and analysis
methods and tools are generic. Even though many problems of
experimentation are the same for all experiments, re-use is sparse
and even simple experiments require large efforts.

We present a framework that attempts to solve these problems:
we define a set of requirements for experimenting with network
test-beds, we describe the principles and inner workings of our
framework, demonstrate it with two typical example experiments,
and present measurement results that illustrate the feasibility and
scalability of our approach. Some qualitative and quantitative
aspects of ClickWatch are compared to the commonly used log-
file based approach to experimentation.

Keywords-Communication networks, Test-bed, Click Modular
Router, Experimentation framework

I. I NTRODUCTION

Wireless and wired communication networks are an im-
portant research topic in industry and academia. Significant
efforts in the academic world are made to provide real-
world prototypes and test-beds based on open source software
and off-the-shelf technologies mostly based on standards like
IEEE 802. In the academic world the Click Modular Router
API [1] has established itself as a pseudo-standard for building
software for communication networks (e.g. wireless mesh
networks).

One of the main research tasks in this area is the develop-
ment of new or improved network protocols. This requires
an experimentation platform or framework. ClickWatch is
an experimentation framework for network test-beds1. The
central aim of ClickWatch is to mask the complexity of a
dynamic distributed network system such as a communication
network consisting of hundreds of nodes. For a user such a
network of nodes appears as a simple centralized software
system. This allows to accomplish the challenging task of
setting up experiments in large testbeds and allows to analyze
them in a simple way.

From the technical point of view ClickWatch is based on
Eclipse and the Eclipse Modeling Framework2. ClickWatch

1http://hwl.hu-berlin.de/
2http://eclipse.org/modeling

allows to analyze and control communication network test-
beds programmed with the Click Modular Router API. The
Click API is a C++ based component model specially designed
for describing router configurations. ClickWatch accumulates
data from multiple network nodes. The status of the network
as well as the generation of derived data, e.g. reports and
network statistics, can be easily accomplished using a model-
driven transformation approach. With the help of a graphical
interface, ClickWatch accelerates the software development
process. The status of the network can be analyzed at runtime
so that the user is able to adapt his experiment to the changing
network test-bed environment.

II. PROBLEM STATEMENT

Experimentation withreal-world networks (test-beds) is
hard. A network test-bed is a distributed system. To analyze
its functional and non-functional characteristics four task must
be performed. First, data has to be produced on the different
network nodes (measurement). Secondly, this distributed data
needs to be collected and merged into a single, centralized,
coherent representation. Thirdly, the centralized data needs
to be analyzed. This means that the different pieces of data,
produced on different nodes and at distinct moments in time
have to be aggregated, put into a more abstract representations
(e.g. statistics), and interpreted. Fourthly, to set up thenext
experiment, you need to reconfigure network nodes.

These four tasks contain elements that are specific to distinct
experiments, e.g. syntax and semantics of the data that is
produced, but the tasks also contain elements that are equal
for all experiments, e.g. how data is centralized.

We propose a framework that reduces experimentation effort
to experiment specific elements and provides all re-occurring
elements of experimentation in the domain of computer com-
munication networks.

III. R EQUIREMENTS

We distinguish between functional (what) and non-
functional (how) requirements. Before we can list require-
ments, we have a closer look at the process of experimentation.
This will refine the problem statement (ref. II) and give us
more substance to derive requirements from. Based on this
process description, we will derive functional requirements

Measure

Adapt

collecting data transforming data into information

adapting the network gained knowledge

Fig. 1. Experimentation process.

and those non-functional requirements that determine the
user’s (experimenter’s) experience. Furthermore, we listnon-
functional requirements that stem from the technical limita-
tions in the domain of computer communication networks.

A. Experimentation as a Process

We envision experimentation as a process similar to agile
software engineering. We want to produce first results fast
and with little preparation. These results are later refinedin
continuous cycles of experimenting, observation, analysis, and
adaption. The whole cycle is driven by the same framework.
Promising threads of experiments can be conducted fast,
and dead ends can be discovered soon and without putting
unnecessary efforts into them.

Fig. 1 shows the natural way of conducting experiments
as a cycle. Suppose you start your research with a simple
idea, manifested in a first hypothesis that you need to prove
or disprove by an experiment. The natural thing to do is
to conceive a procedure, which when run (experimentation),
leads to anobservation that when revised through careful
analysis, either supports or neglects the hypothesis. This result
of you experiment leads to a revised hypothesis that you
need to prove with a new experiment which is an adaptation
of the last experiment. Research becomes a cyclic execution
of experiments, where each cycle consists of four tasks:
experimentation, observation, analysis, andadaptation.

In agile software engineering the major assumption is that
it is impossible to tell all requirements for a software before
the software is build and used. Applied to experimentation,
this assumption is that it is impossible to conceive a major,
probably game changing hypothesis, before having conducted
an experiment (or a series of experiments) that lead towards
it. An experimentation framework needs to support the idea to
start with simple experiments, where the (often unexpected)
results inspire the hypothesis for the next experiment. This
requires a framework that makes experimentation, observation
and analysis extremely effortlessly. As a result, it is morelikely
to conceive and run multiple simple experiments, where the
results of one experiment lead to the next one, than to think
of ”the one” big experiment.

What does experimentation mean in the domain for com-
puter communication networks? We need to look what the
four elements of experiments (experimentation, observation,
analysis, and adaptation) are in this particular domain.

Firstly, experimentation: In the computer communication
network domain, experiments with actual networking compo-
nents (i.e. everything that is not a simulation) consist of asetup
of network hardware and software. Based on this setup the
network is put into action by running of some sort of sample
network traffic. Secondly, observation: This usually meansthe
collection of network statistics on all protocol layers. Thirdly,
analysis: Usually consists of aggregating network statistics into
statistics on a higher level of abstraction. Comparing result to
some sort of benchmark, e.g. the results of other experiments.
Fourthly, adaptation: Based on the results of an experiment,
one wants to adapt software and/or hardware configurations,
network traffic, etc.

B. Functional Requirements

Of course, the four tasks listed in the problem statement are
reflected within the experimentation process and the experi-
mentation framework needs to support those tasks: (1) network
nodes must be able to produce data, (2) the data must be
collected from those nodes into a centralized representation
of the network, (3) the collected and centralized data must
be analyzed, and (4) it must be possible to reconfigure the
network based on interpretation of prior analysis results.

To support the agile experimentation envisioned in the pro-
cess description, the framework should allow to start analysis
during the running experiment. The framework should support
persistence of collected data and analysis results to enhance the
reproducibility of experiments. The framework should allow
to automate the experimentation process as much as possible.

C. Qualitative Requirements (Users Perspective)

To develop experiments quickly and in an evolving manner
it is paramount that the data produced and analyzed can
be easily understood and its meaning is clear at all times.
Therefore the first and central requirement is that the handled
data is structuredand that this structure is visible whenever the
user is confronted with this data. Furthermore, thesestructures
must be extensiblewith little effort in order to evolve from one
experiment to the next.

When the user accesses data (e.g. during analysis) this
should only be possible according to the structure, i.e. in a
type-safemanner. This lowers human error and safes valuable
time and resources. This can also be taken as common sense
from experience in software engineering.

Experiment specific artifact created by users should be
reusable. Methods used, especially to produce and analyze
data, should support a compositional paradigm (e.g. object-
orientation).

Experimentation, especially putting several experimentsinto
a single workflow, also means that the network nodes can
be modified between experiments. Modifications on network
nodes (i.e. adjusting protocol parameters) should be done
along the structures used in producing data. It should be pos-
sible to automate modification of network nodes. Furthermore,
the whole experimentation process needs to beautomatable.

D. Quantitative Requirements (Technical Perspective)

We are experimenting with network nodes that are limited
in networking and computing capabilities and furthermore
these capabilities are part of the characteristics we want to
measure during experimentation. Therefore, it is necessary for
an experimentation framework to put as little load on these
capabilities. This means production of data on a node should
cost as littleCPU load as possible. The data produced and
transported should have afootprint small as possible.

Networks consisting of many nodes can quickly produce
large amounts of data. The data collected should bestored
tightly. To make the experimentation framework scalable,
it is necessary that collection and storage of data is itself
distributable.

It must be possible to analyze data in a timely fashion. Data
needs to beindexedaccording to its structure to allowquick
access to distinct piecesof data.

IV. PREREQUISITES

The experimentation framework ClickWatch is based on
network nodes that run on MIT’s Click Modular Router API.
In this section, we briefly introduceClick and the specifics of
how we use it.

A. Click Modular Router

The main prerequisites to use ClickWatch are that the used
network components are programmed with the MIT Click
API [1] and run in a corresponding runtime environment.
A Click router is built by sticking together several packet
processing modules, called elements, forming a directed flow
graph. Each element is responsible for a specific task such as
packet classification, scheduling, or interfacing with network-
ing devices. Click comes with an extensive library of elements
supporting various types of packet processing. Such a library
allows to easily write new router configurations by simply
choosing the elements to be used and the connections among
them. Finally, a router configuration can easily be extended
by writing new elements.

Click elements provide handlers, allowing to read and write
properties remotely. Handlers are the concept to produce data
on the nodes (read handler) and to modify a nodes behaviors
(write handler).

B. XMLized Handlers

Originally Click handler values are strings. Of course,
strings can be used to encode complex structured data. While
the shipped Click elements to not facilitate this, we extensively
use XML as handler values. The inherent structure of XML
serves two purposes: (1) values and their structure can be
visualized in ClickWatch as a tree, differences between handler
values can be broken down to single XML elements; (2) when
analyzing data (i.e. handler values), we can use the inherent
structure to provide an API that allows the type-safe accessof
single XML elements, rather than starting to parse plain text
strings manually.

As an example consider theLinkStatelement shipped with
Click. Its purpose is to track broadcast loss rates to neighbor-
ing nodes which can be obtained by calling a handler called
bcast stats. In the original version of Click the output of this
handler is plain text (Listing 1). The output of the modified
XMLized version of this handler is given in Listing 2.

C. Meta-Data for Handler Values

Handler values that are represented as XML have an inher-
ent predefined structure. Even if this structure is not explicitly
defined (e.g. through an XML Schema definition3), values of
the same handler, always have the same structure.

Analyzing such values means to programmatically dissect
values into the contained pieces of data. This programming
effort can be reduced, when explicit meta-data, e.g. an XML
Schema definition, is present. In ClickWatch, we use such
meta-data to generate Java-APIs for each handler that allows
navigation through the structure of such values, based on
concrete XML element names. Within an IDE (e.g. eclipse)
programming with handler values becomes faster and safer
due to code completion and static analysis of code based on
the specific XML structure for specific handlers.

The meta-data can be provided in two ways: explicitly
(manually) and inferred (automatically). Explicit definition of
meta-data means each element has a specific handler that
returns a XML Schema definition of all the other handlers
of this element. This handler has to be programmed. Using
the inferred meta-data approach, ClickWatch assumes that
the internal structure of values of the same handler does
not change, and it automaticallyguessesthe meta-data based
on the reoccurring structural elements it witnesses in actual
handler values. This means no additional programming efforts.

D. Compound Handler

ClickWatch reads handler values remotely to collect data.
There are different strategies to retrieve handler values from
nodes. Per default, Click supports to read handlers remotely,
one handler at a time (Baseline). Since Click configurations
can easily consist of hundreds of handlers, this strategy
requires several hundred distinct requests to download a snap-
shot of the nodes current state. This limits the possible rate
at which ClickWatch can retrieve data. Especially in large
networks with a slow backbone communication network (e.g.
IEEE 802.11) the sample rate would be very low.

We build a Click element, calledcompound handler, which
allows us to reduce the amount of generated requests. The
compound handler provides a readable handler that can pro-
vide all values of all handlers of the network node. This allows
ClickWatch to read all handler values with a single request.
The compound handler composes all handler values into one
piece of XML.

The compound handler has three different operating modes.
First, the compound handler collects all values from all the
handler at the moment it is read (onCH). Secondly, the com-
pound handler collects and records values at a specific sample

3http://www.w3.org/XML/Schema

Listing 1. Output of handler bcaststats
06−1B−B1−05−3B−8E fwd t a u =100000 numrx=81 p e r i o d =1000 . . .−− rev t a u =100000 numrx=90 p e r i o d =1000 . . .
many more l i n e s

Listing 2. Modified output of handler bcaststats
<b c a s t s t a t s name=” b c a s ts t a t s ” canRead=” t r u e ”>

<e n t r y from=”06−1B−B1−05−3B−9F” t ime =” 1308921370.334630590 ” seq=” 821 ” p e r i o d =” 1000” t a u =” 100000 ”>
< l i n k t o =”06−1B−B1−05−3B−8E” seq=” 822 ” p e r i o d =” 1000 ” t a u =” 100000 ” l a s tr x =” 0.288041590 ”>

< l i n k i n f o s i z e =” 300 ” r a t e =”2 ” fwd=” 81 ” rev =” 90 ” />
< l i n k i n f o s i z e =” 300 ” r a t e =” 12 ” fwd=” 71 ” rev =” 82 ” />

</ l i n k>
<!−− many more l i n k e l e m e n t s−−>

</ e n t r y>
<!−− many more e n t r y e l e m e n t s−−>

</ b c a s t s t a t s>

rate internally. When read, it returns the values collected since
it was last read (CH). Thirdly, the compound handler also
collects and records values internally, but only provides the
handler values that have changed (∆CH).

Another strategic aspect of pulling handler values is the
chosen update rates. You might want to have different handler
values are higher or lower update intervals. Therefore, the
compound handler allows to select different internal update
intervals for different handlers for theCH and∆CH modes.

V. CLICK WATCH

Figure 2 shows the overall architecture of the ClickWatch
framework. It consists of the network nodes (1), that run
on Click and preferable contain a compound handler (2);
ClickControl [1], a Java API that allows to read hander values
remotely (3); a database that records handler values (4, ref.
to V-D); the ClickWatch GUI used to represent the current
network state, or a moment in time recorded in the database
(5, ref. to V-E); Eclipse based tooling for XSL used to analyze
data in XML form (6); and Eclipse based tooling for Java (and
other model transformation languages) used to analyze datain
EMF form (7, ref. to V-F).

A. ClickWatch’s General Mode of Operation

The basic idea of ClickWatch is to observe network nodes
in real time by reading their handler values. ClickWatch pulls
handler values: it uses ClickControl to initiate requests towards
network nodes. ClickWatch does so continuously and creates
a centralized close to real-time representation of the current
network state. We call this centralized network representation
a network modeland a network model that represents a node’s
or network’s state at a specific moment in time asnapshot.

Handler values can also be recorded over time: the dynamics
of the network are covered as a series of snapshots. Sequences
of snapshots are stored in a database and form a dynamic
network model.

ClickWatch uses transformation techniques (such as XSL
transformations) or handler specific Java APIs to analyze
single snapshots or recorded dynamic network models.

ClickWatch also allows to change write handler values and
to deploy new Click elements and therefore allows to adapt

Network

getHandler(String):Handler

address: String
port: String

Node

name: String

Element

name: String
timestamp: long
canWrite: boolean
canRead: boolean
value: Object

Handler

subNetworks

nodes

childElements

handler

Fig. 3. The ClickWatch type model (meta-model).

the network. This can be done manually via ClickWatch’s GUI
or programmatically through the handler specific Java APIs.

B. ClickWatch Model

Click collects data from nodes and creates a centralized
representation from this data callednetwork model. This model
is typed, i.e. each element in this model has a type. Network
models are based on a type model (so called meta-model) that
defines the types and their relationships. A network model
comprises of networks that can contain nodes, nodes that can
contain elements, elements that can contain other elementsor
handlers, and handlers that can contain values. When meta-
data for handler values is given (ref. to IV-C), the type model
is canonically extended with the types in this meta-data. Figure
3 shows the meta-model for ClickWatch’s network models.

Based on the type models nature, a network model is always
a tree. Using model transformation techniques during analysis
allows you to create models of other type models (e.g. a
meta-model for topologies). Node identities used in handler
values (such as IP- or MAC-addresses) can be used to resolve
references between different handlers of different nodes.The
network model becomes a graph and one can navigate the
network model easily.

Technically, network models are EMF models. EMF, the
eclipse modeling framework, provides different facilities to
create, edit, and program with models. Among those are tree-
based editors, which we use for ClickWatch’s GUI (ref. to

Click API software

Element

Element

Element

Compound
Handler

H
a

n
d

le
r

N
e

tw
o

rk
 In

te
rf

a
ce

C
lic

k
C

o
n

tr
o

l

HBase “Big-Table” Data Base

[node] [handler] [timestamp] [value]

192.168.3.117 bcast_stats 17:03:05,918 <entry from=””>
 <link to=””>
 <link_info pdr=”96”/>
 </link>
 <link>...</link>
 </entry>
192.168.3.117 bcast_stats 17:03:06,120 <entry from=””>...
192.168.3.117 bcast_stats 17:03:06,321 <entry from=””>...
192.168.3.117 bcast_stats 17:03:06,321 <entry from=””>...

EMF

XML

XTEND
OCL

refer to Listing 5

refer to Listing 4

H
a

n
d

le
r

S
p

e
ci

!
c

A
P

I

XSL

1

2

3

4

5

6

7

Fig. 2. Overall ClickWatch Architecture.

reality
e ects transform

visualisation

meta-model

model

collect / adapt manipulates

intent

Fig. 4. ClickWatch creates a (close to) real-time model of the network,
visualizes it and allows to manipulate it.

V-E), and facilities to generate Java API’s for programming
with models, which we use to program during analysis (ref.
to V-F). Furthermore, XML is EMF’s build in serialization
format, which we use to apply XSL transformation on network
models (ref. to V-F).

C. Updating the ClickWatch Model

ClickWatch updates the network model continuously with
fresh data from the nodes. Element and handler information,
i.e. what elements and handler exist in a node, are collected
once and afterwards new handler values are pulled constantly.
Depending on compound handler usage (ref. to IV-D, updates
are pulled at constant sampling rates (Baseline and onCH

modes), or update intervals can be configured for each handler
individually (CH and∆CH modes).

New handler values are merged into the existing network
model. During this merge, differences can be tracked and
shown (even down into the structure of handler values).

The network model also listens for user changes. This means
that user modification of handler values are detected; changed
handler values are automatically written back to the affected
network node. Therefore, allowing users to watch and change
the network. This approach to watch and modify a network
through a (close to) real-time model is illustrated in figure4.

D. Recording with ClickWatch

In order to analyze network dynamics, ClickWatch records
handler values over time. Instead of merging new handler

values into the existing network model, ClickWatch can also
store each collected value into a database. The contents of this
database can be used in two ways. First, you can watch the
recorded network through the same GUI that is used to watch a
network live. You can jump in time, i.e. set the network model
to a specific snapshot, playback the network, and compare
two network snapshots. Secondly, you can programmatically
access the data for analysis, in the same way that you can
access non dynamic models. You can access specific points
in time, or create iterators that deliver all, or selected handler
values in the order they were recorded. All handler values
are timestamped on the network nodes. If clocks on network
nodes are reasonably synchronized, these timestamp can be
used during analysis to align data from different nodes.

ClickWatch uses Apache HBase as database4. HBase
is an open-source implementation of the Google big-table
database [2]. In difference to the more commonly known rela-
tional databases, HBase is focused on storing large amountsof
data of the same kind inbig tablesrather than storing different
types of data and their relationships. The resulting advantages
are fast insertion of data, databases can be distributed, and
automated indexing and retrieval of data values. The first
two advantages are key in recording a network. A common
Click configuration for a wireless mesh network used in our
lab, consist of 200 handlers. When collected each 200 ms
nodes produce roughly 3MB handler values per second. Even
moderate network sizes could exceed the networking and hard
disk IO capabilities of a single recording computer (also refer
to VII).

To index data, HBase puts the rows of a table into the order
of their keys. Secondary indexes (tables containing keys of
other tables as values) or possible. Values can be scanned
efficiently by going through the index from smaller keys
towards bigger keys. Since each key, is a byte array of arbitrary
length, multiple properties can be coded into a key. ClickWatch
uses node IDs, handler names and timestamps to compose
keys. We hold different indexes with keys that use node
IDs, handler names and timestamps in different order. Keys

4http://hbase.apache.org/

network

nodeelement

handler

XML-value

changes since

last update

child element

Fig. 5. Typical network model as represented in the ClickWatch editor.

composed in the order [node ID][handler name][timestamp]
for example allow to scan through the values of a specific
handler of a specific node in the order they were recorded.
The order [node ID][timestamp][handler name] on the other
hand, can be used to scan through the entire snapshots (all
handler) of a specific node.

E. The ClickWatch GUI

ClickWatch presents itself to users with a graphical user
interface. In its center is the so called ClickWatch editor,which
shows a tree-based representation of the network model. The
editor allows to create networks with nodes and their respec-
tive network addresses and Click runtime port. Figure 5 shows
the different elements of a network model as represented in a
ClickWatch editor.

F. Analyzing Data

Technically ClickWatch models are both eclipse EMF mod-
els and XML documents. That leaves us with a variety of
technical possibilities to analyze. The most obvious methods
to describe an analysis are programming with general purpose
languages (e.g. Java), using XSL-transformation5 utilizing the
XML-nature of ClickWatch models, or using specific transfor-
mation languages on the EMF nature of ClickWatch models.

Through EMF and handler meta-data (ref. to IV-C), Click-
Watch can generate a statically type-safe API for accessing
and analyzing handler values, specific to the XML structure
of concrete handler values. Such APIs basically map XML
elements into interfaces that provide getter/setter-methods for

5http://www.w3.org/Style/XSL/

accessing an element’s attributes and possible child elements.
Listing 5 demonstrates such an generated API. Compare to the
XML representation of a network model in Listing 3 and you
can find getter-methods for corresponding XML elements.

With an integrated XSL editor, XSL transformation scripts
can be created and executed on ClickWatch models.

There are several specific transformation languages origi-
nally created for model transformations in software engineer-
ing that can be used on EMF-models and therefore can be used
on network models. Some of these languages are specifically
tailored for creating structures, e.g. network topologies6 [3],
[4]; some or made for constraint evaluation [5]; other tech-
niques are tailored for code generation7. A combination of
such languages allows us to quickly filter, aggregate, and
further elaborate raw data from handler values and code-
generate this data into scripts for further analysis (e.g. in
MATLAB).

VI. EXAMPLE EXPERIMENTS

With the following two example experiments, we want to
illustrate ClickWatch’s potential for research. Both examples
are drawn from the area of wireless communication.

A. WiFi Link-level Measurements

In the following, we show how easily ClickWatch can be
used to analyze a complex relationship between multiple vari-
ables. We know from the theory of wireless communication
that there is a strong correlation between Signal-to-NoiseRatio
(SNR) and Packet Delivery Rate (PDR) value of a wireless
link. However, for IEEE 802.11 systems lots of researchers
observed only a weak correlation. From the literature we know
that interference from WiFi and/or non-Wifi sources can be the
cause for the observation of lots of links having a good SNR
but only intermediate PDRs [6]. To confirm or disprove this
hypothesis we set-up an experiment where we measured the
PDR and SNR of each link. In addition we also measured
the channel utilization at the receiver end. Since high channel
utilization indicates high interference, we should observe that
the SNR-PDR correlation is weaker in cases of high channel
utilization.

Listing 3 shows a fragment a our network model in
ClickWatch’s XML representation. We can identify two Click
elements:link stat andcst. The first one has a handler called
bcast stats which stores PDR information on each incom-
ing link. The second one has a handler calledstats which
returns information on the channel utilization at the node
(phy/@hwbusy) as well as theSNR of each incoming link
(nb/@snr).

Listing 4 and Listing 5 show two possible ways to analyze
the network model in Listing 3 using XSLT and Java. Both
examples create a 3-column matrix that represents the SNR,
PDR and channel utilization of each link. Afterwards, the
generated data can be imported in MATLAB and visualized
via a scatter plot (Listing 6). The scatter plot shows the

6http://eclipse.org/m2m/
7http://eclipse.org/modeling/m2t/

<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>
<Network>

<node iNe tAddress =” se ismo171 . t e s t b e d ”>

< l i n k s t a t name=” l i n k s t a t ”>
<b c a s t s t a t s name=” b c a s ts t a t s ” canRead=” t r u e ”>

<e n t r y from=”06−1B−B1−05−3B−9F” . . .>
< l i n k t o =”06−1B−B1−05−3B−8E” . . .>

< l i n k i n f o s i z e =” 300 ” r a t e =”2 ” fwd=” 81 ” rev =” 90 ” />
<!−− many more l i n k i n f o −−>

</ l i n k>
<!−− many more l i n k−−>

</ e n t r y>
</ b c a s t s t a t s>

</ l i n k s t a t>
<c s t name=” c s t ”>

<s t a t s name=” s t a t s ” canRead=” t r u e ”>

<c h a n n e l s t a t s node=”06−1B−B1−05−3B−9F”>
<phy hwbusy=” 12 ” . . . />
<n e i g h b o u r s t a t s>

<nb addr =”00−11−88−27−DE−20” s n r =”5 ” . . . />
<!−− many more nb−−>

</ n e i g h b o u r s t a t s>
</ c h a n n e l s t a t s>

</ s t a t s>
</ c s t>
<!−− o t h e r e l e m e n t s−−>

</ node>
<!−− many more nodes−−>

</ Network>

Listing 3. XML Network model.

Fig. 6. Result of the LLM experiment, generated with ClickWatch.

relationship between SNR and PDR while the color of a
marker represents the channel utilization: a blue and a red
color mean a low and a high value respectively. From the
generated result (Fig 6) we can see that there is a significant
impact from channel utilization and therefore interference on
the SNR/PDR relationship.

% impor t da ta from f i l e
load d a t a . t x t
% p l o t
colormap (j e t (1 0 0)) ;
s c a t t e r (d a t a (: , 1) , d a t a (: , 2) , 50 , d a t a (: , 3) , ’ f i l l e d ’) ;
c a x i s ([1 1 0 0]) ;
co lo rbar ;
t i t l e (’SNR vs . PDR vs . Channel Load ’) ;
x l a b e l (’SNR ’) ;
y l a b e l (’PDR ’) ;

Listing 6. MatLab script for LLM.

B. Global Path Selection

The following describes a more complex experiment, where
we not only retrieve data from nodes, but also modify handler
values on the nodes.

Conventional network routing protocols use a shortest path
algorithm (e.g. Dijkstra) to find a path from source to des-
tination with respect to some path metric. The majority of
known path metrics tries to minimize the cost of end-to-end
packet delivery by either reducing the number of required
hops, packet transmissions, or delay. The basic idea is thatif
each node minimizes the costs of its own packet flow the entire
network will benefit. The disadvantage of such methods is that
they respond inadequately to the specifics of the used wireless
technology. For example, the efficiency of a protocol like
IEEE 802.11n strongly depends on packet size. Small packets
like VoIP packets cannot benefit from PHY improvements
introduced in 802.11n because the PHY header as well as
control packets (ACK/RTS/CTS) are always send on a robust
PHY rate (6 Mbps). Only the payload can be send on a
maximum data rate of up to 600 Mbps. The efficiency can be
easily improved when multiple small packets are aggregated
with each other and send as a single frame. This advantage is
especially high for small packets like VoIP where it is possible
to pack multiple VoIP packets in a single frame.

Existing literature provides only few approaches where
nodes coordinate their path selections with each other in order
to gain from packet aggregation. The reason lays in the algo-
rithmic complexity of a distributed solution for cooperative
path selection: each node needs to know the ongoing packet
flows in the network and the nodes need to agree on the paths
to be used. A distributed solution causes lots of communication
overhead between nodes, resulting in additional network load.
Cooperative path selection based on global knowledge, on the
other hand, is easy.

Therefore, we suggest to measure the possible gain of
cooperative path selection with simple algorithms based on
global knowledge, before investing into a distributed solution.
Only when the expected gain is higher than the estimated
costs of a distributed solution, one should actually implement
a distributed version of cooperative path selection.

In the following ClickWatch is used to quantify the gain of
the proposed cooperative path selection by realizing a global
path selection: a computer running ClickWatch obtains global
knowledge and calculates the path for each flow. Fig. 7 shows
the distinct steps in this experiment.

ClickWatch periodically collects the local network topol-
ogy from each node. From this local data a global network
topology is calculated. In addition, ClickWatch schedulesthe
packet flows according to some network traffic flow model.
With the help of the global network topology as well as
the information about all flows (source, destination, average
packet size) ClickWatch is able to compute the best path for
each packet flow with respect to the characteristics of the
PHY layer (e.g. packet aggregation). The calculated paths are
injected back into the routing tables of the nodes using write

<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>
<x s l : s t y l e s h e e t ve rs i on=” 1 .0 ” x m l n s : x s l =” h t t p : / /www. w3 . org / 1 9 9 9 /XSL / Transform ”>

<x s l : o u t p u t method=” t e x t ” ve rs i on=” 4 .0 ” encod ing =” i so−8859−1” i n d e n t =” yes ” />

<x s l : t e m p l a t e match=” t e x t () ” />

<x s l : t e m p l a t e match=” l i n k / l i n k i n f o ”>
<x s l : v a r i a b l e name=” toAddr ” s e l e c t =” . . / @to” />
<x s l : v a r i a b l e name=” fromAddr ” s e l e c t =” . . / . . / @from” />

<x s l : v a r i a b l e name=” pdr ” s e l e c t =”@rev” />
<!−− SNR a t r e c e i v e r node−−>
<x s l : v a r i a b l e name=” r e v s n r ” s e l e c t =” / / c h a n n e l s t a t s [@node=$ toAddr] / n e i g h b o u r s t a t s / nb [@addr=$ fromAddr] / @snr” />
<!−− Channel load a t r e c e i v e r−−>
<x s l : v a r i a b l e name=” chLoadRecv ” s e l e c t =” / / c h a n n e l s t a t s[@node=$ toAddr] / phy / @hwbusy” />
<x s l : v a l u e−of s e l e c t =”$ r e v s n r ” /> ,<x s l : v a l u e−of s e l e c t =”$ pdr ” /> ,<x s l : v a l u e−of s e l e c t =”$chLoadRecv ” />;

</ x s l : t e m p l a t e>
</ x s l : s t y l e s h e e t>

Listing 4. XSLT script for LLM.

pub l i c c l a s s L inkLeve lMeassurementimplements IC l ickWatchMain {
@In jec t Ne tworkUt i l n e t w o r k U t i l ;
@Overr ide
pub l i c vo id main (IC l i ckWatchCon tex t c t x){

Network network = c t x . g e t A d a p t e r (IC l i ckWatchMode lProv ide r . c l a s s) . ge tNetwork () ;
f o r (Node node : network . getNodes ()){

B c a s t s t a t s b c a s t S t a t s = n e t w o r k U t i l . g e t S p e c i f i c H a n d l e r (node, B c a s t s t a t s .c l a s s) ;
S t r i n g fromAddr = b c a s t S t a t s . g e t E n t r y () . getFrom () ;
f o r (L ink l i n k : b c a s t S t a t s . g e t E n t r y () . ge tL ink ()){

f o r (L i nk i n f o l i n k I n f o : l i n k . g e t L i n k i n f o ()) {
Node t o = n e t w o r k U t i l . nav igateMacAddr (network , l i n k . getTo ()) ;
i n t pdr = l i n k I n f o . getRev () ;
S t a t s s t a t s = n e t w o r k U t i l . g e t S p e c i f i c H a n d l e r (to , S t a t s .c l a s s) ;
i n t chLoadRecv = s t a t s . g e t C h a n n e l s t a t s () . ge tPhy () . getHwbusy () ;
f o r (Nb nb : s t a t s . g e t C h a n n e l s t a t s () . g e t N e i g h b o u r s t a t s () . getNb ()) {

i f (nb . getAddr () . e q u a l s (fromAddr)){
double s n r = nb . g e t S n r () ;
System . ou t . p r i n t l n (s n r + ” ,” + pdr + ” , ” + chLoadRecv) ;

} } } } } } }

Listing 5. Java for LLM.

1: deploy click config.

let network settle down

2: get local topology info.
3.1 generate flows

acc. to trafic model

3.2: calculate
optimal path per

flowwith algorithm X

4: inject paths

5: start flows

6: record stats
(throghput, ...)7: calculate perfor-

mance metrics
(throughput, perfor-

mance)

8: alternate paths,
algorithms, other
parameter

NetworkClickWatch

Fig. 7. Sequence chart for the global path selection experiment.

handlers. Finally, the packet flows are started simultaneously
by ClickWatch. At the end of the experiment ClickWatch
collects statistics like the achieved per flow throughput. By
analyzing these data ClickWatch is able to quantify the gain
of the proposed solution over a conventional path selection
scheme.

VII. E VALUATION

In this section we present the results of measurements that
we performed to show that ClickWatch yields the quantitative
requirements from section III-D. First, we compare Click’s
handler with the compound handlers, we introduced to enhance
collection of large amounts of data at high sampling rates.
Secondly, we show ClickWatch’s ability to record efficiently
and to access recorded data quickly. Here, we compare Click-
Watch with a typicallog file approached favorited by many
researchers.

A. Compound Handler

In the following we evaluate the performance of the pro-
posed compound handlers (Section IV-D) in terms of fetch
time, network load and CPU usage (Fig. 8). Compared to the
Baseline, i.e. retrieving the value of each handler separately,
the proposed compound handler that collects samples locally
and only transmits modified handler values (∆CH) is able to
reduce the fetch time, i.e. the time it takes to retrieve the data
from all handlers, by a factor of 25-33 depending on the total
number of handlers. Moreover, the amount of network load is
comparable withBaseline. Interestingly, the CPU utilization
at the network load is lower compared toBaselinewhich can
be explained by the reduced number of network requests.

50 100 150 200
0

50

100

150

Number of Handlers

F
et

ch
 ti

m
e

(m
s)

Baseline
onCH
CH
∆CH

50 100 150 200
0

20

40

60

80

Number of Handlers

T
ra

ns
fe

re
d

kB
yt

es

Baseline
onCH
CH
∆CH

50 100 150 200
0

5

10

15

20

Number of Handlers

C
P

U
 u

sa
ge

 a
t n

od
e

Baseline
onCH
CH
∆CH

Fig. 8. Performance comparison of different compound handler implementa-
tions when using mesh nodes with fast CPU (Pentium 4, 3 GHz). The sample
rate was 200 ms.

B. Log-File vs. Database

To illustrate the capabilities of ClickWatch to record and
analyze networks with an HBase database, we compare Click-
Watch with the traditional log-file approach. A common way
to analyze network data is to let each node dump log-files.
These log-files are centralized through specific log-servers,
shared NFS-volumes, or simply copied together. Later log-files
can be analyzed with regular expressions; log-file analysisis
commonly written in perl, awk, sed, grep, etc.

For a comparison, we performed the following experiment.
We let 10 Click nodes (wireless router that constitute a
wireless mesh network) operate for different time durations.
First, these nodes produce log-files. The log-files contain all
the data of all handler values obtained every 200 ms. Each
entry (line) in log-file line represents a leave in the XML of
handler values. Each log-file line consist of a timestamp, a
node id, a qualified handler name and all the attributes and
texts in a path from the handlers XML root to the leave the
log-file line represents. Moreover, lines do not contain any
XML element names or other redundant strings. Secondly,
we recorded the network state of the 10 Click nodes using
ClickWatch and an HBase database using the same recording
time and sampling.

Afterwards, we performed an example analysis of the
logged/recorded data. The aim of the analysis is to plot channel
utilization of each network node. The log-files were solely
analyzed with a script using Unix tools like grep, awk and
sed. The HBase data was analyzed with a small Java program
based on an API generated for the used Click configuration.

The results are presented in Figure 9. Two aspects were
analyzed. First, the required storage size for log-files and
database respectively. Secondly, we measured the time it takes

20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

Experiment duration [min]

Lo
g−

fil
e/

da
ta

ba
se

 s
iz

e
[G

B
yt

e]

Log−file
Java/HBase

20 40 60 80 100 120 140 160 180 200 220
10

−1

10
0

10
1

10
2

10
3

Experiment duration [min]

D
ur

at
io

n
of

 e
va

lu
at

io
n

[s
ec

]

Log−file
Java/HBase

Fig. 9. Comparison by storage size and analysis time for network data stored
in log-files and in databases (hbase).

to perform the example analysis.
The following observations can be made. The comparison

of required storage sizes shows that in our case the HBase
databases where roughly half the size of the log-files. The
reason is that log-files contain lots of redundant data. In log-
files data is structured into lines and each line must bear a
meaning on its own. Even when two lines only differ in a
single number, the lines must contain much more than this
number in order to make sense. This is different in XML. Data
is structured into trees. Two leaves can only contain a single
number (differ in this number) and still provide meaningful
information through the common data of their ancestor nodes.
See also the example log file and XML snippets in Listings 1
and 2.

The comparison of analysis durations shows that an analysis
based on HBase runs magnitudes faster than the log-file
analysis. The data-base index allows to access the one handler
of interest and neglect all others, where a log-file analysishas
to scan through the whole record. It is safe to assume that this
relationship will remain also for more complex analysis that
requires multiple passes of log-file analysis.

Qualitative the Java programmed analysis based on HBase is
statically type-safe and through object oriented programming
easily re-usable. The log-file approach on the other hand,
usually means custom scripts that are often hard to understand
and impossible to re-use.

VIII. R ELATED WORK

Related work falls into three categories: Inspecting Click
at runtime, model-based approaches for monitoring or intro-
spection of distributed systems, and approaches in automating
experimentation and scientific workflows in general.

A. Clicky

The Clicky GUI8 comes with Click. Clicky can show
configurations of single Click router as text (with syntax
highlighting) or diagrams, and can read and write handlers in
live configurations. Output router diagrams can be exported.
Furthermore the router configuration can be changed and rede-
ployed. Clicky is suitable for training and teaching purposes,
e.g. overflowing queues are visualized in the flow graph. The
biggest disadvantage of Clicky compared to ClickWatch is
that network node data obtained from handlers cannot be
further processed; they are only shown in the GUI. In contrast,
ClickWatch enables further processing of the data via model
transformations. Furthermore, Clicky focuses on observing a
single node and has no capabilities for experimentation with
whole networks.

B. Monitoring of Distributed Systems

Monitoring physical systems, tracking its parameters and
diagnosing failures with according (potentially automated)
reactions are a basic task in maintaining a system in general.
Performing this task with a computer has been done since the
early 80s. The challenge is to relate monitoring data with the
expected operation of a system.

The growing popularity of software modeling, created a
need for model-based monitoring[7]. It uses models similar
to those used to model the behavior and structure of the mon-
itored systems and therefore allows to relate monitoring data to
the expected operation of a system. Monitoring and analyzing
running software systems with techniques derived from model
based software engineering has become a discipline in its own
right with its own conferences and scientific community [8].

For distributed software systems (e.g. Click running on
network nodes) the same scheme is applied. Model-based
monitoring follows a paradigm similar to ClickWatch just
towards a different end. In monitoring the goal is to detect
and (automatically) react to failures and other anomalies [9],
[10], but the means are the same: monitoring data is created
on each monitored part of the distributed system (1); the
data is collected into a centralized model (2) [11], [12], and
analyzed for failures and anomalies (3). Ideally the results of
this analysis are used to adapt the system (4). These four tasks
directly correspond to the four task supported by ClickWatch.
Modern monitoring systems use type models (meta-models)
to describe monitoring data, some (like ClickWatch) even use
EMF-models [13], [12] or use similar meta-data inference (ref.
to IV-C) [14].

C. Scientific Workflows

Scientific workflow management systems [15] (e.g., Taverna
[16] or Kepler [17]), define the process of experimentation as
specifically structured scientific workflows. Such systems are
dataflow-oriented; they allow to design experiments and series
of experiments as workflows consisting of data producing
(measurement) and data consuming (analysis) tasks. Scientific

8http://www.read.cs.ucla.edu/click/clicky

workflow management systems allow to execute workflows
and therefore automate the experimentation process.

ClickWatch can potentially be integrated into scientific
workflow systems. Since it provides a framework for collecting
and analyzing data, ClickWatch can provide tasks executed as
part of a scientific workflow.

EMF based approaches to scientific workflow management
(e.g. Expl [18]) use EMF-models (the same technical kind of
models ClickWatch uses) to describe data in workflows. Since
both, ClickWatch and the workflow management system, use
the same technology, seamless integration is apparent.

IX. CONCLUSIONS

We have presented ClickWatch, a framework for com-
munication network test-beds. After deriving requirements
for experimenting with communication network test-beds,
we explained how ClickWatch fulfills these requirements.
ClickWatch allows to create structured data on distributed
network nodes, allows to collect this data into a centralized
representation of the network, data can be analyzed, and
network nodes can be reconfigured by writing data back to
network nodes (functional requirements, ref. to III-B).

Data in ClickWatch is structured (XML and EMF), data
structures can be extended, handling data is type-safe through
specifically generated Java-APIs, and object-oriented design
allows re-use of ClickWatch artifacts (non-functional, qualita-
tive requirements, ref. to III-C). We illustrated these charac-
teristics with two example experiments.

Furthermore, we presented measurements to proof that
ClickWatch is feasible and scalable (non functional, quantita-
tive requirements, ref. to III-D). Compared to working with
log-files, ClickWatch can collect data from network nodes
with reasonable network and CPU load. We could improve
the retrieval of Click’s handler in terms of network load,
CPU load, and retrieval time. Contrary to dumping log-files,
ClickWatch allows fine grained configuration and runtime
adaptation of the collected data. ClickWatch only costs CPU
and network capacity, when data is actually retrieved; log-files
dump log-entries regardless of its usage. Through utilization
of structured data, ClickWatch allows to store data more
efficiently than log-files. Analysis with ClickWatch runs faster
by orders of magnitudes.

By structuring the experimentation process, ClickWatch
allows to experiment faster and safer. Results are better
documented, experiments are easier to reproduce. Efforts taken
to conduct one experiment can be used to conduct similar
experiments. An experimentation process that resembles agile
engineering becomes possible. Experimentation itself is trans-
formed from tinkering art into actual science.

REFERENCES

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,”ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, Aug. 2000.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data.”ACM Trans. Comput. Syst., vol. 26,
no. 2, 2008.

[3] F. Jouault, F. Allilaire, J. Bzivin, I. Kurtev, and P. Valduriez, “Atl: a
qvt-like transformation language.” inOOPSLA Companion, P. L. Tarr
and W. R. Cook, Eds. ACM, 2006, pp. 719–720.

[4] S. Nolte,QVT - Relations Language. Springer, 2009.
[5] J. Bzivin, T. Baar, T. Gardner, M. Gogolla, R. HŁhnle, H. Humann,

O. Patrascoiu, P. H. Schmitt, and J. Warmer, “Ocl and model driven
engineering.” inUML Satellite Activities, ser. Lecture Notes in Computer
Science, N. J. Nunes, B. Selic, A. R. da Silva, and J. A. T. lvarez, Eds.,
vol. 3297. Springer, 2004, pp. 67–75.

[6] D. Gokhale, E. Sen, K. Chebrolu, and B. Raman, “On the feasibility of
the link abstraction in (rural) mesh networks,”IEEE INFOCOM, 2008.

[7] D. Dvorak and B. Kuipers, “Model-based monitoring of dynamic
systems.” inIJCAI, 1989, pp. 1238–1243.

[8] G. S. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[9] S. Sicard, F. Boyer, and N. D. Palma, “Using components
for architecture-based management: the self-repair case.” in ICSE,
W. SchŁfer, M. B. Dwyer, and V. Gruhn, Eds. ACM, 2008, pp. 101–
110.

[10] M. Vallee, M. Merdan, and T. Moser, “Using models at runtime for
monitoring and adaptation of networked physical devices: Example
of a flexible manufacturing system,”5th International Workshop on
Modelsruntime, pp. 84–95, 2010.

[11] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker, “In-
cremental Model Synchronization for Efficient Run-Time Monitoring,”
in Models in Software Engineering, ser. Lecture Notes in Computer
Science, S. Ghosh, Ed. Berlin, Heidelberg: Springer Berlin/ Heidelberg,
2010, vol. 6002, ch. 13, pp. 124–139.

[12] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and H. Mei,
“Generating synchronization engines between running systems and their
model-based views.” inMoDELS Workshops, ser. Lecture Notes in
Computer Science, S. Ghosh, Ed., vol. 6002. Springer, 2009, pp. 140–
154.

[13] T. Vogel, A. Seibel, and H. Giese, “The role of models and megamodels
at runtime.” in MoDELS Workshops, ser. Lecture Notes in Computer
Science, J. Dingel and A. Solberg, Eds., vol. 6627. Springer, 2010, pp.
224–238.

[14] H. Song, G. Huang, Y. Xiong, F. Chauvel, Y. Sun, and H. Mei, “Inferring
meta-models for runtime system data from the clients of management
apis.” in MoDELS (2), ser. Lecture Notes in Computer Science, D. C.
Petriu, N. Rouquette, and ystein Haugen, Eds., vol. 6395. Springer,
2010, pp. 168–182.

[15] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow,
E. Deelman, D. D. Roure, J. Freire, C. Goble, M. Jones, S. Klasky,
T. McPhillips, N. Podhorszki, C. Silva, I. Taylor, and M. Vouk, “Sci-
entific process automation and workflow management,” inScientific
Data Management, ser. Computational Science Series, A. Shoshani and
D. Rotem, Eds. Chapman & Hall, 2009, ch. 13.

[16] T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock,
and A. Wipat, “Taverna: A tool for the composition and enactment of
bioinformatics workflows,”Bioinformatics, vol. 20, p. 2004, 2004.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and
the kepler system: Research articles,”Concurr. Comput. : Pract. Exper.,
vol. 18, pp. 1039–1065, August 2006.

[18] F. Kühnlenz, “A Language-centered Approach for Transparent Experi-
mentation Workflows,” inProceedings of the CSSim 2011 - Conference
on Computer Modelling and Simulation, 2011.

