HUuMBOLDT-UNIVERSITAT ZU BERLIN
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

Post-Quantum Cryptography in WireGuard
VPN

Bachelorarbeit

zur Erlangung des akademischen Grades

Bachelor of Science (B. Sc.)

eingereicht von: Quentin M. Kniep
geboren am:

geboren in:

Gutachter/innen: Prof. Dr. Jens-Peter Redlich

Prof. Dr. Bjorn Scheuermann

eingereicht am: verteidigt am:

Abstract

WireGuard is a new and promising VPN software. It relies on cryptographic primitives
which are not post-quantum safe. This critically undermines the promise of forward
secrecy because it makes all traffic vulnerable to future attacks with quantum computers.
This thesis considers ways of modifying current WireGuard implementations. Three
increments of modification are proposed, giving different levels of security against

quantum adversaries. Performance impacts of these are shown to be moderate.

Contents

Acronyms

1. Introduction
1.1. Motivation
1.2, Goals
1.3. Structure

2. Fundamentals and Related Work
2.1. Quantum Algorithms o
2.2. Previous Systems
2.3. Noise Protocol Framework
2.4. WireGuard
2.5. State of Post-Quantum Cryptography

3. Methodology
3.1. Feature Specification
3.2. Protocol Design
3.2.1. L1 Handshake,
3.2.2. L2 Handshake
3.2.3. L3 Handshake

4. Implementation
4.1. Engineering Processo
4.2. Proof-of-concept Code

5. Results and Critical Discussion
5.1. Message Sizes
5.2. Handshake Benchmark
5.3. Use Cases o o e e e e
5.4. Throughput, Ping, Reliability

6. Conclusion
6.1. Summary
6.2. Future Work

Bibliography

A. libogs Benchmark

Acronyms

AEAD authenticated encryption with associated data

DH Diffie-Hellman key exchange
DLP discrete logarithm problem

DoS denial-of-service
ECDH elliptic-curve DH

KDF key derivation function

KEM key encapsulation mechanism

MAC message authentication code
MITM man-in-the-middle

MTU maximum transmission unit

PFS perfect forward secrecy
PQ post-quantum
PRF pseudo-random function

PSK pre-shared key
VPN virtual private network

WG WireGuard

1. Introduction

In a few years’ time, most current VPN traffic may be decrypted.

Virtual private network (VPN) software provides a security layer above the IP layer
and puts the VPN server in between you and your destination. It is used, for example,
for accessing important computer infrastructure from an insecure network. In the
tunnel, which is the connection between you and the VPN server, everything can be
secured including your identity, the actual data, and its destination. If the VPN server
is on the same trusted network as your destination, this is enough to be safe.

There is a wide array of VPN software available. Well-known implementations are
OpenVPN, IPsec, and WireGuard, where the currently developmental WireGuard is
the focus of this thesis.

1.1. Motivation

Post-Quantum Cryptography

We need to replace many of our currently used cryptographic methods with so called
post-quantum (PQ) cryptography. The reason lies in developments regarding quantum
computers. Most significant is Shor’s algorithm, which can be used to efficiently solve
both the prime factorization problem and the discrete logarithm problem (DLP). [32]
These two problems are the mathematical foundation of many current cryptographic
primitives, especially the extremely prevalent RSA asymmetric cipher and Diffie-
Hellman key exchange (DH). Anyone who can solve these could attack almost any
key agreement protocol currently in use. PQ cryptography then only means that the
cryptographic primitives do not rely on these mathematical problems being hard to
solve. Instead, these primitives base their security on problems for which no efficient
quantum algorithm is known.

Then again, the largest quantum computer currently has 72 qubits. [21] This is a
long way to go, until quantum computers can break any significant key length. Still, it

is important to take preparations now, to protect the traffic currently being sent from

future attackers. Also, we do not know how long it will actually take until quantum
computers are capable to break current security measures. “It could be decades, but
nobody can say for sure.” John Preskill said in an LA Times interview. [25] Furthermore,
from experience it is known that it takes a lot of time to change standards in security.
Therefore, standards need to be established well before it becomes crucial to use them.
Current methods of perfect forward secrecy (PFS), which is defense against the
threat of an attacker who collects and stores all traffic until they are able to decrypt it,
are based on classical cryptography. Any messages sent today under such schemes are
thus vulnerable to being recorded and later decrypted with a quantum computer.
Authentication methods in current key exchange schemes are based on classical
asymmetric cryptographic primitives as well. As soon as we have adversaries with
strong quantum computers, they are thus in a position where they can actively man-
in-the-middle (MITM) any key exchange, which relies on those classical authentication
methods. The threat is real but much less urgent than forward secrecy because a
MITM attack is not possible retroactively. So, until the first quantum computer which
can break current key lengths is actually built, relying on classical cryptography for

authentication is enough.

WireGuard

WireGuard (WG) is a relatively new VPN software, built with the intention to focus on
being fast while maintaining a small code base. Having less code is generally considered
a good quality for security software because it makes code review easier. One way
WireGuard achieves such a small code base is to be very cryptographically opinionated,
i.e. it only supports a few state-of-the-art cryptographic primitives. The primitives
have also been selected to be conservative choices in terms of security, while still being
on the faster side.

Focusing on WireGuard over more established VPN software such as OpenVPN
or IPsec might seem questionable. Especially regarding security critical software, it
is reasonable to use tools which have reached a certain level of maturity. However,
especially in this case it is less about making a good choice for now, and more about
deciding what will be a good choice in the near future. WireGuard looks extremely
promising, because of its great performance. It may well become one of the top
contenders in the VPN software space, once it underwent a little more scrutiny.

Further details about WG and how it works can be found in the WireGuard section

of chapter 2.

1.2. Goals

Main goal of this thesis is extending WireGuard to support PQ cryptography for PFS,
identity hiding, and possibly even security against active attacks. In the available
version of WG there is only the ability to use a pre-shared key (PSK). This key needs
to be calculated separately, and can be the result of some PQ key exchange protocol.
Only does this not give any of the security properties listed above against quantum
computers. This feature merely provides basic encryption on the tunnel. Once the
PSK leaks to an attacker with a quantum computer, they could with reasonable effort
decrypt all traffic ecnrypted under session keys derived from that PSK. In order to
resolve this problem, PQ key agreements will be added directly into the WireGuard
protocol.

Another goal that becomes relevant considering how new and unproven PQ cryptog-
raphy is, is that the security should not rely solely on PQ methods.

Secondary goals are good performance and usability, which should be maintained as

well as possible, while still achieving the primary goals.

1.3. Structure

The rest of the thesis will be structured as follows: In chapter 2, there is a review of
the attempts at PQQ VPN software already available. It also introduces algorithms,
definitions, protocols, and cryptographic primitives. Chapter 3 gives an overview of
the proposed changes to WireGuard. After that, in chapter 4 there will be a brief
discussion of implementation decisions. Then in chapter 5, there will be a critical
analysis on whether the solution discussed in the two previous chapters solves the
goals set in the beginning. We will especially look at the viability when compared to
WireGuard without PQ cryptography, focusing mainly on metrics like average time to
perform the handshake. Finally, the last chapter will summarize the findings, and give

an outlook on what still can be done.

2. Fundamentals and Related Work

2.1. Quantum Algorithms

Shor

The problem with the current state of cryptography is that, in 1996 already, Shor
devised a quantum computer algorithm [32], which can be used to solve the prime
factorization problem and the DLP efficiently, i.e. in polynomial time. More specifically,
it has a time complexity of O((log N)?), where N is the number to be factored or the
prime defining the field for the discrete logarithm.

Once large quantum computers exist, it could be used to launch attacks with
polynomial cost against RSA, ECDSA, DH, elliptic-curve DH (ECDH), ElGamal, and
so on. Generally, against all cryptographic primitives which can be reduced to either
prime factorization or the DLP. Therefore, it breaks today’s standards in asymmetric

cryptography and key exchange.

Grover

There is also an algorithm targeting symmetric cryptography and hash functions. Also
in 1996, Grover developed a quantum computer algorithm [17], which can find the
input for an arbitrary function giving a specific output in only O(v/N) calls to that
function, where N is the size of the function’s domain. This is a quadratic improvement
over the classical case, for which the worst-case runtime trivially is O(V).

Brassard et al. built upon Grover’s algorithm to give a quantum algorithm for
finding hash collisions. [10] Their results improved the theoretical minimum complexity
to O(2V/3), from the previous O(2"/?) obtained through the birthday paradox.

Although not breaking classical methods for symmetric cryptography and hashing, a
reduction in the attack complexity of this magnitude would force developers to adapt
key lengths. At first glance, doubling of symmetric encryption key lengths, and 50%

bigger state for collision-resistant hash functions, might therefore seem warranted.

On the other hand, there are doubts whether the theoretically better complexity
translates into practically improved attack capabilities. Bernstein for example offers
reasonable doubt to the claim, that the quantum algorithms are better than classical
methods for finding hash collisions. [6] His argument is, that the better parallelizability
of Pollard’s rho method [28], as presented by Oorschot and Wiener [26], makes it
more cost-efficient than using quantum computers. Meaning, the best collision attack
on an N bit hash function still has cost @(2"/2) in practice. To get the speedup of
Grover’s algorithm, long calculations have to run in serial execution. There is a proof
by Zalka [33], showing that running it on M machines gives a maximum /M speedup.
And in all general security models we assume attackers to run their algorithms highly
parallelized. Therefore, the actual impact of Grover’s results is questionable.

In summary, increasing key lengths may or may not be necessary, but at least not

nearly as drastically as assumed at first glance.

2.2. Previous Systems

There are already attempts at bringing PQ cryptography into VPN software. The
projects that exist so far have some significant disadvantages, when compared to the
possibilities of combining WG with a complete PQ handshake. In the following section
two of the most prominent projects will be discussed. One of which only uses the
static-PSK method that is supported by WireGuard directly. Thus, it does not provide
PF'S or identity hiding against quantum computers. The other project uses the more
bloated OpenVPN, as opposed to WireGuard. Therefore, it has all the disadvantages
in speed and code size that WG tries to improve upon.

In contrast, this thesis proposes a way of fixing both these disadvantages, by combin-
ing the WireGuard software with a real PQ key exchange. It should thus provide all
the advantages of WireGuard over, for example, OpenVPN, as well as more complete
PQ security than the PSK feature in WG.

Mullvad

Mullvad is one of the first VPN providers to try to provide ready-to-use PQ cryptography
using WireGuard. They make use of the pre-shared key (PSK) feature that WireGuard
offers. First performing a PQ key exchange, the output of it is then used as the PSK
for the WG handshake. In there, it is simply used as additional key material when

deriving the keys. This solution will never be able to provide PF'S this way because

the PSK is static.

Any time in the future, an attacker with a quantum computer, who learned the PSK
at some point, can break any key exchange that used it. This attack is passive, i.e.
it even goes for previously recorded exchanges. They need a quantum computer to
break the discrete logarithm, and therefore classic PFS. Using Shor’s algorithm on
their quantum computer to solve the DLP, they can derive the private ECDH key of
either party from the public one. With the private ECDH key and the PSK, they have
everything one of the parties had during the exchange. Therefore, they can derive the
encryption keys in the same manner as the legitimate party did. The attacker has thus
successfully broken the key exchange only by learning the static PSK.

Conclusively, Mullvad’s approach at PQ does not provide PFS against a quantum
adversary. In other words, all traffic sent over such a tunnel, is only secure against a
quantum adversary for as long as the static-PSK stays safe. Furthermore, both parties

need to have the PSK (by definition), and neither may lose it.

Microsoft

Microsoft goes another route and uses the more dated OpenVPN as foundation. This
decision brings with it all the advantages and disadvantages of OpenVPN compared
to WireGuard. Namely, they get the advantage that the code base they fork from
OpenVPN is thoroughly tested and analyzed, whereas WireGuard is rather new on a
security software timescale. This advantage is rather short-lived though as it shrinks
the more WG is tested. Especially since WG is expected to be more easily auditable,
because of its way smaller code base. On the other hand they also inherit the large
code base and, compared to WG, higher ping and lower data throughput.

Microsoft’s solution uses the Open Quantum Safe project’s fork of OpenSSL, which
implements PQ cryptographic primitives in the TLS handshake. According to TLS
specification though it does only use ECDH for ephemeral keys. Therefore, there is no
perfect forward secrecy against quantum adversaries. Fundamentally the same attack
that was described for Mullvad’s approach applies here. Identity hiding for the client’s
public key may be achieved though.

10

2.3. Noise Protocol Framework

Noise [27] is a suite of cryptographic key exchange protocols. Each of the protocols
provide slightly different properties, especially regarding authentication and forward
secrecy. All of them are based on DH/ECDH key agreements. Noise also defines a way
of writing these protocols down concisely. To give an example, this is the way [Kpsk2,
the protocol WG’s handshake is based on, is written in the notation established in [27]:

<-'s

-> e, es, s, sSs

<- e, ee, se, psk

The initiator of the handshake is on the left-hand side, the responder on the right-hand
side. Accordingly, the arrow directions indicate the direction of communication. Single
letters indicate public keys being sent, ‘s’ stands for a static public key, ‘e’ for an
ephemeral public key. Thus, the first line indicates: Before any of the actual handshake
takes place, the initiator already knows the responder’s static public key. In practice,
this usually happens through user setup, as with SSH keys. Two letters represent a
DH calculation taking place, the first letter indicating which of the initiator’s key pairs
to use, and the second letter indicating the same for the responder. These have to
happen on both sides of the exchange because it is implied that the shared secret is

added into a chaining key.

The chaining key is a fundamental concept of the Noise family of key exchanges.
During the entire key exchange, both peers each maintain a continuous hash value and
a chaining key. Any data transmitted or received in a packet is added into the hash
value. After any single shared secret is established, it is added as key material into
the chaining key through a key derivation function (KDF). In Noise protocols this
always happens through a DH computation, unless it is the PSK that is used at some
point of the protocol. Specifically, the new chaining key is the result of the KDF called
on the shared secret, using the old chaining key as the key. Any time an outgoing
message needs to be encrypted or an incoming message decrypted, a KDF with double
the output length is used instead. One part is then used as the new chaining key, and
the other part is the key for encryption/decryption. In the end, the chaining key is

used for deriving two symmetric keys, one for each direction of communication.

11

2.4. WireGuard

WireGuard is a VPN software that tries to become the new standard. Jason A.
Donenfeld, the main developer, criticizes current standards, especially OpenVPN and
[Psec. One main point of criticism is bloatedness, in terms of code size as well as
the number of options and cryptographic primitives supported. This leads to worse
auditability and more room for weak security through wrong configuration, Donenfeld
argues. Other areas where he tries to improve upon current solutions are ease of use

and performance, e.g. ping and throughput.

Authenticated Encryption with Associated Data

Authenticated encryption with associated data (AEAD) is a method that performs
symmetric encryption and authentication. It is either a dedicated construction for
authenticated encryption or a generic one, from a combination of block cipher and
message authentication code (MAC) function. The Associated data is a MAC value
that proofs authenticity and binds the ciphertext to a context, for example through a
nonce.

All data sent over a WireGuard tunnel is first put through AEAD using the session
encryption key. Also, AEAD is already used during the handshake protocol.

Handshake Protocol

WireGuard’s handshake resembles the IKpsk2 handshake, defined by the Noise Protocol
Framework. [15] For legibility, updating of the continuous hashes and the chaining keys
have been omitted from the protocol diagrams. Not further mentioned either will be
two MAC values, which are used for preventing denial-of-service (DoS) attacks, and a
message header, which are all part of the initiation and response messages.

Before the key exchange starts, we assume both parties have generated static key
pairs and the static public key of the responder is known to the initiator. Before
the first message is sent, the initiator generates an ephemeral key pair, i.e. matching
private and public ECDH keys. They also calculate the first two ECDH secrets using
both their own private keys and the known public key of the responder.

WireGuard’s first key exchange message, the initiation message, then contains
the initiator’s ephemeral public key in plaintext, the initiator’s public static key
under AEAD with the key resulting from the first ECDH secret, and a timestamp in
TAI64N [4] format under AEAD with the key resulting from both ECDH secrets. This

12

IKpsk2 Initiation

Initiator Responder

(Spub priv)’ Spub (Spub

S T T

priv)
PERA]

787‘

(e, el™™) = Gengc ()

A}

_ Priv b
es = DHgc(el"", s2*%)

_ Priv b
ss = DHgc(s; , s2"%)

e?"* AEAD(s*?), AEAD(TAI64N())

— v pub
es = DHgc(s2""",e;)

_ v pub
ss = DHgc (s, s7")

Figure 2.1.: Simplified diagram of the initiation step of WireGuard’s IKpsk2 protocol.

provides some identity hiding for the initiator, because you at least need either the
initiator’s ephemeral private key or the responder’s static private key. The responder
can, upon receiving the initiation message, take the analogous steps to calculate the two
ECDH secrets as well, and reach the same state as the initiator. The whole initiation,
everything that happens immediately before sending and after receiving the message,
is shown in Figure 2.1.

After the first step of the key exchange, both parties know each others public static
keys and the responder also knows the initiators ephemeral public key. The responder
then generate their own ephemeral key pair. They continue by calculating the two
ECDH secrets that result from combining their ephemeral private key with both of the
initiator’s public keys.

WireGuard’s second key exchange message, the response message, contains (most
importantly) the responder’s public ephemeral key in plaintext, and also the empty
string under AEAD with a key resulting from the final chaining key. The empty string
under AEAD is simply the associated data, i.e. a MAC value. As in the initiation
step, upon receiving the message the initiator can take steps analogous to those of the
responder to finally reach the same state. The whole response, everything that happens
immediately before sending and after receiving the message, is shown in Figure 2.2.

As specified by Noise, the final chaining key is used for deriving two symmetric

session keys. One for the messages going from initiator to responder, the other for the

13

IKpsk2 Reponse

Initiator Responder

pub priv pub pub _priv pub _pub
(Si) 5§)vsr (S,,,) S),61-)54

(e, el"™) = Gengc ()
ee = DHgc (eP™, erb)
se = DHgc (e?™, s7)

124

e AEAD(¢)

_ priv b
ee = DHec(e; ", el"”)

_ priv b
se = DHgc(s] ", el"?)

Figure 2.2.: Simplified diagram of the response step of WireGuard’s IKpsk2 protocol.

other direction.
There also exists a formal proof over the WireGuard protocol, showing the general
construction to be secure. [16] This proof is performed by using the Tamarin Prover

protocol verification software.

Cryptographic Primitives

WireGuard’s handshake protocol is performing ECDH on the elliptic curve called
Curve25519 [5]. This curve uses 256-bit keys and provides 128-bit security in a classical
setting. In a quantum setting this primitive is completely broken by Shor’s algorithm.

During the handshake, the BLAKE2s cryptographic hash function is used with
256-bit output. It is not only used for the continuous hash, but also as pseudo-random
function (PRF) in key derivation based on HKDF. HKDF is built upon the HMAC
construction, which does not suffer from collision attacks on the underlying hash
function. As far as the underlying hash function can be assumed to be a PRF the
HMAC can also be assumed to be a PRF for any key. This was shown by Bellare [3]
in 2006. Therefore, HMAC and consequently HKDF provide 256-bit security, when
based on 256-bit keys and the 256-bit BLAKE2s function. The chaining hash on the
other hand uses BLAKE2s directly. For now though, it seems reasonable to accept

Bernstein’s criticism, and assume the best practical attack against hash functions still

14

is of complexity O(2"/2). Also, the security of the handshake does not rely on the
continuous hash being collision-resistant.

After the handshake is completed, WG then uses ChaCha20 and Poly1305 for AEAD.
Both of these primitives are based on 256-bit symmetric ciphers. In a classical setting
these therefore provide 256-bit security. As we have seen in the section about Grover’s
algorithm, the security level may be lower in a quantum setting, but it is not yet clear
by how much. Though, by definition, these achieve NIST level V as defined below.

2.5. State of Post-Quantum Cryptography

With PQ cryptographic primitives there are not yet any established standards. The
United States’ National Institute for Standards and Technology (NIST) is currently
running a project looking to standardize PQ cryptography. Probably our best bet
when looking for promising cryptographic primitives is to look at those submitted to
this NIST project, especially the ones which made it in round 2 of the project. As
those have already undergone public scrutiny, and are still considered viable candidates

for standardization. All cryptographic primitives mentioned in here are submissions to
round 2 of the NIST project. [24]

NIST Level Classical Primitive Attack Cost

I AES-128 2106
II SHA-256 2146
111 AES-192 2169
v SHA-384 2210
\Y% AES-256 2234

Table 2.1.: Post-quantum security levels defined by NIST. Adapted from table in [23].

In their call for proposals for the PQ standardization project, the NIST defines five
levels of security for PQ cryptographic primitives. [23] Here these are labeled with
roman numerals I-V, to better distinguish them from another security classification
introduced in the next chapter. Each of these levels is defined as being at least as strong
as current classical cryptographic primitives AES, SHA3 with specific parameters, as
shown in Table 2.1. The column ‘Attack Cost’ shows a current estimate for the cost
of an attack on the reference primitive, based on numbers from the NIST call for

proposals [23].

15

Next, there is an overview of some of those PQ cryptographic primitives, and whether

they might be useful for bringing P(Q security into WG.

SIDH

Supersingular isogeny Diffie-Hellman (SIDH) is a key exchange protocol [20], which
brings the idea of the ECDH protocol to a PQ setting by using a different mathematical
foundation. Instead of dealing with points on a single elliptic curve, this method
is based on isogenies over supersingular elliptic curves. This is exactly what
makes this method resistant against attacks based on Shor’s algorithm. Namely, the
underlying supersingular isogeny problems are not reducible to the DLP. It is a unique
primitive among the NIST submissions: “[It is| the only candidate based on arithmetic
properties of elliptic curves over finite fields.” [1] Still, the mathematics behind it is
well understood, as research on isogenies and supersingular elliptic curves has long
been going on.

Notably, SIDH allows for smaller key sizes than any of the other NIST submissions.
And they can be further reduced through compression, as shown by Costello et al. at
Microsoft. [12] Unfortunately, computations of this type are expensive, and compression
makes them even more expensive. This method is around an order of magnitude slower

than many of the other candidates, and also way slower than its classical equivalents.

McEliece

The McEliece [22] cryptosystem is one of the many code-based key exchange schemes
submitted to the NIST competition. Security of this scheme is based on the hardness
of decoding random linear codes. It was also the first method of this type, and has
been around since 1978. Therefore, it is considered to be one of the more proven PQ
cryptographic schemes.

The major disadvantage of this category of primitives is the size of their public keys.
Especially the McEliece system has keys that are hundreds of Kilobytes in size, up to
around one Megabyte for the parameters submitted to the NIST competition. Even
the BIKE code-based key exchange, which the NIST calls “competitive with ring and
module lattice schemes” [1] in terms of key size, has key sizes which are 2 4 times

larger than its lattice-based competitors.

16

NTRU

NTRU is a key exchange protocol developed in 1996. [19] Multiple parameter sets were
proposed for round 2 of the NIST standardization process, claiming NIST security levels
I, IIT and V. It represents the largest group of submissions, those using lattice-based
cryptography. The underlying mathematical problem is called the shortest vector
problem in lattices, for which it is of course assumed that there is no efficient quantum
algorithm.

This category of primitives currently is most promising, as they offer a good trade-off
in public key sizes and computational speed. Specifically, NTRU has been around
for a long time. Also, it uses more reliable security properties than SABER [13]
and CRYSTALS-Kyber [9]. These are both also lattice-based cryptosystems, based
on less proven assumptions about Module Learning with Rounding. Another con-

testant with more conservative assumptions is Google’s submission, called NewHope [2].

The rest of the thesis will always talk about PQ primitives in terms of a key encap-
sulation mechanism (KEM). That is, we will assume they provide three relevant
functions. Firstly, a key pair generation function, securely pseudo-randomly generating
a pair of matching private and public keys. Secondly, an encapsulation function,
taking a public key and returning an encapsulated value and a shared secret. Lastly, a
decapsulation function, which in turn can be used on an encapsulated value together
with a private key. If the provided private key matches the public key which was used
to generate the encapsulated value, the decapsulation is successful and returns the

same shared secret that resulted from the original encapsulation.

17

3. Methodology

3.1. Feature Specification

The primary goal of the adaptations proposed in this thesis is to provide security
against future attackers, who are already recording traffic at the current time for later

decryption. Therefore, the two main properties that need to be ensured are:

Perfect Forward Secrecy: Revelation of the static private key of any party should
give no advantage in attacking any message encrypted before the keys were compro-
mised. WireGuard only protects us in this way from attackers with classical computers
because a quantum adversary can get the ephemeral private key from the public key
through Shor’s algorithm. The proposals in this chapter will also consider attackers

with strong quantum computers.

Identity Hiding: Unless the responder’s static private key is compromised, the
initiator’s identity, that is their static public key, should not be revealed. This is the

same level of identity hiding WireGuard offers against classical attackers.

There are also secondary goals, which were considered as much as possible while
still achieving all the primary goals. These secondary goals closely match the main

selling points of WireGuard:

e high throughput (over tunnel)
e low ping (on handshake and tunnel packets)

e 1-RTT handshake

Security against an active quantum-capable attacker is an optional low-priority goal
because at the current moment this is not a clear threat. On the other hand, someone
could currently be collecting encrypted traffic to decrypt it once they have a quantum

computer. This threat is already real and current.

18

3.2. Protocol Design

First of all, there will be a definition of 4 security levels for PQ) handshake protocols.
These satisfy the original feature set WireGuard has in a classical setting to varying
degrees in a quantum setting. In contrast to the security levels defined by NIST, these
levels only make claims about general properties of key exchange protocols, regardless
of the primitives and key lengths used. The NIST security levels on the other hand
concern cryptographic primitives and their parameters, and are defined by a specific
level of computational cost that would be needed to break them. One could achieve
each of the above handshake security levels for any of the NIST security levels. When
using different primitives or different parameters for one primitive in a single protocol,
one could even achieve different NIST security levels for different parts of the same
protocol. In this sense, the two security levels are orthogonal.

This classification starts from level 0, which in a quantum setting gives none of
WireGuard’s interesting security features, and goes up to level 3, which should be

at least as secure against quantum attackers as WireGuard is against classical attackers:

Level 0 is defined by what the WG specification allows. PQ security is very limited:
It provides basic encryption, but neither PFS, nor identity hiding, nor any security
against active quantum-capable attackers. Thus, if a quantum adversary learns the
PSK, everything is compromised. By definition IKpsk2 is a valid level 0 handshake if
the PSK comes from a PQ KEM.

Level 1 provides PFS on all tunnel packets, but there is no guarantee of identity
hiding, and no guarantees against active attackers. As soon as available quantum
computers can break the classical primitives used in WireGuard, the identity of the

initiator has to be seen as compromised.

Level 2 guarantees PFS and identity hiding on the same level as WG does against
classical adversaries. It still only considers passive attackers though. Therefore, once
strong quantum computers exist, protocols that achieve this security level or lower

need to be considered unusable.
Level 3 is only considered achieved if the protocol has the same general security

properties in a PQ setting, as WG’s handshake does in a classical setting. That is, it

needs to be secure against active attackers with quantum computers, in addition

19

to all capabilities of a level 2 key exchange. Such a protocol can therefore no longer

rely on classical cryptography for authenticating the peers to each other.

To achieve any of these goals, except for level 0 of course, adaptations to the handshake
protocol definitely need to be made. The rest of the cryptography does not need
to be adapted. All currently known quantum algorithms do generally break neither
symmetric ciphers nor hash functions. They might force people to use longer keys than
they would have done otherwise, but 256-bit keys should be enough for the foreseeable
future.

Now the three handshake protocols will be presented. All of these use classical and
PQ cryptographic methods in a hybrid setting, meaning every PQ KEM is backed up
by a classical key agreement serving the same purpose. The reason for this decision is
that all currently available PQ KEMs are in an early developmental stage. No sufficient
testing and analysis has taken place. It would therefore be reckless to rely on these
alone for the protocol’s security. That is why results of both types of exchanges are
incorporated into the keys, thus giving at least the security of the classical exchange,
even if the PQ primitives turn out to be less secure. All the following handshakes are
simple extensions of the protocol used in WireGuard. The way how Noise protocols use
the chaining key, they naturally allow for extension. For adding new key agreements
as parts of the handshake, one can simply add the results of these key agreements
into the chaining key to incorporate them into the protocol. The proposals meet PQ
security levels 1, 2, and 3 respectively, as defined above.

In the diagrams depicting the protocol calculations and message exchanges, everything
that stays the same is omitted. This is a reasonable simplification because every
increasing level only ever adds steps to the previous protocol. No steps of the previous
protocol are ever modified or removed. Also, for legibility, the computations for updating

the continuous hashes and the chaining keys have been omitted from the diagrams.

3.2.1. L1 Handshake

Firstly, the aim is to go from the default level 0 protocol to a level 1 handshake, i.e. to
achieve PFS in a quantum setting.

A simple ephemeral key encapsulation is performed for some PQ cryptographic
primitive. The initiator generates an ephemeral key pair, and sends their public
ephemeral PQ key with the initiation message in plaintext, just as they do with

the classical ephemeral key. Upon receiving the initiation, the responder performs a

20

Level 1 changes to IKpsk2

Initiator Responder

(eq?™,eq"™) = Genpq()

eqfuz),
(ev, ss) = encaps(eg”™”)
ev, ...

ss = decaps(ev, eqf“b)

Figure 3.1.: Steps added to the IKpsk2 protocol to achieve level 1 PQ security.

key encapsulation on that public key. This results in them having two values: The
shared secret and an encapsulated value, which is based upon that same secret and
the initiator’s public key. The response message includes the encapsulated value, also
in plaintext. Upon receiving the response the initiator can then do the inverse, by
decapsulating the shared secret from the encapsulated value using their private key.
Both parties are then in the same state again, and have performed an ephemeral key
exchange. Figure 3.1 shows all steps that need to be added to the level 0 handshake
protocol in order to arrive at a handshake with level 1 PQ security.

Here is the level 1 handshake protocol in something resembling Noise notation, where

changes to the IKpsk2 protocol are highlighted in bold:
<-'8
-> e, eq, es, s, Ss
<- e, enc(eq), ee, se, psk

This protocol obviously provides PFS in a PQ setting because both parties agree upon
an ephemeral secret in a way that is secure against quantum adversaries. PFS is also at
least as strong against classical adversaries as in WG because all ECDH exchanges are

still part of the protocol. Authentication is given by the underlying classical handshake

21

Level 2 changes to Level 1

Initiator Responder

ub
sqgEv?, L.

(ev, ss5) = encaps(sqP?)

ev,

ss = decaps(ev, sg?"™")

Figure 3.2.: Steps added to the level 1 handshake protocol to achieve level 2 PQ
security.

because the handshake can still only succeed if both parties proof that they own the

private key corresponding to their identity.

3.2.2. L2 Handshake

Secondly, the goal is to go from level 1 to level 2 PQ security for the handshake protocol,
i.e. to achieve identity hiding as long the responder’s static private key stays secure.

To achieve that, a static PQ key pair is added on the responder’s side. Assuming
the PQ static public key is also known to the initiator from the beginning, as is the
classical one. The initiation message can then already contain the encapsulated value
generated from it. On the other hand, the shared secret from the encapsulation can be
integrated into the chaining key, prior to encrypting the classical static public key of
the initiator. In Figure 3.2 you can see all steps that need to be added to the level 1
handshake protocol shown previously in order to achieve level 2 PQ security.

Following is this level 2 handshake protocol in pseudo-Noise notation, where changes
to the level 1 protocol have been highlighted in bold:

<- s, sq

-> e, eq, enc(sq), es, s, ss

<- e, enc(eq), ee, se, psk

The initiator’s identity is now encrypted under the new PQ shared secret. Assuming

22

the PQ KEM used is secure, the only way for the responder to derive the shared secret,
and thus the initiator’s identity, is to know the secret key corresponding to sq. No
malicious party can therefore find out the initiator’s identity, without first having
compromised the responder’s private static key. This is the same level of identity hiding
WG provides in the classical case. Identity hiding is also at least as strong as in WG
because all ECDH exchanges are still part of the protocol.

Inadvertently, this protocol also serves to authenticate the responder to the initiator
on their PQ identity because the handshake can only finish successfully if the responder

manages to decrypt the initiator’s identity.

3.2.3. L3 Handshake

Lastly, the target is to go from level 2 to level 3 PQ security for the handshake protocol,
i.e. to also achieve security against active attacks by quantum adversaries.

Another static key pair is added, this time on the initiator’s side. The basic structure
of the PQ parts of the protocol then resembles a Noise IK handshake, which is the same
as IKpsk2 only without the PSK. Both parties have a static key pair to authenticate
each other’s identities, where the responder’s static identity is known to the initiator
in advance. Also, the responder is first to authenticate their identity, they both agree
on an ephemeral secret together, and finally the initiator authenticates their identity.

The PQ static public key of the initiator is sent in the same way as the classical
equivalent. Both are under an encryption key based on shared secrets derived from
both static public keys of the responder, the classical and the P(Q one. Thus, both keys
have the same level of identity hiding, which should be as strong as the strongest of
the classical and the PQ primitive. After the responder received the initiation message,
they can then decrypt the initiator’s PQ static public key, and subsequently encapsulate
it. Finally, the responder sends the encapsulated value back in the response message,
and integrates the shared secret into the chaining key. To arrive at the same state, the
initiator does the equivalent steps on their side upon receiving the response message.
Figure 3.3 displays all steps that need to be added to the level 2 handshake protocol

shown previously in order to reach level 3 PQ security.

23

Level 3 changes to Level 2

Initiator Responder

L
(sq”, sg™™), ...

AEAD(s¢™™), ...

(ev, ss) = encaps(sq™”)

ev, ...

ss = decaps(ev, s¢”""")

Figure 3.3.: Steps added to the level 2 handshake protocol to achieve level 3 PQ
security.

This is the level 3 protocol in pseudo-Noise notation, where everything that has

changed from the previous level 2 protocol is written in bold text:

<- s, sq

-> e, eq, enc(sq), es, s, sq, ss

<- e, enc(eq), enc(sq), ee, se, psk

These changes serve to authenticate the initiator on their PQ identity. This is indeed
achieved, because the initiator can only arrive at the same final state as the responder
if they know the shared secret from the encapsulation. Assuming the PQ primitive
used is secure, this is only possible if they can decapsulate the encapsulated value for
the public key they sent. This in turn should only be possible if they know the private
key matching that public key. Therefore, if the first data packet sent by the initiator
has valid authentication, the responder can be confident that the initiator knew the

private key corresponding to the public key they sent in the initiation message.

24

4. Implementation

4.1. Engineering Process

Two libraries already offer a unified interface for implementations of many NIST
candidates. The two libraries in question are libogs [30] and libpqcrypto [7]. Both
these PQ cryptography libraries and most of the original reference implementations
heavily depend upon the C standard library. The problem then is that they can not
be directly compiled as part of a kernel module. This led to the decision of basing
the proof-of-concept implementation on a user space implementation of WireGuard,
as opposed to the original kernel space implementation. Cloudflare has developed an
implementation of the WireGuard software in user space. They call this implementation
BoringTun and it is open-source on GitHub. [11] It is written in the Rust programming
language. This project was used as basis for the proof of concept.

An additional benefit of this decision is that it allows for easy benchmarking via
Criterion.rs [18], a Rust crate which will be introduced in the next chapter. This is
especially useful for a proof of concept.

As the proof-of-concept code directly extends upon a WireGuard implementation, the
design choices that were made in developing WireGuard were considered here. The fact
that the proof-of-concept code works with Cloudflare’s Rust implementation, instead
of the original C code, makes some memory-safety design choices of the WireGuard
code obsolete. Care has been taken to not break any of the general design principles

through the changes made.

liboqgs

Open Quantum Safe is an open-source project started by Douglas Stebila and Michele
Mosca of Waterloo University. Main part of the project is libogs [30], a C library
of post-quantum cryptography functions. This is also the library used for the PQ
cryptography in the proof-of-concept implementations, where the C functions are called

via the Rust’s foreign function interface.

25

One advantage of this library over libpgcrypto is, that it has implementations for
SIDH. Also, it is updated and maintained more frequently. Therefore, adaptations to

the NIST submissions are integrated earlier.

4.2. Proof-of-concept Code

Source code of the proof-of-concept implementation, including the benchmarks we
discuss in the next chapter, is available on GitHub as a project forked from Cloudflare’s
BoringTun [11]:

https://github.com/gkniep/pqwg-rust

The project is split among two branches: master (implementing L0 and L1), and 1v123
(implementing L2 and L3 handshakes). Whenever the proof-of-concept implementation
is mentioned throughout this thesis, the commits with commit message ‘BA Submission

Version’, and with the following hash values, are referenced:

master: b2a19d5531dce66439190e7beb8780c4e19f96f9
1v123: 706f05d23dad192c5ff9p3a9082de205a9cfel150

A basic manual on how to run the benchmarks can be found in the README file of
the repository.

26

5. Results and Critical Discussion

As the main question here is one of usability, the following will mainly be a performance
comparison, comparing the proof-of-concept handshake protocol implementations to
the default WG protocol, as implemented in BoringTun. To accommodate for any of
the three higher security levels defined in the Feature Specification, only the handshake
code was changed. Therefore, most focus will be put on the handshake computations,

as well as initiation and response message transmissions.

5.1. Message Sizes

Adding more key exchange primitives to the handshake protocol obviously adds addi-
tional data, in the form of public keys and encapsulated values. This data needs to be
transmitted in the initiation or response message.

With PQ KEMs that data is relatively large for network transmissions, hundreds
of Bytes up to hundreds of Kilobytes in the worst cases. Thus, packets may easily
become larger than the Ethernet maximum transmission unit (MTU) of 1500 Bytes.
Since WG is based on UDP, there is no segmentation functionality on the Transport
Layer. If large data is sent over UDP, packet fragmentation may happen on the IP
layer. Relying on this functionality is considered fragile, and the IETF specifically
advises against it. [8] This is because the IP standard allows routers to drop large
packets silently.

A way around IP fragmentation is to split the datagrams on the application layer.
When using UDP, this can still be terrible for performance because the handshake will
fail anytime one of the datagrams is lost. The more datagrams we need for one message,
the higher the probability for losing one of them is. Thus, breaking up messages into
more datagrams makes the handshake take longer on average.

A datagram size of 1436 Bytes is reasonable for this, because according to analysis
by Shannon and Moore [31] around 98% of MTUs are between 1484 1500 Bytes.
Subtracting 8 Bytes for the UDP header and 40 Bytes for the possibility of an IPv6

27

header, we arrive at the number above. Also, the IPv6 standard recommends an MTU

of at least 1500 Bytes, and requires acceptance of packets up to that same size. [14]

Connection dt [ms]
Wired-Cable 23.1
Waireless-House 29.2
Wired-DSL 32.2

Wireless-Apartment 36.7

Table 5.1.: Average time impact of sending an additional UDP datagram as part of
the WG handshake, for different connection types.

In WireGuard datagram loss is especially problematic because: “Under no cir-
cumstances will WireGuard send an initiation message more than once every Rekey-
Timeout.” [15] By default, this Rekey-Timeout is set to five seconds (5000 ms). Table 5.1
shows the average cost of an additional UDP datagram being sent, that results from
this Rekey-Timeout policy combined with a study about typical packet loss rates
published by Raghavendra [29]. This gives an upper-bound estimate of about 23 37 ms,
depending on connection type, for the average cost of each additional datagram. These
numbers ignore the impact of half-finished key exchanges. Anyways, this impact is
negligible, at around 0.5 ms for a very expensive handshake, which takes 200 ms for its
computations. Going on from here, all calculations will use the average of 30 ms per
additional datagram.

Choosing cryptographic primitives with small key sizes is thus essential to prevent
unnecessary overhead, in the form of excessive transmission times. Cryptographic
primitives with excessively large public keys or encapsulated values have thus been
excluded from all following considerations. For example, all code-based cryptosystems,

which need many Kilobytes for a public key.

Amplification Attacks

The SABER series of cryptographic primitives [13] has a specific problem regarding
message sizes. WireGuard relies on the initiation message being larger than the
response message, to prevent DoS attacks based on amplification. For each of the
SABER primitives (LightSABER, SABER, FireSABER), the encapsulated values are
more than 56 Bytes larger than the public keys. These 56 Bytes are exactly the
difference in length standard WG has in favor of the initiation message. In the L1 and

L3 handshakes previously defined, the response message contains one more encapsulated

28

value, whereas the initiation message contains one more public key. Therefore, using a
SABER KEM for these handshakes would lead to vulnerability against amplification
attacks, as the response message would then become larger than the initiation message.
Though to use a SABER primitive anyways, the initiation message can be padded to
be larger again. The numbers of datagrams in the following always accommodate for

this padding.

Memory Exhaustion Attack

Another problem when splitting messages, here especially the initiation message, into
multiple UDP datagrams is the possibility of a memory exhaustion attack. [8] This is a
type of DoS attack, in which an attacker tries to fill the target’s memory. In this case
they would achieve that by sending datagrams, which appear to be incomplete initiation
messages. If the responder saves all the datagrams, waiting for another datagram to
finish the message. The malicious initiator may continue sending incomplete messages,
until the responder runs out of memory.

WireGuard already has a system that uses MACs and a concept called IP-binding
cookies to prevent CPU-exhaustion attacks. [15] This system could be expanded, to
also prevent the type of attack described above. IP-binding cookie messages should be
sent, not only when the system is under computational load, but also if the system is
running short on memory.

An alternative approach would be to include the data WG would send in the initiation
message in every datagram of the split initiation message. Only the PQ data would still
be split among the datagrams. Upon receiving any of the datagrams, the responder
could already start checking the classical WG data for validity. They could then decide
to keep the datagrams already received, and potentially wait for the other datagrams to
arrive, if the classical WG data is valid so far. In the other case, they could throw away
the datagrams. Of course this has some overhead in message size. Another disadvantage
is, that this approach would make parsing incoming messages more difficult. Thus

increasing the amount of code needed for that functionality.

29

Cryptographic PK EV L1 Ini/Rsp L2 Ini/Rsp L3 Ini/Rsp

Primitive [Bytes] [Datagrams| [Datagrams| [Datagrams]
NewHopel024 1824 2208 2/ 2 3/2 5/ 4
Kyber-1024 1568 2/2 3/2 4/3
FireSABER 1312 1472 2/2 3/2 4/3
NTRU4096 1230 1/1 2/ 1 3/2
SIDHp751 564 1/1 1/1 2 /1
SIDHp751c 334 1/1 1/1 1/1

Table 5.2.: Number of datagrams of size 1436 needed for the different handshake
messages, with some NIST level V primitives.

Cryptographic PK EV L1 Ini/Rsp L2 Ini/Rsp L3 Ini/Rsp

Primitive [Bytes] [Datagrams| [Datagrams| [Datagrams]
Kyber-768 1184 1088 1/1 2/1 3/2
SABER 992 1088 1/1 2/ 1 3/2
NTRU2048 930 1/1 2/1 3/2
SIDHp610 462 1/1 1/1 2/ 1
SIDHp610c 273 1/1 1/1 1/1

Table 5.3.: Number of datagrams of size 1436 needed for the different handshake
messages, with some NIST level III primitives.

5.2. Handshake Benchmark

All runtime benchmark results that follow come from the different benchmarks being

run on the same workstation, with the following hardware and system specifications:
e CPU: Intel Xeon E3 1230 v3 (4x3.3 GHz, 8 MB Cache, AVX2, AES-NI)
e RAM: 8 GB DDR3 1600
e OS: Arch Linux x86_ 64
e Kernel: 5.3.7 archl 2 ARCH

Except for a simple window manager and the terminal emulator, no user processes
were running on the workstation during benchmarking.

The benchmark code is based on the test code written by Cloudflare and provided
with the BoringTun source code. Specifically, the benchmark calls the handshake

test function. The test code has been adapted to send just a single packet over the

30

Cryptographic PK EV L1 Ini/Rsp L2 Ini/Rsp L3 Ini/Rsp

Primitive [Bytes] [Datagrams] [Datagrams| [Datagrams]
NewHope512 928 1120 1/1 2/ 1 3/2
Kyber-512 800 736 1/1 2/1 2/ 2
LightSABER 672 736 1/1 2 /1 2/ 2
NTRU2048 699 1/1 2/1 2/ 2
SIDHp434 330 1/1 1/1 1/1

Table 5.4.: Number of datagrams of size 1436 needed for the different handshake
messages, with some NIST level I primitives.

WireGuard tunnel, instead of the 128 packets in the original code. This still ensures
the handshake is actually performed, and that a packet can successfully be transmitted,
but it measures mostly the runtime of the handshake itself. On the reference system,

sending one packet over the tunnel takes less than 0.25 ms.

Criterion.rs

Criterion.rs [18] is the Rust crate that was used for running the benchmarks and
doing the basic statistical evaluation. Criterion takes a number of samples s and
a measurement timespan m as inputs for running a benchmark. It then runs the
benchmark a few times for warm-up, to have data already loaded into caches if
applicable. Following this, the actual measurement part begins. During this phase,
Criterion performs s samples S, ..., 5. For each sample S, it runs x - ¢ iterations,
where ¢ is the minimum integer for which all samples can run in a total time of about
m. Also, i is at least 1, even if the total benchmark runtime then is way more than m.
In this way, sample size can override the measurement time.

Unless otherwise specified, all following benchmarks were run on the reference system
above, with sample size set to 100, and the measurement time set to at least one

minute.

Results

In the following, results of the runtime benchmarks will be presented. These use a
selection of the most interesting cryptographic primitives, based on the results from
the Message Sizes section and results from the benchmark in libogs (Appendix A).

SABER and NewHope primitives have been removed from the selection because both

31

have slower computation and are no better in message sizes than Kyber. For the same
reason the NIST level I variant of NTRU is not part of the selection.

L0 Time [ms] 1.245
Primitive L1 Time [ms] L2 Time [ms] L3 Time [ms]

Kyber-512 (I) 1.646 1.742 1.986

SIDHp434 (I) 66.20 113.1 160.6
Kyber-768 (III) 1.859 2.066 2.459
NTRU2048 (III) 18.77 18.96 20.09
Kyber-1024 (V) 2.123 2.387 3.010
NTRU4096 (V) 26.33 27.47 28.86

Table 5.5.: Average runtime of each handshake with different NIST primitives. Mea-
suring the handshake and sending a single packet over the tunnel.

The runtime for any combination of the PQ handshakes with the NIST primitives is
shown in Table 5.5. It can be seen that the Kyber family of primitives is the fastest by
a big margin. SIDHp434 is so slow, that the slower variants which would achieve NIST

levels IIT and V have not been considered.

5.3. Use Cases

Home VPN Server (L1)

In this scenario, identity hiding is not as important as the data going through the
tunnel. An example for this would be a VPN setup where there is no identity hiding
anyways. For example, if you have a RaspberryPi set up at home that you alone use
as a VPN server. To which you connect when you are on the go, to be less vulnerable
through unprotected Wi-Fi networks.

Kyber-768 seems almost perfect for the L1 handshake, as it is almost as fast as WG
(see Figure 5.1), and also fits into one datagram per message.

If one wants to achieve NIST level V instead, choice of cryptographic primitives is
not as easy. As we have seen in Table 5.2, we have a choice between SIDH and NTRU,
to keep everything in one datagram per message. Then again, NTRU is much faster
than SIDH, see Table 5.5. Kyber-1024 needs three additional datagrams. This might
seem daunting, but computationally it is way faster than NTRU. The trade-off may

be worth it in some cases, for example if the connection is known to be reliable.

32

WG Reference | 1.2 61.2 Total - Calculations

Kyber768 (1ll) I 19 61.9

NTRU2048 (lll) - 18.8 78.8

0 20 40 60 80 100 120 140
time [ms]

Figure 5.1.: Time the L1 handshake takes with different P(Q) crypto primitives.

Going for a lower NIST level than III is not reasonable. The cost advantage of
using Kyber-512 is minimal, at less than 0.5 ms. At the same time, NIST level I
is significantly less secure than level III, providing an expected 64 bits less security,
see Table 2.1. So, unless forced to by a really low-resource environment, going for
Kyber-768 or NTRU4096 would be the more reasonable choices.

Trusted Network Access (L2)

For this use case, we want to protect the data and the clients’ identities. For example,
the VPN server is a secure entry point of some sort: to a company, university, or some
other trusted network. Many different users connect to the server, to securely access
computer infrastructure inside the trusted network.

Achieving NIST level V on an L2 handshake is the most interesting case. It cor-
responds to the original goal of having the same security guarantees in a PQ) setting
that WireGuard has against classical adversaries. Here, the cost trade-off of sending
additional datagrams and doing more costly computations has to be pondered. Choos-
ing NTRU over SIDH is well worth it, as we have seen. Also, the same trade-off of
using Kyber-1024 over NTRU4096, as for the L1 handshake, may be pondered. As

33

WG Reference @ 1.2 61.2 Total - Calculations

Kyber768 (Il) | 21 92.1

NTRU2048 (lll) - 19.0 109.0

0 25 50 75 100 125 150 175 200
time [ms]

Figure 5.2.: Time the L2 handshake takes with different P(Q) crypto primitives.

can be seen in Table 5.5, for the L2 handshake Kyber-1024 takes 25 ms less time in
computation than NTRU4096. Also, the difference in transmission times is lower than
for the L1 handshake. Especially in settings where computation power is more scarce
than connection stability, Kyber-1024 can be favored.

It could again be reasoned to only go for NIST level III, for which the much faster
Kyber-768 can be used, while at the same time using no more datagrams than
NTRU4096 on L2. Going for even weaker cryptographic primitives is once again
not warranted. In general though, it is recommended to use NTRU4096 or Kyber-
1024 for an L2 handshake. This achieves all goals set in the Feature Specification at a
reasonable cost.

Future Proof System (L3)

In cases where a system is developed or infrastructure built that should not need to be
adapted again once capable quantum computers arrive, the system needs to already
implement an L3 handshake. If it were reasonably inexpensive to implement, one could
even argue to skip L2 and directly include L3 everywhere.

Implementing the L3 handshake with NIST level V primitives costs at least an

34

WG Reference 1.2 61.2 Total - Calculations

Kyber768 (1ll) | 25 152.5

NTRU2048 (lll) . 20.1 170.1

0 50 100 150 200 250
time [ms]

Figure 5.3.: Time the L3 handshake takes with different PQ) crypto primitives.

additional two datagrams, i.e. around 60 ms, over L2. Alternatively, one could switch
to SIDH, which is even more expensive. That is a lot to pay for preventing attacks
which are not possible until major developments in building quantum computers are
achieved. Skipping L2 is therefore in general not warranted. Only in cases where a
reliable connection is absolutely guaranteed, it might make sense to already introduce
an L3 handshake because the major cost for additional datagrams would vanish.

An alternative approach would be to lower the NIST level to III. Then, the fastest
solution would be Kyber-768 again, needing three additional datagrams over the L0
handshake. Additionally, this has the cost of also weakening our defenses against the
(more relevant) passive attacks. Only targeting NIST level III (or lower) for such a
future-oriented system is probably a bad idea anyways.

In Summary, if one really wants to be this future-proof, a significant price in
performance needs to be paid. Using either NTRU4096 or maybe Kyber-1024 as

the cryptographic primitive looks suitable for this use case.

35

Level 0 (WG)

Level 1 o
(Kyber-1024) ® d .
Y. w8
Level 2 °
(Kyber-1024) ‘ s “
2 o)

Level 3
(Kyber-1024)

1.5 2.0 25 3.0 35
average time [ms]

Figure 5.4.: Runtime of the handshakes with different PQ) security levels. Each per-
forming the handshake and sending 1 packet over the tunnel.

5.4. Throughput, Ping, Reliability

The visual representation used for these results is called a violin plot. Also, the single
measurement points, each representing a single Criterion sample, are overlaid on top.
The violin plot in the background simply shows the probability distribution of the
samples.

To incorporate the desired PQ) security features, only the handshake had to be
changed. Notably, nothing about the symmetric cryptography was changed. Once the
tunnel is established only symmetric crytpography, in form of the AEAD based on
ChaCha20 and BLAKEZ2s, is used. Therefore, it is to be expected that there is no
noticeable difference in throughput and average packet ping. Especially when measured
over the course of a longer networking session.

When we benchmark just the handshake and sending a single packet over the
WireGuard tunnel, we still see significant differences between the handshakes. This
can be seen in Figure 5.4.

But even after sending only 2000 packets, it is already apparent that the key exchange

makes little difference on the total time it takes. This can be seen in Figure 5.5. In

36

Level 0 (WG)

Level 1
(Kyber-1024)

Level 2
(Kyber-1024)

Level 3
(Kyber-1024) .

70 80 90 100 110 120
average time [ms]

Figure 5.5.: Runtime of the handshakes with different PQ) security levels. Each per-
forming the handshake and sending 2000 packets over the tunnel.

these examples packets are sent to localhost, and latency is thus minimal. Results are
expected to be even more similar for the different handshakes as number of packets
transmitted increases, or if packets are sent over an unreliable connection. Also,
standard deviation is much higher than with only a single packet. This is also expected
because packet transmission times are highly variable. When increasing packet count
or reducing reliability of the connection, this change should also become more apparent.
This benchmark already serves as an indicator that throughput does indeed stay the
same when using the higher security level handshakes.

WireGuard already has a feature that ensures that service is not disrupted during
the handshake. There are two timeouts for a WG session. A soft timeout after two
minutes, when WG will start the new handshake. The hard timeout is only after
three minutes, when WG will no longer accept packets encrypted with the old session
key. Consequently, there is a sixty seconds grace period, during which the old key
can still be used to send packets over the tunnel. For the results above this means
that increasing the probability of the handshake failing, as most P() methods do by

increasing the number of datagrams, is not as big a deal as might at first be assumed.

37

6. Conclusion

6.1. Summary

This work has shown that it is indeed already feasible to implement basic PQ security
measures, especially in a setting where key exchanges do not happen too frequently.
VPN software is therefore a perfect starting point, whereas TLS with ephemeral PQ
keys may be a long time in coming.

At the moment, the cost in performance is still high though. Reasonably, application
developers might therefore want to give users the choice to enable or disable PQ
cryptography. Depending on the use case, the threat model may not even include
attacks that far into the future. Transmitted data can lose its value fast enough that
PQ security is not of concern.

Furthermore, for almost any use case, it is probably too expensive to implement
security against active quantum adversaries. The threat is just not there yet, and the

additional cost is significant.

6.2. Future Work

Results from this work can be used as a basis for estimating the cost of including PQ
measures into key exchanges. From this point one can decide, for a specific use case,
whether the gain in security against possible future attacks is worth the additional cost
in computation and transmission times today.

What is still missing is a formal proof for the proposed PQ handshake protocols.
This could probably be done by building upon the work of Donenfeld and Millner [16].
The Tamarin model could be extended, analogous to the way the code was extended
to implement the protocols.

Regarding implementation, the proof of concept given definitely has to be regarded
as such. It has to be cleaned up, optimized for performance, and undergo security

review, before it can be considered production-ready. Also, datagram splitting on the

38

application layer and one of the methods for preventing memory exhaustion attacks
still have to be implemented.

Furthermore, research in the applications of post-quantum cryptography needs to be
continued. Especially efforts at cryptanalysis of all the currently proposed cryptographic
primitives are necessary. Only this way can the confidence in these methods increase.

Lastly, research into finding another mathematical foundation for PQ cryptographic
primitives may be warranted. Code-based methods have the disadvantage of very
large public keys, whereas supersingular isogeny methods are very slow to compute.
Currently, only the lattice based methods seem to offer a good middle ground. If the
shortest vector problem proofs to be not as hard as now assumed, we may be in big

trouble if we have no reasonable alternatives.

39

Bibliography

1]

[10]

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel
Smith-Tone, and Yi-Kai Liu. Status report on the first round of the NIST post-
quantum cryptography standardization process. https://doi.org/10.6028/
NIST.IR.8240, Jan. 2019. Accessed November 17, 2019.

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe. Post-
quantum key exchange a new hope. In 25th USENIX Security Symposium
(USENIX Security 16), pages 327 343, 2016.

Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Annual International Cryptology Conference, pages 602 619.
Springer, 2006.

Daniel J. Bernstein. TAI64, TAI64N, and TAI6ANA. https://cr.yp.to/
libtai/tai64.html, 1997. Accessed November 17, 2019.

Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In
International Workshop on Public Key Cryptography, pages 207 228. Springer,
2006.

Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete? Jan. 2009.

Daniel J. Bernstein. libpqcrypto. https://libpqcrypto.org/, 2018. Accessed
November 17, 2019.

Ron Bonica, Fred Baker, Geoff Huston, Robert Hinden, Ole Troan, and Fer-
nando Gont. Ip fragmentation considered fragile. Internet-Draft draft-ietf-
intarea-frag-fragile-17, IETF Secretariat, Sep. 2019. http://www.ietf.org/
internet-drafts/draft-ietf-intarea-frag-fragile-17.txt.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber:
a CCA-secure module-lattice-based KEM. In 2018 IEEE FEuropean Symposium
on Security and Privacy (EuroS€P), pages 353 367. IEEE, 2018.

Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN’9S8: Theoretical Informatics, pages 163 169, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

40

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Cloudflare. Boringtun. https://github.com/cloudflare/boringtun, Mar.
2019. Accessed November 17, 2019.

Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David
Urbanik. Efficient compression of SIDH public keys. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
679 706. Springer, 2017.

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and
cca-secure kem. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, Progress in Cryptology AFRICACRYPT 2018, pages 282 305. Springer
International Publishing, 2018.

Stephen Deering and Robert M. Hinden. Internet protocol, version 6 (ipv6)
specification. STD 86, RFC Editor, July 2017.

Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In
Proceedings of the 2017 Network and Distributed System Security Symposium,
NDSS’17, San Diego, CA, USA, Feb. 2017.

Jason A. Donenfeld and Kevin Milner. Formal verification of the WireGuard proto-
col. https://www.wireguard.com/papers/wireguard-formal-verification.
pdf, 2017. Accessed November 17, 2019.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC 96, pages 212 219, New York, NY, USA, 1996. ACM.

Brook Heisler. Criterion.rs. https://github.com/bheisler/criterion.rs,
Mar. 2014. Accessed November 17, 2019.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public
key cryptosystem. In International Algorithmic Number Theory Symposium, pages
267 288. Springer, 1998.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19 34. Springer, 2011.

Julian Kelly. A preview of bristlecone, Google’s new quantum processor. https:
//ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles—new.
html, Mar. 2018. Accessed November 17, 2019.

Robert J. McEliece. A public-key cryptosystem based on algebraic. Coding Thuv,
4244:114 116, 1978.

41

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

National Institute of Standards and Technology. Submission requirements and eval-
uation criteria for the post-quantum cryptography standardization process. https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf, Dec. 2016. Accessed
November 17, 2019.

National Institute of Standards and Technology. Round 2 submis-
sions. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions, 2017. Accessed November 17, 2019.

Deborah Netburn. Q&A: Google claims ‘quantum supremacy.” what could that
mean for the future of computing? https://www.latimes.com/science/story/
2019-10-23/quantum-supremacy-google-computers, Oct. 2019. Accessed
November 17, 2019.

Paul C. Van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of cryptology, 12(1):1 28, 1999.

Trevor Perrin. The Noise protocol framework. https://noiseprotocol.org/
noise.pdf, Jul. 2018. Accessed November 17, 2019.

John M. Pollard. A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15(3):331 334, Sep. 1975.

Ramya Raghavendra and Elizabeth M. Belding. Characterizing high-bandwidth
real-time video traffic in residential broadband networks. In In WiOpt '10:

Proceedings of the 8th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, pages 597 602, 2010.

Open Quantum Safe. libogs. https://github.com/open-quantum-safe/
libogs/, Aug. 2016. Accessed November 17, 2019.

Colleen Shannon, David Moore, and Kimberly C. Claffy. Beyond folklore:
observations on fragmented traffic. [IEEE/ACM Transactions on Networking
(TON), 10(6):709 720, 2002.

Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, SFCS 94, pages 124 134, Washington, DC, USA, Nov. 1994. TEEE
Computer Society.

Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review
A, 60(4):2746 2751, Oct. 1999.

42

A. libogs Benchmark

The following are results from running the benchmark code in the libogs project on
the reference system mentioned in the Results chapter. It compares all the Kyber,
NewHope, NTRU, and SABER primitives. The table has been edited to only contain

the most relevant columns.

Operation | Iterations | Time (us): mean | pop. stdev

Kyber512-90s

| | |
keygen | 83297 | 36.016 | 1.256
encaps | 66960 | 44.803 | 1.484
decaps | 55860 | 53.706 | 1.664
Kyber768-90s | | |
keygen | 48125 | 62.338 | 1.732
encaps | 40487 | 74.099 | 1.878
decaps | 34578 | 86.761 | 1.951
Kyber1024-90s | | |
keygen | 31879 | 94.107 | 2.238
encaps | 27874 | 107.630 | 2.466
decaps | 24274 | 123.593 | 2.606
NewHope-512-CCA I | |
keygen | 59839 | 50.135 | 1.411
encaps | 41474 | 72.336 | 1.601
decaps | 37665 | 79.651 | 1.929
NewHope-1024-CCA | | |
keygen | 30112 | 99.631 | 10.367
encaps | 20542 | 146.049 | 2.969
decaps | 18554 | 161.697 | 3.028
NTRU-HPS-2048-509 | | I
keygen | 337 | 8915.852 | 42.533

43

encaps
decaps
NTRU-HPS-2048-677
keygen

encaps

decaps
NTRU-HPS-4096-821
keygen

encaps

decaps
NTRU-HRSS-701
keygen

encaps

decaps
LightSaber-KEM
keygen

encaps

decaps

Saber-KEM

keygen

encaps

decaps
FireSaber-KEM
keygen

encaps

decaps

17425
6907

191
10373
3989

131
7269
2733

179
10629
3700

46097
33484
26999

22565
17658
14750

13298

10853
9364

44

172.
434.

15733.
289.
752.

23048.
412,
1097.

16800.
282.
810.

65.
89.
111.

132.
169.
203.

225.
276.
320.

175
377

529
233
110

802
725
829

654
271
994

081
597
116

954
902
391

613
423
395

3.167

36.
.867

.614

640

9.586

55.
.486
13.

42,
.431
10.

053

797

811

958

1.759
2.035

.403

2.432
3.119

.760

.856

4.624
4.918

Selbstandigkeitserklarung

Ich erkldre hiermit, dass ich die vorliegende Arbeit selbstandig verfasst und noch nicht
fiir andere Priifungen eingereicht habe. Samtliche Quellen einschliellich Internetquellen,
die unverandert oder abgewandelt wiedergegeben werden, insbesondere Quellen fiir
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstoflen gegen diese Grundsatze ein Verfahren wegen Tauschungsversuchs

bzw. Tauschung eingeleitet wird.

Berlin, den 18. November 2019

45

