
Enrollment Workflow
1. User goes to U2F registration page of target website
2. Taps in username and password
3. Website shows page with “Register” button
4. When user clicks, a U2F javascript “get public key”

function is called
5. Browser implements javascript call - it discovers the

attached U2F device and sends the “get public key”
request to it

6. U2F generates key pair after touch, returns public key to
browser, retains private key

7. Browser gives public key to website which associates it
with the user.

Verification/Login Workflow
1. User goes to login page of target website and logs in with username and password
2. Website sends javascript call with user’s public key (in fact key handle) and some

random data to browser.
3. User sees an “Please present U2F” request
4. User ‘attaches’ U2F to computer and presses the activation button
5. Browser interprets javascript call:

a. It looks up the origin server of the calling web page and (optionally) a SSL
connection identifier (ChannelID) if available

b. It concatenates this to the random data the server sent and sends is to the U2F
along with the user’s public key

c. U2F signs the data with the private key and returns it.
6. Browser sends signed data to the server
7. Server verifies that the signature indeed verifies against the public key thus proving

that the U2F had the corresponding private key.

Message Flow during Registration

Privu Pubu - U2F-device-generated private-public key pair

x, y - private and public key for Diffie-Hellman key exchange (point on NIST P256 elliptic curve)

Km - generated shared key used for encrypting GRM

Hk - hashed key handle

CSR - Certificate Signing Request to encode yD, Hk and Pubu

GRM - Device Registration Message, sent back to browser

Certattest - guarantee that key in CSR was generated in a secure environment (verified outside of protocol)

- the server can decrypt the GRM, save the Hk and Pubu and verify origin, DH keys, Certattest, etc.

Registration Response Message

- issued by U2F device

Message Flow during Login

Hk - key handle

KC - channel protection key

r - random challenge

DB - browser data

ctr - counter

- U2F device retrieves H(DB), [KC]Km, Hk and [H(origin)]Kc
- decrypts Hk, decrypts KC and H(Origin)
- performs an origin check
- if correct, it send resp, otherwise error code

- the server verifies the signature and that the origin matches its own origin

Private and public keys

● Multiple solutions are possible:
○ Gnubby can store one or many private keys for

every site
■ hardware costs for memory of thousands of sites

or origins
○ Gnubby can store exactly one private key

■ all origins have the same public key -> bad
○ Key export

■ sites and origins receives and store a public key
and a blob

■ the blob is the private key which is encrypted
■ the key handle will also include the blob for the

Gnubby

Prevention of security risks

● Man-In-The-Middle-Attack
○ Origin name must match with key handle
○ Browser-Data will be hashed
○ Will not protect an enrollment with a MITM

● Counters as a signal for detecting cloned
U2F devices
○ Device and origin save a counter for each operation

of key-pair
● An origin can discover that two accounts use

the same U2F device
○ Usage of multiple devices

● Revoking a key from an origin
○ physical destruction of the secure element

Problems

● The chrome extension did not want to work
with google’s example code
○ problem(s):

■ no knowledge about chrome extensions and javascript
■ the extension has a tld-check which does not allow localhost
■ solution: a simple check for localhost

● The demo for the server application only
works with Google App Engine
○ for a separate Apache, Tomcat, JBoss, etc. module,

more time is needed

Sources
Google Presentation: https://docs.google.com/presentation/d/16mB3Nptab1i4-IlFbn6vfkWYk-ozN6j3-
fr7JL8XVyA/edit?pli=1#slide=id.g19c09a112_2_0

FIDO U2F Raw Message Formats:
http://fidoalliance.org/specs/fido-u2f-raw-message-formats-v1.0-rd-20140209.pdf

U2F Protocol and API Details:
https://docs.google.com/document/d/1Jm_xAJTZGulMOkYOQm-
fIQhhkd2VDr9578oh0KOwcEw/edit#heading=h.q5kqrl82hzpj

U2F: Product Overview: Easy Strong Auth for the web
https://docs.google.com/document/d/1SjCwdrFbVPG1tYavO5RsSD1QpJwj8_im6sl-VWjJ6k0/edit#

U2F: Protocol Design + User Flows:
https://docs.google.com/document/d/12AdwNDIhs6blXGTCOReaUGviBqCtsVrGMtrxGeCCxPU/edit#

https://docs.google.com/presentation/d/16mB3Nptab1i4-IlFbn6vfkWYk-ozN6j3-fr7JL8XVyA/edit?pli=1#slide=id.g19c09a112_2_0
https://docs.google.com/presentation/d/16mB3Nptab1i4-IlFbn6vfkWYk-ozN6j3-fr7JL8XVyA/edit?pli=1#slide=id.g19c09a112_2_0
https://docs.google.com/presentation/d/16mB3Nptab1i4-IlFbn6vfkWYk-ozN6j3-fr7JL8XVyA/edit?pli=1#slide=id.g19c09a112_2_0
http://www.google.com/url?q=http%3A%2F%2Ffidoalliance.org%2Fspecs%2Ffido-u2f-raw-message-formats-v1.0-rd-20140209.pdf&sa=D&sntz=1&usg=AFQjCNHcF4ZW2718Dx5n54BlIZjfhv5Mvg
http://www.google.com/url?q=http%3A%2F%2Ffidoalliance.org%2Fspecs%2Ffido-u2f-raw-message-formats-v1.0-rd-20140209.pdf&sa=D&sntz=1&usg=AFQjCNHcF4ZW2718Dx5n54BlIZjfhv5Mvg
https://docs.google.com/document/d/1Jm_xAJTZGulMOkYOQm-fIQhhkd2VDr9578oh0KOwcEw/edit#heading=h.q5kqrl82hzpj
https://docs.google.com/document/d/1Jm_xAJTZGulMOkYOQm-fIQhhkd2VDr9578oh0KOwcEw/edit#heading=h.q5kqrl82hzpj
https://docs.google.com/document/d/1Jm_xAJTZGulMOkYOQm-fIQhhkd2VDr9578oh0KOwcEw/edit#heading=h.q5kqrl82hzpj
https://docs.google.com/document/d/1SjCwdrFbVPG1tYavO5RsSD1QpJwj8_im6sl-VWjJ6k0/edit#
https://docs.google.com/document/d/1SjCwdrFbVPG1tYavO5RsSD1QpJwj8_im6sl-VWjJ6k0/edit#
https://docs.google.com/document/d/12AdwNDIhs6blXGTCOReaUGviBqCtsVrGMtrxGeCCxPU/edit#
https://docs.google.com/document/d/12AdwNDIhs6blXGTCOReaUGviBqCtsVrGMtrxGeCCxPU/edit#

