Summer
2010 |
Operating Systems Principles
[32 235] half-course, 4VL + 2PR
VL:
Monday, 09:30-11:00, RUD 26,
1'303; Lecturer:
Prof. Redlich
VL:
Wednesday, 09:30-11:00, RUD 26, 1'306; Lecturer:
Prof. Redlich
PR: Monday, 15:15-16:45, RUD 26, 1'303; Lecturer:
Dipl-Inf. Kurth
PR: Wednesday, 15:15-16:45, RUD 26,
1'206; Lecturer:
Dipl-Inf. Kurth |
Computer Science Department
Systems Architecture Group |
Ergebnisse
der Klausur vom 14.7.2010 >>>
hier
<<<
(Klausureinsicht fand am
Dienstag, 20.7.2010, von 14:00-16:00 Uhr in Raum 3.328 statt)
|
Abstract: An operating
system (OS) is the software responsible for controlling and
managing hardware and basic system operations, as well as running
application software such as word processing programs, Web browsers, and
many others.
In general, the operating system is the first layer of software loaded
into memory when a computer starts up. All other software that gets
loaded after it depends on the operating system to provide various
common core services, such as disk access, memory management, process
scheduling, and user interfaces. As operating systems evolve, ever more
services are expected to be common core. These days, an OS may be
required to provide network and Internet connectivity and also to
protect the computer's other software from damage by malicious programs,
such as viruses. Operating systems in widespread use on personal
computers (PC) have consolidated into two families: the Microsoft
Windows family and the Unix-like family. Mainframe computers and
embedded systems use a variety of different operating systems, many with
no direct connection to Windows or Unix.
Building Operating Systems is much about studying existing systems,
knowing common problems, knowing what other people did, and figuring out
if their ideas can be applied to a given new problem. These long-lasting
principles - as opposed to implementation details and user interfaces of today's systems/software - is what this
lecture
is about.
|
Synopsis:
- Half-Course, Praktische Informatik, Hauptstudium.
- Offered regularly, at least once every two years,
usually in spring.
- 2 lectures per week, 2h each, over one semester
(4SWS VL).
- 1 lab (Praktikum) per week, 2h each, over one
semester (2SWS PR).
Credits and grading:
- There will be a few, short, unannounced,
closed-book quizzes to verify your existence and to test your
understanding.
- To qualify for the final written examination (at
the end of the semester), you have to complete all
lab assignments to the satisfaction of the teaching assistant (70%
of all points).
- Regular class attendance is expected; frequent
absences are grounds for a failing grade regardless of other
performance. You may be missing up to 1 lecture per
semester without prior
and reasonable excuse. 'prior' means notification
by email before the end of business the day before the lecture.
'reasonable' means sickness or study-related events that
require your attendance.
- Lectures begin on time. Students arriving
more than 10 minutes late will not be admitted to the
lecture and will be counted as 'missing' that day.
Prerequisites:
- Expertise with C and common development tools
(gcc, make, rpm, cvs) absolutely required. C++ optional.
- Here are some useful tutorials and recommended HU-Berlin
lectures:
Lab (Praktikum):
- Worksheets: [lab1] [lab2] [lab3]
[lab4] [lab5]
(links to the lab worksheets will be added just in time during the course)
NEU: Wie
in der Vorlesung angesprochen, können sich interessierte
Studenten bereits die Praktikums-Aufgaben für das nächste Jahr
ansehen. Dort wird in einer Folge von 6 Aufgaben ein kleines
Betriebssystem selbst implementiert. Wer sich dazu in der Lage
sieht, kann anstelle des aktuellen Praktikums auch einige dieser
Aufgaben lösen. Bitte beachten Sie dabei aber:
- Die Aufgaben bauen aufeinander auf; Sie
müssen also mit dem Lab 1 anfangen , danach Lab 2, ...
- Generell ist dieses
Lab "praktischer" und anspruchsvoller als das der aktuellen
Vorlesung - dafür lernen Sie aber auch mehr :-)
Es ist also eher etwas für diejenigen, die den
Vorlesungsstoff etwas genauer kennenlernen wollen.
- Das Rohmaterial für die Aufgaben habe ich
zwar von Kollegen übernommen, die ähnliches bereits
erfolgreich durchgeführt haben; dennoch besteht die
Möglichkeit, dass sich im Material an einigen Stellen der
Fehlerteufel eingeschlichen hat.
Hier die einzelnen Aufgaben:
- Lab
1: Booting a PC
- Lab
2: Memory Management
- Lab
3: User Environments
- Lab
4: Preemptive Multitasking
- Lab
5: File Systems and Spawn
- Lab
6: The Shell
Für Feedback jeglicher Art bin ich dankbar.
Rückfragen bitte generell an mich (J.-P. Redlich). |
Syllabus:
Administrative Information
[
slides]
- Introduction
What is an OS? History. [
slides]
Typical OS structures. System Call. [
slides]
Building an OS (SYSGEN), Booting. [
slides]
- Virtual Machines
[
slides]
Virtual Machine Monitor.
Virtualization types & techniques. Non-virtualizable x86
instructions. VmWare, VirtualPC, Xen.
- Processes
- Process Abstraction (in Unix and
Windows)
[
slides]
Process state. Process Control Block. Context Switch.
Protection.
- CPU Scheduling
[
slides]
Latency vs. throughput, Optimization goals. FIFO, Round Robin,
SJF, Priority scheduling, multi-level feedback queue, lottery
scheduling.
- Threads
[
slides]
User-level/kernel-level threads. Shared variables. Lost update
problem.
- Concurrency and Synchronization
[
slides]
Race condition. Atomic instructions. Mutual exclusion. Spin
locks, blocking locks, semaphores, monitors, optimistic
(wait-free) synchronization.
- Deadlocks
[
slides]
Coffman Conditions. Deadlock Prevention, Avoidance,
Detection&Recovery; Lifelock.
- Memory Management
- Virtual Memory
[
slides]
Virtual Address. Page Table, MMU. Memory protection. Shared
memory.
- Paging and Trashing
[
slides]
Demand paging. Distributed shared memory. Trashing, Page fault
frequency, Working set, Balance set. Transactional memory.
- Linking
[
slides]
Static linking (ELF). Dynamic linking. Shared libraries.
- Mass Storage
- Disk Storage
[
slides]
Hard Disk Drive (HDD), Access time (seek/rotational/transfer
delay). RAID 0,1,2,4,5,6. Storage Center.
========= ENDE PRÜFUNGSSTOFF
==========
- File Systems
[
slides]
Dos-FAT, Unix-FS (i-node), NTFS.
- File System Performance, Recovery
[
slides]
[
slides]
- Flash Memory File System
[
slides]
NAND vs. NOR flash, Journaling file system. Yaffs.
- NFS and NetApp's WAFL
Filesystem snapshot.
- OS Subsystems
- IO Devices and Drivers
Further Readings:
|
Silberschatz, Galvin, Gagne. Operating System
Concepts. 6th Edition. John Wiley & Sonns, 2003.
ISBN 0-471-25060-0 |
|
William Stallings. Betriebssysteme – Prinzipien
und Umsetzung. 4. Auflage. Prentice Hall, 2003.
ISBN 3-8273-7030-2 |
|
Andrew Tanenbaum. Moderne Betriebssysteme. 2002.
ISBN 3827370191 |
|
R. G. Herrtwich and G. Hommel. Kooperation und Konkurrenz -
Nebenläufige, verteilte und echtzeitabhängige Programmsysteme.
Springer-Verlag, 1989.
ISBN
3-540-51701-4. |
|
H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.
ISBN
0-7923-9894-7. |
|
Joseph Pranevich, The Wonderful World of Linux 2.6.
http://www.kniggit.net/wwol26.html (cached
pdf) |
|
|
|