Summer 2008 | Operating Systems Principles [32 211] half-course, 4VL + 2PR
VL: Tuesday, 09:30-11:00, RUD 25, 3.001; Lecturer: Prof. Redlich VL: Thursday, 09:30-11:00, RUD 26, 0.110; Lecturer: Prof. Redlich PR: Tuesday, 11:15-12:45, RUD 25, 4.113; Lecturer: Dipl-Inf. Kurth PR: Thursday, 11:15-12:45, RUD 26, 1.303; Lecturer: Dipl-Inf. Kurth | Computer Science Department Systems Architecture Group
|
Klausurergebnisse vom 17.7.2008 finden Sie >> hier << | Abstract: An operating system (OS) is the software responsible for controlling and managing hardware and basic system operations, as well as running application software such as word processing programs, Web browsers, and many others. In general, the operating system is the first layer of software loaded into memory when a computer starts up. All other software that gets loaded after it depends on the operating system to provide various common core services, such as disk access, memory management, process scheduling, and user interfaces. As operating systems evolve, ever more services are expected to be common core. These days, an OS may be required to provide network and Internet connectivity and also to protect the computer's other software from damage by malicious programs, such as viruses. Operating systems in widespread use on personal computers (PC) have consolidated into two families: the Microsoft Windows family and the Unix-like family. Mainframe computers and embedded systems use a variety of different operating systems, many with no direct connection to Windows or Unix.
Building Operating Systems is much about studying existing systems, knowing common problems, knowing what other people did, and figuring out if their ideas can be applied to a given new problem. These long-lasting principles - as opposed to implementation details and user interfaces of today's systems/software - is what this lecture is about.
| Synopsis:- Half-Course, Praktische Informatik, Hauptstudium.
- Offered regularly, at least once every two years, usually in spring.
- 2 lectures per week, 2h each, over one semester (4SWS VL).
- 1 lab (Praktikum) per week, 2h each, over one semester (2SWS PR).
Credits and grading: - There will be a few, short, unannounced, closed-book quizzes to verify your existence and to test your understanding.
- To qualify for the final written examination (at the end of the semester), you have to complete all lab assignments to the satisfaction of the teaching assistant (70% of all points).
- Regular class attendance is expected; frequent absences are grounds for a failing grade regardless of other performance. You may be missing up to 1 lecture per semester without prior and reasonable excuse. 'prior' means notification by email before the end of business the day before the lecture. 'reasonable' means sickness or study-related events that require your attendance.
- Lectures begin on time. Students arriving more than 10 minutes late will not be admitted to the lecture and will be counted as 'missing' that day.
Prerequisites: - Expertise with C and common development tools (gcc, make, rpm, cvs) absolutely required. C++ optional.
- Here are some useful tutorials and recommended HU-Berlin lectures:
Lab (Praktikum): - Worksheets: [lab1] [lab2] [lab3] [lab4] [lab5]
(links to the lab worksheets will be added just in time during the course)
NEU: Wie in der Vorlesung angesprochen, können sich interessierte Studenten bereits die Praktikums-Aufgaben für das nächste Jahr ansehen. Dort wird in einer Folge von 6 Aufgaben ein kleines Betriebssystem selbst implementiert. Wer sich dazu in der Lage sieht, kann anstelle des aktuellen Praktikums auch einige dieser Aufgaben lösen. Bitte beachten Sie dabei aber:- Die Aufgaben bauen aufeinander auf; Sie müssen also mit dem Lab 1 anfangen , danach Lab 2, ...
- Generell ist dieses Lab "praktischer" und anspruchsvoller als das der aktuellen Vorlesung - dafür lernen Sie aber auch mehr :-)
Es ist also eher etwas für diejenigen, die den Vorlesungsstoff etwas genauer kennenlernen wollen. - Das Rohmaterial für die Aufgaben habe ich zwar von Kollegen übernommen, die ähnliches bereits erfolgreich durchgeführt haben; dennoch besteht die Möglichkeit, dass sich im Material an einigen Stellen der Fehlerteufel eingeschlichen hat.
Hier die einzelnen Aufgaben: - Lab 1: Booting a PC
- Lab 2: Memory Management
- Lab 3: User Environments
- Lab 4: Preemptive Multitasking
- Lab 5: File Systems and Spawn
- Lab 6: The Shell
Für Feedback jeglicher Art bin ich dankbar. Rückfragen bitte generell an mich (J.-P. Redlich). |
Syllabus:
Administrative Information [ slides] - Introduction
What is an OS? History. [ slides] Typical OS structures. System Call. [ slides] Building an OS (SYSGEN), Booting. [ slides] - Virtual Machines [ slides]
Virtual Machine Monitor. Virtualization types & techniques. Non-virtualizable x86 instructions. VmWare, VirtualPC, Xen. - Processes
- Process Abstraction (in Unix and Windows) [ slides]
Process state. Process Control Block. Context Switch. Protection. - CPU Scheduling [ slides]
Latency vs. throughput, Optimization goals. FIFO, Round Robin, SJF, Priority scheduling, multi-level feedback queue, lottery scheduling. - Threads [ slides]
User-level/kernel-level threads. Shared variables. Lost update problem. - Concurrency and Synchronization [ slides]
Race condition. Atomic instructions. Mutual exclusion. Spin locks, blocking locks, semaphores, monitors, optimistic (wait-free) synchronization. - Deadlocks [ slides]
Coffman Conditions. Deadlock Prevention, Avoidance, Detection&Recovery; Lifelock.
- Memory Management
- Virtual Memory [ slides]
Virtual Address. Page Table, MMU. Memory protection. Shared memory. - Paging and Trashing [ slides]
Demand paging. Distributed shared memory. Trashing, Page fault frequency, Working set, Balance set. Transactional memory. - Linking [ slides]
Static linking (ELF). Dynamic linking. Shared libraries.
- Mass Storage
- Disk Storage [ slides]
Hard Disk Drive (HDD), Access time (seek/rotational/transfer delay). RAID 0,1,2,4,5,6. Storage Center. - File Systems [ slides]
Dos-FAT, Unix-FS (i-node), NTFS. - File System Performance [ slides]
- Flash Memory File System [ extra-slides]
NAND vs. NOR flash, Journaling file system. Yaffs. - NFS and NetApp's WAFL
Filesystem snapshot.
- OS Subsystems
- IO Devices and Drivers [ extra-slides]
Further Readings: | Silberschatz, Galvin, Gagne. Operating System Concepts. 6th Edition. John Wiley & Sonns, 2003. ISBN 0-471-25060-0 | | William Stallings. Betriebssysteme – Prinzipien und Umsetzung. 4. Auflage. Prentice Hall, 2003. ISBN 3-8273-7030-2 | | Andrew Tanenbaum. Moderne Betriebssysteme. 2002. ISBN 3827370191 | | R. G. Herrtwich and G. Hommel. Kooperation und Konkurrenz - Nebenläufige, verteilte und echtzeitabhängige Programmsysteme. Springer-Verlag, 1989. ISBN 3-540-51701-4. | | H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, 1997. ISBN 0-7923-9894-7. | | Joseph Pranevich, The Wonderful World of Linux 2.6. http://www.kniggit.net/wwol26.html (cached pdf) |
| |
|